Articles | Volume 5, issue 1
Research article
 | Highlight paper
16 Jun 2016
Research article | Highlight paper |  | 16 Jun 2016

A 7-year dataset for driving and evaluating snow models at an Arctic site (Sodankylä, Finland)

Richard Essery, Anna Kontu, Juha Lemmetyinen, Marie Dumont, and Cécile B. Ménard

Related authors

Altimetric Ku-band Radar Observations of Snow on Sea Ice Simulated with SMRT
Julien Meloche, Melody Sandells, Henning Löwe, Nick Rutter, Richard Essery, Ghislain Picard, Randall K. Scharien, Alexandre Langlois, Matthias Jaggi, Josh King, Peter Toose, Jérôme Bouffard, Alessandro Di Bella, and Michele Scagliola
EGUsphere,,, 2024
Short summary
Multi-physics ensemble modelling of Arctic tundra snowpack properties
Georgina Jean Woolley, Nick Rutter, Leanne Wake, Vincent Vionnet, Chris Derksen, Richard Essery, Philip Marsh, Rosamund Tutton, Branden Walker, Matthieu Lafaysse, and David Pritchard
EGUsphere,,, 2024
Short summary
Simulating net ecosystem exchange under seasonal snow cover at an Arctic tundra site
Victoria R. Dutch, Nick Rutter, Leanne Wake, Oliver Sonnentag, Gabriel Hould Gosselin, Melody Sandells, Chris Derksen, Branden Walker, Gesa Meyer, Richard Essery, Richard Kelly, Phillip Marsh, Julia Boike, and Matteo Detto
Biogeosciences, 21, 825–841,,, 2024
Short summary
GEMS v1.0: Generalizable Empirical Model of Snow Accumulation and Melt, based on daily snow mass changes in response to climate and topographic drivers
Atabek Umirbekov, Richard Essery, and Daniel Müller
Geosci. Model Dev., 17, 911–929,,, 2024
Short summary
Exploring the decision-making process in model development: focus on the Arctic snowpack
Cecile B. Menard, Sirpa Rasmus, Ioanna Merkouriadi, Gianpaolo Balsamo, Annett Bartsch, Chris Derksen, Florent Domine, Marie Dumont, Dorothee Ehrich, Richard Essery, Bruce C. Forbes, Gerhard Krinner, David Lawrence, Glen Liston, Heidrun Matthes, Nick Rutter, Melody Sandells, Martin Schneebeli, and Sari Stark
EGUsphere,,, 2024
Short summary

Related subject area

Data base
Making geoscientific lab data FAIR: a conceptual model for a geophysical laboratory database
Sven Nordsiek and Matthias Halisch
Geosci. Instrum. Method. Data Syst., 13, 63–73,,, 2024
Short summary
A universal and multi-dimensional model for analytical data on geological samples
Yutong He, Di Tian, Hongxia Wang, Li Yao, Miao Yu, and Pengfei Chen
Geosci. Instrum. Method. Data Syst., 8, 277–284,,, 2019
Short summary
Expanding HadISD: quality-controlled, sub-daily station data from 1931
Robert J. H. Dunn, Kate M. Willett, David E. Parker, and Lorna Mitchell
Geosci. Instrum. Method. Data Syst., 5, 473–491,,, 2016
Short summary
Sodankylä ionospheric tomography data set 2003–2014
Johannes Norberg, Lassi Roininen, Antti Kero, Tero Raita, Thomas Ulich, Markku Markkanen, Liisa Juusola, and Kirsti Kauristie
Geosci. Instrum. Method. Data Syst., 5, 263–270,,, 2016
Short summary
The abandoned surface mining sites in the Czech Republic: mapping and creating a database with a GIS web application
Richard Pokorný and Marie Tereza Peterková
Geosci. Instrum. Method. Data Syst., 5, 143–149,,, 2016
Short summary

Cited articles

Auer, A. H.: The rain versus snow threshold temperatures, Weatherwise, 27, 6p. 7, 1974.
Essery, R. L. H., Pomeroy, J., Ellis, C., and Link, T.: Modelling longwave radiation to snow beneath forest canopies using hemispherical photography or linear regression, Hydrol. Process., 22, 2788–2800, 2008.
Essery, R., Rutter, N., Pomeroy, J., Baxter, R., Stähli, M., Gustafsson, D., Barr, A., Bartlett, P., and Elder, K.: SnowMIP2: An evaluation of forest snow process simulations, B. Am. Meteor. Soc., 90, 1120–1135,, 2009.
Kangas, M., Rontu, L., Fortelius, C., Aurela, M., and Poikonen, A.: Weather model verification using Sodankylä mast measurements, Geosci. Instrum. Method. Data Syst., 5, 75–84,, 2016.
Short summary
Physically based models that predict the properties of snow on the ground are used in many applications, but meteorological input data required by these models are hard to obtain in cold regions. Monitoring at the Sodankyla research station allows construction of model input and evaluation datasets covering several years for the first time in the Arctic. The data are used to show that a sophisticated snow model developed for warmer and wetter sites can perform well in very different conditions.