Articles | Volume 6, issue 1
https://doi.org/10.5194/gi-6-103-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gi-6-103-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The MetNet vehicle: a lander to deploy environmental stations for local and global investigations of Mars
Research Division, Finnish Meteorological Institute, Helsinki, Finland
Konstantin Pichkadze
Planetary Systems Department, Lavochkin Association, Moscow, Russia
Lev Zeleny
Planetary Science Laboratory, Russian Space Research Center (IKI), Moscow, Russia
Luis Vazquez
Computational Mathematics Dept, Universidad Complutense de Madrid, Madrid, Spain
Walter Schmidt
Research Division, Finnish Meteorological Institute, Helsinki, Finland
Sergey Alexashkin
Planetary Systems Department, Lavochkin Association, Moscow, Russia
Oleg Korablev
Planetary Science Laboratory, Russian Space Research Center (IKI), Moscow, Russia
Hector Guerrero
Microelectronics Department, Instituto Nacional de Tecnica Aeroespacial (INTA), Madrid, Spain
Jyri Heilimo
Research Division, Finnish Meteorological Institute, Helsinki, Finland
Mikhail Uspensky
Research Division, Finnish Meteorological Institute, Helsinki, Finland
Valery Finchenko
Planetary Systems Department, Lavochkin Association, Moscow, Russia
Vyacheslav Linkin
Planetary Science Laboratory, Russian Space Research Center (IKI), Moscow, Russia
Ignacio Arruego
Microelectronics Department, Instituto Nacional de Tecnica Aeroespacial (INTA), Madrid, Spain
Maria Genzer
Research Division, Finnish Meteorological Institute, Helsinki, Finland
Alexander Lipatov
Planetary Science Laboratory, Russian Space Research Center (IKI), Moscow, Russia
Jouni Polkko
Research Division, Finnish Meteorological Institute, Helsinki, Finland
Mark Paton
Research Division, Finnish Meteorological Institute, Helsinki, Finland
Hannu Savijärvi
Dept of Physics, University of Helsinki, Finland
Harri Haukka
Research Division, Finnish Meteorological Institute, Helsinki, Finland
Tero Siili
Research Division, Finnish Meteorological Institute, Helsinki, Finland
Vladimir Khovanskov
Planetary Systems Department, Lavochkin Association, Moscow, Russia
Boris Ostesko
Planetary Systems Department, Lavochkin Association, Moscow, Russia
Andrey Poroshin
Dauria Ltd, Moscow, Russia
Marina Diaz-Michelena
Microelectronics Department, Instituto Nacional de Tecnica Aeroespacial (INTA), Madrid, Spain
Timo Siikonen
Finflo Ltd, Espoo, Finland
Matti Palin
Finflo Ltd, Espoo, Finland
Viktor Vorontsov
Planetary Systems Department, Lavochkin Association, Moscow, Russia
Alexander Polyakov
Planetary Systems Department, Lavochkin Association, Moscow, Russia
Francisco Valero
Computational Mathematics Dept, Universidad Complutense de Madrid, Madrid, Spain
Osku Kemppinen
Research Division, Finnish Meteorological Institute, Helsinki, Finland
Jussi Leinonen
Research Division, Finnish Meteorological Institute, Helsinki, Finland
Pilar Romero
Computational Mathematics Dept, Universidad Complutense de Madrid, Madrid, Spain
Related authors
Maria Hieta, Iina Jaakonaho, Jouni Polkko, Andreas Lorek, Stephen Garland, Jean-Pierre de Vera, Maria Genzer, and Ari-Matti Harri
Geosci. Instrum. Method. Data Syst., 13, 337–351, https://doi.org/10.5194/gi-13-337-2024, https://doi.org/10.5194/gi-13-337-2024, 2024
Short summary
Short summary
This paper describes new humidity measurements performed with the humidity instruments of the MSL, Mars 2020 and ExoMars missions. Special facilities are needed to create Martian conditions, and a measurement campaign was performed at the German Aerospace Center (DLR) to obtain datasets for REMS-H, MEDA HS and METEO-H instruments. The results from the campaign improved the humidity data we receive from MEDA HS/Perseverance and can further improve the existing Martian relative humidity data.
Joonas Leino, Ari-Matti Harri, Mark Paton, Jouni Polkko, Maria Hieta, and Hannu Savijärvi
Ann. Geophys., 42, 331–348, https://doi.org/10.5194/angeo-42-331-2024, https://doi.org/10.5194/angeo-42-331-2024, 2024
Short summary
Short summary
The 1-D column model has been used extensively in studying the Martian atmosphere. In this study, we investigated the sensitivity of the column model to its initialization. The results of the model were compared with Curiosity rover measurements. The initial value of airborne dust and surface temperature had the greatest influence on the temperature prediction, while the initial atmospheric moisture content and the shape of the initial moisture profile modified the humidity prediction the most.
Walter Schmidt, Ari-Matti Harri, Timo Nousiainen, Harri Hohti, Lasse Johansson, Olli Ojanperä, Erkki Viitala, Jarkko Niemi, Jani Turpeinen, Erkka Saukko, Topi Rönkkö, and Pekka Lahti
Geosci. Instrum. Method. Data Syst., 9, 397–406, https://doi.org/10.5194/gi-9-397-2020, https://doi.org/10.5194/gi-9-397-2020, 2020
Short summary
Short summary
Combining short-time forecast models, standardized interfaces to a wide range of environment detectors and a flexible user access interface, CITYZER provides decision-making authorities and private citizens with reliable information about the near-future development of critical environmental parameters like air quality and rain. The system can be easily adapted to different areas or different parameters. Alarms for critical situations can be set and used to support authority decisions.
Mark Paton, Ari-Matti Harri, Oliver Vierkens, and Hannu Savijärvi
Geosci. Instrum. Method. Data Syst., 8, 251–263, https://doi.org/10.5194/gi-8-251-2019, https://doi.org/10.5194/gi-8-251-2019, 2019
Short summary
Short summary
A software application for streamlining investigations of the Martian atmosphere is described. The main components are a 1-D model of the Martian atmosphere, observations of the Martian atmosphere and a software wrapper. We verify our model using the application. The model and observations agree except over the winter solstice where mechanical heating of the atmosphere, from downward flowing air, is likely warming the atmosphere. We update our model to include this effect.
Tuomas Kynkäänniemi, Osku Kemppinen, Ari-Matti Harri, and Walter Schmidt
Geosci. Instrum. Method. Data Syst., 6, 217–229, https://doi.org/10.5194/gi-6-217-2017, https://doi.org/10.5194/gi-6-217-2017, 2017
Short summary
Short summary
The new wind reconstruction algorithm developed in this article extends the amount of available sols from the Viking Lander 1 (VL1) mission from 350 to 2245. The reconstruction of wind measurement data enables the study of both short-term phenomena, such as daily variations in wind conditions or dust devils, and long-term phenomena, such as the seasonal variations in Martian tides.
J. Köhler, R. F. Wimmer-Schweingruber, J. Appel, B. Ehresmann, C. Zeitlin, D. M. Hassler, G. Reitz, D. E. Brinza, S. Böttcher, E. Böhm, S. Burmeister, J. Guo, A.-M. Harri, H. Kahanpää, J. Krauss, H. Lohf, C. Martin, D. Matthiä, A. Posner, and S. Rafkin
Ann. Geophys., 34, 133–141, https://doi.org/10.5194/angeo-34-133-2016, https://doi.org/10.5194/angeo-34-133-2016, 2016
Short summary
Short summary
The Radiation Assessment Detector (RAD), on board the Mars Science Laboratory (MSL) rover Curiosity, measures the energetic charged and neutral particles and the radiation dose rate on the surface of Mars. In this work we compare predicted electron/positron spectra with the signal measured by RAD.
We find that the RAD electron/positron measurements agree well with the spectra predicted by Planetocosmics.
O. Kemppinen, J. E. Tillman, W. Schmidt, and A.-M. Harri
Geosci. Instrum. Method. Data Syst., 2, 61–69, https://doi.org/10.5194/gi-2-61-2013, https://doi.org/10.5194/gi-2-61-2013, 2013
M. D. Paton, A.-M. Harri, T. Mäkinen, and H. Savijärvi
Geosci. Instrum. Method. Data Syst., 2, 17–27, https://doi.org/10.5194/gi-2-17-2013, https://doi.org/10.5194/gi-2-17-2013, 2013
Maria Hieta, Iina Jaakonaho, Jouni Polkko, Andreas Lorek, Stephen Garland, Jean-Pierre de Vera, Maria Genzer, and Ari-Matti Harri
Geosci. Instrum. Method. Data Syst., 13, 337–351, https://doi.org/10.5194/gi-13-337-2024, https://doi.org/10.5194/gi-13-337-2024, 2024
Short summary
Short summary
This paper describes new humidity measurements performed with the humidity instruments of the MSL, Mars 2020 and ExoMars missions. Special facilities are needed to create Martian conditions, and a measurement campaign was performed at the German Aerospace Center (DLR) to obtain datasets for REMS-H, MEDA HS and METEO-H instruments. The results from the campaign improved the humidity data we receive from MEDA HS/Perseverance and can further improve the existing Martian relative humidity data.
Joonas Leino, Ari-Matti Harri, Mark Paton, Jouni Polkko, Maria Hieta, and Hannu Savijärvi
Ann. Geophys., 42, 331–348, https://doi.org/10.5194/angeo-42-331-2024, https://doi.org/10.5194/angeo-42-331-2024, 2024
Short summary
Short summary
The 1-D column model has been used extensively in studying the Martian atmosphere. In this study, we investigated the sensitivity of the column model to its initialization. The results of the model were compared with Curiosity rover measurements. The initial value of airborne dust and surface temperature had the greatest influence on the temperature prediction, while the initial atmospheric moisture content and the shape of the initial moisture profile modified the humidity prediction the most.
Nikolaos Schetakis, Rodrigo Crespo, José Luis Vázquez-Poletti, Mariano Sastre, Luis Vázquez, and Alessio Di Iorio
Geosci. Instrum. Method. Data Syst., 9, 407–415, https://doi.org/10.5194/gi-9-407-2020, https://doi.org/10.5194/gi-9-407-2020, 2020
Short summary
Short summary
In this paper, we present a compilation of the different radiation transport codes for the Martian surface that are currently used by various space agencies and institutions. In addition, as the execution of the tasks necessary to process all of these radiation data requires a high computational processing capacity, we link it to cloud computing, which is found to be an appropriate tool regarding the required resources.
Walter Schmidt, Ari-Matti Harri, Timo Nousiainen, Harri Hohti, Lasse Johansson, Olli Ojanperä, Erkki Viitala, Jarkko Niemi, Jani Turpeinen, Erkka Saukko, Topi Rönkkö, and Pekka Lahti
Geosci. Instrum. Method. Data Syst., 9, 397–406, https://doi.org/10.5194/gi-9-397-2020, https://doi.org/10.5194/gi-9-397-2020, 2020
Short summary
Short summary
Combining short-time forecast models, standardized interfaces to a wide range of environment detectors and a flexible user access interface, CITYZER provides decision-making authorities and private citizens with reliable information about the near-future development of critical environmental parameters like air quality and rain. The system can be easily adapted to different areas or different parameters. Alarms for critical situations can be set and used to support authority decisions.
Tuukka Petäjä, Ella-Maria Duplissy, Ksenia Tabakova, Julia Schmale, Barbara Altstädter, Gerard Ancellet, Mikhail Arshinov, Yurii Balin, Urs Baltensperger, Jens Bange, Alison Beamish, Boris Belan, Antoine Berchet, Rossana Bossi, Warren R. L. Cairns, Ralf Ebinghaus, Imad El Haddad, Beatriz Ferreira-Araujo, Anna Franck, Lin Huang, Antti Hyvärinen, Angelika Humbert, Athina-Cerise Kalogridis, Pavel Konstantinov, Astrid Lampert, Matthew MacLeod, Olivier Magand, Alexander Mahura, Louis Marelle, Vladimir Masloboev, Dmitri Moisseev, Vaios Moschos, Niklas Neckel, Tatsuo Onishi, Stefan Osterwalder, Aino Ovaska, Pauli Paasonen, Mikhail Panchenko, Fidel Pankratov, Jakob B. Pernov, Andreas Platis, Olga Popovicheva, Jean-Christophe Raut, Aurélie Riandet, Torsten Sachs, Rosamaria Salvatori, Roberto Salzano, Ludwig Schröder, Martin Schön, Vladimir Shevchenko, Henrik Skov, Jeroen E. Sonke, Andrea Spolaor, Vasileios K. Stathopoulos, Mikko Strahlendorff, Jennie L. Thomas, Vito Vitale, Sterios Vratolis, Carlo Barbante, Sabine Chabrillat, Aurélien Dommergue, Konstantinos Eleftheriadis, Jyri Heilimo, Kathy S. Law, Andreas Massling, Steffen M. Noe, Jean-Daniel Paris, André S. H. Prévôt, Ilona Riipinen, Birgit Wehner, Zhiyong Xie, and Hanna K. Lappalainen
Atmos. Chem. Phys., 20, 8551–8592, https://doi.org/10.5194/acp-20-8551-2020, https://doi.org/10.5194/acp-20-8551-2020, 2020
Short summary
Short summary
The role of polar regions is increasing in terms of megatrends such as globalization, new transport routes, demography, and the use of natural resources with consequent effects on regional and transported pollutant concentrations. Here we summarize initial results from our integrative project exploring the Arctic environment and pollution to deliver data products, metrics, and indicators for stakeholders.
Mark Paton, Ari-Matti Harri, Oliver Vierkens, and Hannu Savijärvi
Geosci. Instrum. Method. Data Syst., 8, 251–263, https://doi.org/10.5194/gi-8-251-2019, https://doi.org/10.5194/gi-8-251-2019, 2019
Short summary
Short summary
A software application for streamlining investigations of the Martian atmosphere is described. The main components are a 1-D model of the Martian atmosphere, observations of the Martian atmosphere and a software wrapper. We verify our model using the application. The model and observations agree except over the winter solstice where mechanical heating of the atmosphere, from downward flowing air, is likely warming the atmosphere. We update our model to include this effect.
Laura Rontu, Emily Gleeson, Petri Räisänen, Kristian Pagh Nielsen, Hannu Savijärvi, and Bent Hansen Sass
Adv. Sci. Res., 14, 195–215, https://doi.org/10.5194/asr-14-195-2017, https://doi.org/10.5194/asr-14-195-2017, 2017
Short summary
Short summary
This paper provides an overview of the HLRADIA shortwave (SW) and longwave (LW) broadband radiation schemes used in the HIRLAM numerical weather prediction (NWP) model and available in the HARMONIE-AROME mesoscale NWP model. The advantage of broadband, over spectral, schemes is that they can be called more frequently within the NWP model, without compromising on computational efficiency. Fast physically based radiation parametrizations are also valuable for high-resolution ensemble forecasting.
Tuomas Kynkäänniemi, Osku Kemppinen, Ari-Matti Harri, and Walter Schmidt
Geosci. Instrum. Method. Data Syst., 6, 217–229, https://doi.org/10.5194/gi-6-217-2017, https://doi.org/10.5194/gi-6-217-2017, 2017
Short summary
Short summary
The new wind reconstruction algorithm developed in this article extends the amount of available sols from the Viking Lander 1 (VL1) mission from 350 to 2245. The reconstruction of wind measurement data enables the study of both short-term phenomena, such as daily variations in wind conditions or dust devils, and long-term phenomena, such as the seasonal variations in Martian tides.
Dominique C. Delcourt, Helmi V. Malova, and Lev M. Zelenyi
Ann. Geophys., 35, 11–23, https://doi.org/10.5194/angeo-35-11-2017, https://doi.org/10.5194/angeo-35-11-2017, 2017
Short summary
Short summary
In a magnetic field reversal, the guiding center may not be valid due to large variation of the magnetic field on the length scale of the particle gyro-radius. Although they do not execute regular helical motion and temporarily meander inside the field reversal, quasi-adiabatic particles exit this reversal with a magnetic moment nearly identical to that at entry. We show that this behavior, which is a steady-state concept, can persist during dipolarization despite the induced electric field.
Gi Young Jeong, Mi Yeon Park, Konrad Kandler, Timo Nousiainen, and Osku Kemppinen
Atmos. Chem. Phys., 16, 12397–12410, https://doi.org/10.5194/acp-16-12397-2016, https://doi.org/10.5194/acp-16-12397-2016, 2016
Short summary
Short summary
Individual Saharan dust particles were investigated by transmission electron microscopy of cross-sectional slices. We classified internal structures, and determined the volume of iron oxide included in the dust particles, the iron content of clay minerals, and the shape of the dust particles. The mineralogical and structural properties of single dust particles provide a basis for the modeling of dust optical properties and the supply of iron as a micronutrient to remote ocean ecosystem.
Marina Díaz-Michelena, Rolf Kilian, Ruy Sanz, Francisco Rios, and Oscar Baeza
Geosci. Instrum. Method. Data Syst., 5, 127–142, https://doi.org/10.5194/gi-5-127-2016, https://doi.org/10.5194/gi-5-127-2016, 2016
Short summary
Short summary
The present manuscript is written as the result of an exhaustive field work with MOURA instrument on relevant sites on Earth. MOURA magnetometer was developed for Mars MetNet precursor mission to Mars. In this work we have demonstrated the capabilities of the instrument in terrestrial analogues of Mars, which cover a huge variability range in the magnetic anomalies intensities. Apart from its suitability for prospections, we insist on its advanced performance regarding paleomagnetic information.
K. Kauristie, M. V. Uspensky, N. G. Kleimenova, O. V. Kozyreva, M. M. J. L. Van De Kamp, S. V. Dubyagin, and S. Massetti
Ann. Geophys., 34, 379–392, https://doi.org/10.5194/angeo-34-379-2016, https://doi.org/10.5194/angeo-34-379-2016, 2016
Short summary
Short summary
This study presents some example events in which sudden changes in the auroral activity at midnight sector seem to have an impact on the intensity of morning-sector magnetic pulsations. Mechanisms which could link these two separate regions are discussed in the paper. Sudden changes in the solar wind properties and fast westward-propagating electrons are suggested to explain the coupling between midnight-sector and morning-sector phenomena.
J. Köhler, R. F. Wimmer-Schweingruber, J. Appel, B. Ehresmann, C. Zeitlin, D. M. Hassler, G. Reitz, D. E. Brinza, S. Böttcher, E. Böhm, S. Burmeister, J. Guo, A.-M. Harri, H. Kahanpää, J. Krauss, H. Lohf, C. Martin, D. Matthiä, A. Posner, and S. Rafkin
Ann. Geophys., 34, 133–141, https://doi.org/10.5194/angeo-34-133-2016, https://doi.org/10.5194/angeo-34-133-2016, 2016
Short summary
Short summary
The Radiation Assessment Detector (RAD), on board the Mars Science Laboratory (MSL) rover Curiosity, measures the energetic charged and neutral particles and the radiation dose rate on the surface of Mars. In this work we compare predicted electron/positron spectra with the signal measured by RAD.
We find that the RAD electron/positron measurements agree well with the spectra predicted by Planetocosmics.
O. Kemppinen, T. Nousiainen, and G. Y. Jeong
Atmos. Chem. Phys., 15, 12011–12027, https://doi.org/10.5194/acp-15-12011-2015, https://doi.org/10.5194/acp-15-12011-2015, 2015
Short summary
Short summary
Internal structures are common in atmospheric dust particles, yet their effects on light scattering are largely unstudied. In this work, we study how hematite nodes, internal voids and hematite-rich coating impact single-scattering properties of computationally generated irregular model particles. The results show that all of these features change scattering properties significantly, and that a simple effective-medium approximation is not enough to replicate the scattering properties.
O. Kemppinen, T. Nousiainen, S. Merikallio, and P. Räisänen
Atmos. Chem. Phys., 15, 11117–11132, https://doi.org/10.5194/acp-15-11117-2015, https://doi.org/10.5194/acp-15-11117-2015, 2015
Short summary
Short summary
Combinations of simple mathematical model shapes called ellipsoids are used in many remote sensing and modeling applications to denote dust particles. In this study we investigate how accurately various physical parameters can be retrieved by using ellipsoids. The results show that using ellipsoids can lead to wrong results, while at the same time seeming like they work well. This means that extreme care should be used when using ellipsoids for dust, and extra validation measures should be used.
M. Díaz-Michelena, R. Sanz, M. F. Cerdán, and A. B. Fernández
Geosci. Instrum. Method. Data Syst., 4, 1–18, https://doi.org/10.5194/gi-4-1-2015, https://doi.org/10.5194/gi-4-1-2015, 2015
Short summary
Short summary
In situ magnetometry is key for planetary mineralogy. However, since magnetic instrumentation is considered secondary in Mars and Moon landers and rovers, magnetometers have often very restricted envelopes of mass, volume and power, and consequently limited functionality.
In this work, it is presented the capability of MOURA small magnetometer and gradiometer to open a wide and novel scientific research on Mars mineralogy and paleomagnetism through the very complex calibration process.
E. Nielsen and W. Schmidt
Hist. Geo Space. Sci., 5, 63–72, https://doi.org/10.5194/hgss-5-63-2014, https://doi.org/10.5194/hgss-5-63-2014, 2014
I. Y. Vasko, A. V. Artemyev, A. A. Petrukovich, R. Nakamura, and L. M. Zelenyi
Ann. Geophys., 32, 133–146, https://doi.org/10.5194/angeo-32-133-2014, https://doi.org/10.5194/angeo-32-133-2014, 2014
A. V. Artemyev, A. I. Neishtadt, and L. M. Zelenyi
Nonlin. Processes Geophys., 20, 899–919, https://doi.org/10.5194/npg-20-899-2013, https://doi.org/10.5194/npg-20-899-2013, 2013
A. V. Artemyev, A. A. Petrukovich, R. Nakamura, and L. M. Zelenyi
Ann. Geophys., 31, 1109–1114, https://doi.org/10.5194/angeo-31-1109-2013, https://doi.org/10.5194/angeo-31-1109-2013, 2013
O. Kemppinen, J. E. Tillman, W. Schmidt, and A.-M. Harri
Geosci. Instrum. Method. Data Syst., 2, 61–69, https://doi.org/10.5194/gi-2-61-2013, https://doi.org/10.5194/gi-2-61-2013, 2013
M. D. Paton, A.-M. Harri, T. Mäkinen, and H. Savijärvi
Geosci. Instrum. Method. Data Syst., 2, 17–27, https://doi.org/10.5194/gi-2-17-2013, https://doi.org/10.5194/gi-2-17-2013, 2013
Related subject area
Space instruments
Laboratory measurements of the performances of the Sweeping Langmuir Probe instrument aboard the PICASSO CubeSat
Creating HiRISE digital elevation models for Mars using the open-source Ames Stereo Pipeline
Multiresolution wavelet analysis applied to GRACE range-rate residuals
Mars submillimeter sensor on microsatellite: sensor feasibility study
TARANIS XGRE and IDEE detection capability of terrestrial gamma-ray flashes and associated electron beams
Wind reconstruction algorithm for Viking Lander 1
One-chip analog circuits for a new type of plasma wave receiver on board space missions
Mass spectrometry of planetary exospheres at high relative velocity: direct comparison of open- and closed-source measurements
Influence of probe geometry on measurement results of non-ideal thermal conductivity sensors
Analysis of COSIMA spectra: Bayesian approach
High-frequency performance of electric field sensors aboard the RESONANCE satellite
COSIMA data analysis using multivariate techniques
CLUSTER–STAFF search coil magnetometer calibration – comparisons with FGM
In-flight calibration of double-probe electric field measurements on Cluster
In-flight calibration of the Cluster PEACE sensors
In-flight calibration of the Hot Ion Analyser on board Cluster
Background subtraction for the Cluster/CODIF plasma ion mass spectrometer
Interpretation of Cluster WBD frequency conversion mode data
Enhanced timing accuracy for Cluster data
In-flight calibration of the Cluster/CODIF sensor
Calibration of non-ideal thermal conductivity sensors
Investigating thermal properties of gas-filled planetary regoliths using a thermal probe
Sylvain Ranvier and Jean-Pierre Lebreton
Geosci. Instrum. Method. Data Syst., 12, 1–13, https://doi.org/10.5194/gi-12-1-2023, https://doi.org/10.5194/gi-12-1-2023, 2023
Short summary
Short summary
The Sweeping Langmuir Probe on board the PICASSO CubeSat was designed to measure plasma parameters. Before launch, the instrument was tested in a plasma chamber. It is shown that the traditional method to interpret the data cannot be applied directly for this type of probe, and an adaptation is proposed. It is reported how, with a reduced number of data points, the plasma parameters can still be retrieved. Finally, the effects of the contamination of the probe surface are discussed.
Adam J. Hepburn, Tom Holt, Bryn Hubbard, and Felix Ng
Geosci. Instrum. Method. Data Syst., 8, 293–313, https://doi.org/10.5194/gi-8-293-2019, https://doi.org/10.5194/gi-8-293-2019, 2019
Short summary
Short summary
Currently, there exist thousands of unprocessed stereo pairs of satellite imagery which can be used to create models of the surface of Mars. This paper sets out a new open–source and free to use pipeline for creating these models. Our pipeline produces models of comparable quality to the limited number released to date but remains free to use and easily implemented by researchers, who may not necessarily have prior experience of DEM creation.
Saniya Behzadpour, Torsten Mayer-Gürr, Jakob Flury, Beate Klinger, and Sujata Goswami
Geosci. Instrum. Method. Data Syst., 8, 197–207, https://doi.org/10.5194/gi-8-197-2019, https://doi.org/10.5194/gi-8-197-2019, 2019
Short summary
Short summary
In this paper, we present an approach to represent underlying errors in measurements and physical models in the temporal gravity field determination using GRACE observations. This study provides an opportunity to improve the error model and the accuracy of the GRACE parameter estimation, as well as its successor GRACE Follow-On.
Richard Larsson, Yasuko Kasai, Takeshi Kuroda, Shigeru Sato, Takayoshi Yamada, Hiroyuki Maezawa, Yutaka Hasegawa, Toshiyuki Nishibori, Shinichi Nakasuka, and Paul Hartogh
Geosci. Instrum. Method. Data Syst., 7, 331–341, https://doi.org/10.5194/gi-7-331-2018, https://doi.org/10.5194/gi-7-331-2018, 2018
Short summary
Short summary
We are planning a Mars mission. The mission will carry an instrument capable of measuring and mapping molecular oxygen and water in the Martian atmosphere, as well as the temperature, wind, and magnetic field. Water and oxygen are vital parts of the Martian atmospheric chemistry and must be better understood. Using computer simulation results, the paper gives a description of how the measurements will work, some problems we expect to encounter, and the sensitivity of the measurements.
David Sarria, Francois Lebrun, Pierre-Louis Blelly, Remi Chipaux, Philippe Laurent, Jean-Andre Sauvaud, Lubomir Prech, Pierre Devoto, Damien Pailot, Jean-Pierre Baronick, and Miles Lindsey-Clark
Geosci. Instrum. Method. Data Syst., 6, 239–256, https://doi.org/10.5194/gi-6-239-2017, https://doi.org/10.5194/gi-6-239-2017, 2017
Short summary
Short summary
The TARANIS spacecraft will be launched at the end of 2018. It is one of the first dedicated to the study of terrestrial gamma-ray flashes (TGF) and associated electrons (TEB), produced by thunderstorms. We present two of the six instruments on board the TARANIS spacecraft: a gamma-ray and energetic electron detector (XGRE) and an electron detector (IDEE). We compare them to other instruments that have already detected TGF and TEB, and use them to estimate the detection rate of TARANIS.
Tuomas Kynkäänniemi, Osku Kemppinen, Ari-Matti Harri, and Walter Schmidt
Geosci. Instrum. Method. Data Syst., 6, 217–229, https://doi.org/10.5194/gi-6-217-2017, https://doi.org/10.5194/gi-6-217-2017, 2017
Short summary
Short summary
The new wind reconstruction algorithm developed in this article extends the amount of available sols from the Viking Lander 1 (VL1) mission from 350 to 2245. The reconstruction of wind measurement data enables the study of both short-term phenomena, such as daily variations in wind conditions or dust devils, and long-term phenomena, such as the seasonal variations in Martian tides.
Takahiro Zushi, Hirotsugu Kojima, and Hiroshi Yamakawa
Geosci. Instrum. Method. Data Syst., 6, 159–167, https://doi.org/10.5194/gi-6-159-2017, https://doi.org/10.5194/gi-6-159-2017, 2017
Short summary
Short summary
Plasma waves are important observational targets for scientific missions investigating space plasma phenomena. Conventional plasma wave receivers have the disadvantages of a large size and a narrow dynamic range. We proposes a new receiver that overcomes the disadvantages of conventional receivers. The analog section of the new receiver was realized using application-specific integrated circuit (ASIC) technology in order to reduce the size, and an ASIC chip was successfully developed.
Stefan Meyer, Marek Tulej, and Peter Wurz
Geosci. Instrum. Method. Data Syst., 6, 1–8, https://doi.org/10.5194/gi-6-1-2017, https://doi.org/10.5194/gi-6-1-2017, 2017
Short summary
Short summary
We developed a prototype of the Neutral Gas and Ion Mass spectrometer (NIM) of the Particle Environment Package (PEP) for the JUICE mission of ESA. NIM will be used to measure the chemical composition of the exospheres of the icy Jovian moons. The NIM prototype was successfully tested under realistic conditions and we find that the closed source behaves as expected within the JUICE mission phase velocities. No additional fragmentation of the species recorded with the closed source is observed.
Patrick Tiefenbacher, Norbert I. Kömle, Wolfgang Macher, and Günter Kargl
Geosci. Instrum. Method. Data Syst., 5, 383–401, https://doi.org/10.5194/gi-5-383-2016, https://doi.org/10.5194/gi-5-383-2016, 2016
H. J. Lehto, B. Zaprudin, K. M. Lehto, T. Lönnberg, J. Silén, J. Rynö, H. Krüger, M. Hilchenbach, and J. Kissel
Geosci. Instrum. Method. Data Syst., 4, 139–148, https://doi.org/10.5194/gi-4-139-2015, https://doi.org/10.5194/gi-4-139-2015, 2015
M. Sampl, W. Macher, C. Gruber, T. Oswald, M. Kapper, H. O. Rucker, and M. Mogilevsky
Geosci. Instrum. Method. Data Syst., 4, 81–88, https://doi.org/10.5194/gi-4-81-2015, https://doi.org/10.5194/gi-4-81-2015, 2015
Short summary
Short summary
We present the high-frequency properties of the eight electric field sensors as proposed to be launched on the spacecraft “RESONANCE” in the near future. Due to the close proximity of the conducting spacecraft body, the sensors (antennas) have complex receiving features and need to be well understood for an optimal mission and spacecraft design. In particular techniques like wave polarization analysis and incident direction finding depend crucially on the presented antenna characteristics.
J. Silén, H. Cottin, M. Hilchenbach, J. Kissel, H. Lehto, S. Siljeström, and K. Varmuza
Geosci. Instrum. Method. Data Syst., 4, 45–56, https://doi.org/10.5194/gi-4-45-2015, https://doi.org/10.5194/gi-4-45-2015, 2015
Short summary
Short summary
COSIMA, an advanced TOF-SIMS instrument measuring the mass spectrum of dust grains collected at comet P67 by the ROSETTA spacecraft, is predicted to encounter complex mixtures of minerals and organic compounds. To extract information from this data set, we have developed a multivariate technique tested on laboratory measurements made by an identical instrument under controlled conditions. We have shown that minerals can be identified and separated with high level of confidence.
P. Robert, N. Cornilleau-Wehrlin, R. Piberne, Y. de Conchy, C. Lacombe, V. Bouzid, B. Grison, D. Alison, and P. Canu
Geosci. Instrum. Method. Data Syst., 3, 153–177, https://doi.org/10.5194/gi-3-153-2014, https://doi.org/10.5194/gi-3-153-2014, 2014
Y. V. Khotyaintsev, P.-A. Lindqvist, C. M. Cully, A. I. Eriksson, and M. André
Geosci. Instrum. Method. Data Syst., 3, 143–151, https://doi.org/10.5194/gi-3-143-2014, https://doi.org/10.5194/gi-3-143-2014, 2014
N. Doss, A. N. Fazakerley, B. Mihaljčić, A. D. Lahiff, R. J. Wilson, D. Kataria, I. Rozum, G. Watson, and Y. Bogdanova
Geosci. Instrum. Method. Data Syst., 3, 59–70, https://doi.org/10.5194/gi-3-59-2014, https://doi.org/10.5194/gi-3-59-2014, 2014
A. Blagau, I. Dandouras, A. Barthe, S. Brunato, G. Facskó, and V. Constantinescu
Geosci. Instrum. Method. Data Syst., 3, 49–58, https://doi.org/10.5194/gi-3-49-2014, https://doi.org/10.5194/gi-3-49-2014, 2014
C. G. Mouikis, L. M. Kistler, G. Wang, and Y. Liu
Geosci. Instrum. Method. Data Syst., 3, 41–48, https://doi.org/10.5194/gi-3-41-2014, https://doi.org/10.5194/gi-3-41-2014, 2014
J. S. Pickett, I. W. Christopher, and D. L. Kirchner
Geosci. Instrum. Method. Data Syst., 3, 21–27, https://doi.org/10.5194/gi-3-21-2014, https://doi.org/10.5194/gi-3-21-2014, 2014
K. H. Yearby, S. N. Walker, and M. A. Balikhin
Geosci. Instrum. Method. Data Syst., 2, 323–328, https://doi.org/10.5194/gi-2-323-2013, https://doi.org/10.5194/gi-2-323-2013, 2013
L. M. Kistler, C. G. Mouikis, and K. J. Genestreti
Geosci. Instrum. Method. Data Syst., 2, 225–235, https://doi.org/10.5194/gi-2-225-2013, https://doi.org/10.5194/gi-2-225-2013, 2013
N. I. Kömle, W. Macher, G. Kargl, and M. S. Bentley
Geosci. Instrum. Method. Data Syst., 2, 151–156, https://doi.org/10.5194/gi-2-151-2013, https://doi.org/10.5194/gi-2-151-2013, 2013
M. D. Paton, A.-M. Harri, T. Mäkinen, and S. F. Green
Geosci. Instrum. Method. Data Syst., 1, 7–21, https://doi.org/10.5194/gi-1-7-2012, https://doi.org/10.5194/gi-1-7-2012, 2012
Cited articles
Ball, A. J., Garry, J. R. C., Lorenz, R. D., and Kerzhanovich, V. V.: Planetary landers and entry probes, Cambridge University Press, Cambridge, UK, 2009.
Barderas, G. and Romero, P.: On the inverse problem of determining Mars lander coordinates using Phobos eclipse observations, Planet. Space Sci., 79, 39–44, 2013.
CCSDS 211.0-B-4: Proximity-1 Space Link Protocol – Data Link Layer, Consultative Committee for Space Data Systems, CCSDS Secretariat, Office of Space Communication (Code M-3), National Aeronautics and Space Administration, Washington, DC 20546, USA, 4 edn., 2006.
Chicarro, A. F., Coradini, M., Fulchignoni, M., Hiller, K., Knudsen, J. M., Liede, I., Lindberg, C., Lognonné, P., Pellinen, R., Spohn, T., Scoon, G. E. N., Taylor, F. W., and Wänke, H.: MARSNET Phase-A Study Report, Tech. Rep. SCI(93)2, European Space Agency, Paris, France, 1993.
Chicarro, A., Scoon, G., and Coradini, M.: INTERMARSNET – An international network of stations on Mars for global martian characterisation, ESA Journal, 18, 207–218, 1994.
Clark, I. G., Hutchings, A. L., Tanner, C. L., and Braun, R. D.: Supersonic Inflatable Aerodynamic Decelerators for Use on Future Robotic Missions to Mars, J. Spacecraft Rockets, 46, 340–352, 2009.
COSPAR planetary protection policy: COSPAR planetary protection policy, Policy document, Committee on Space Research (COSPAR), original dated 20 October 2002, amended 24 March 2005, 2005.
Golombek, M. P., Bridges, N. T., Moore, H. J., Murchie, S. L., Murphy, J. R., Parker, T. J., Rieder, R., Rivellini, T. P., Schofield, J. T., Seiff, A., Singer, R. B., Smith, P. H., Soderblom, L. A., Spencer, D. A., Stoker, C. R., Sullivan, R., Thomas, N., Thurman, S. W., Tomasko, M. G., Vaughan, R. M., Wänke, H., Ward, A. W., and Wilson, G. R.: Overview of the Mars Pathfinder Mission: Launch through landing, surface operations, data sets, and science results, J. Geophys. Res., 104, 8523–8554, 1999.
Gómez-Elvira, J., Armiens, C., Carrasco, I., Genzer, M., Gómez, F., Haberle, R., Hamilton, V. E., Harri, A.-M., Kahanpää, H., Kemppinen, O., Lepinette, A., Martín Soler, J., Martín-Torres, J., Martínez-Frías, J., Mischna, M., Mora, L., Navarro, S., Newman, C., Pablo, M. A., Peinado, V., Polkko, J., Rafkin, S. C. R., Ramos, M., Rennó, N. O., Richardson, M., Rodríguez-Manfredi, J. A., Romeral Planelló, J. J., Sebastián, E., Torre Juárez, M., Torres, J., Urquí, R., Vasavada, A. R., Verdasca, J., and Zorzano, M.-P.: Curiosity's rover environmental monitoring station: Overview of the first 100 sols, J. Geophys. Res.-Planet., 119, 1680–1688, https://doi.org/10.1002/2013JE004576, 2014.
GOST: Specifications, Tech. rep., 1977.
Grotzinger, J. P., Crisp, J., Vasavada, A. R., Anderson, R. C., Baker, C. J., Barry, R., Blake, D. F., Conrad, P., Edgett, K. S., Ferdowski, B., Gellert, R., Gilbert, J. B., Golombek, M., Gómez-Elvira, J., Hassler, D. M., Jandura, L., Litvak, M., Mahaffy, P., Maki, J., Meyer, M., Malin, M. C., Mitrofanov, I., Simmonds, J. J., Vaniman, D., Welch, R. V., and Wiens, R. C.: Mars Science Laboratory Mission and Science Investigation, Space Sci. Rev., 170, 5–56, https://doi.org/10.1007/s11214-012-9892-2, 2012.
Guinn, J. R., Garcia, M. D., and Talley, K.: Mission design of the Phoenix Mars Scout mission, J. Geophys. Res., 113, E00A26, https://doi.org/10.1029/2007JE003038, 2008.
Haberle, R. M. and Catling, D. C.: A Micro-Meteorological mission for global network science on Mars: rationale and measurement requirements, Planet. Space Sci., 44, 1361–1383, https://doi.org/10.1016/S0032-0633(96)00056-6, 1996.
Harri, A., Linkin, V., Polkko, J., Marov, M., Pommereau, J., Lipatov, A., Siili, T., Manuilov, K., Lebedev, V., Lehto, A., Pellinen, R., Pirjola, R., Carpentier, T., Malique, C., Makarov, V., Khloustova, L., Esposito, L., Maki, J., Lawrence, G., and Lystsev, V.: Meteorological observations on Martian surface: met-packages of Mars-96 Small Stations and Penetrators, Planet. Space Sci., 46, 779–793, https://doi.org/10.1016/S0032-0633(98)00012-9, 1998.
s Harri, A.-M., Marsal, O., Lognonné, P., Leppelmeier, G. W., Spohn, T., Glassmeier, K.-H., Angrilli, F., Banerdt, W. B., Barriot, J. P., Bertaux, J.-L., Bérthelier, J. J., Calcutt, S., Cerisier, J. C., Crisp, D., Déhant, V., Giardini, D., Jaumann, R., Langevin, Y., Menvielle, M., Mussmann, G., Pommereau, J. P., di Pippo, S., Guerrier, D., Kumpulainen, K., Larsen, S., Mocquet, A., Polkko, J., Runavot, J., Schumacher, W., Siili, T., Simola, J., Tillman, J. E., and the NetLander Team: Network science landers for Mars, Adv. Space Res., 23, 1915–1924, https://doi.org/10.1016/S0273-1177(99)00279-3, 1999.
Harri, A.-M., Leinonen, J., Merikallio, S., Paton, M., Haukka, H., and Polkko, J.: MetNet – In situ observational Network and Orbital platform to investigate the Martian environment, Tech. rep., 2007.
Harri, A.-M., Schmidt, W., Romero, P., Vazquez, L., Barderas, G., Kemppinen, O., A. C., Vazquez-Poletti, J. L., Llorente, I. M., Haukka, H., and Paton, M.: Phobos eclipse detection on Mars: Theory and practice, Tech. rep., 2012.
Harri, A.-M., Genzer, M., Kemppinen, O., Gomez-Elvira, J., Haberle, R., Polkko, J., Savijärvi, H., Rennó, N., Rodriguez-Manfredi, J. A., Schmidt, W., Richardson, M., Siili, T., Paton, M., Torre-Juarez, M. D. L., Mäkinen, T., Newman, C., Rafkin, S., Mischna, M., Merikallio, S., Haukka, H., Martin-Torres, J., Komu, M., Zorzano, M.-P., Peinado, V., Vazquez, L., and Urqui, R.: Mars Science Laboratory relative humidity observations: Initial results, J. Geophys. Res.-Planet., 119, 2132–2147, https://doi.org/10.1002/2013JE004514, 2014a.
Harri, A.-M., Genzer, M., Kemppinen, O., Kahanpää, H., Gomez-Elvira, J., Rodriguez-Manfredi, J. A., Habserle, R., Polkko, J., Schmidt, W., Savijärvi, H., Kauhanen, J., Atlaskin, E., Richardson, M., Siili, T., Paton, M., Torre Juarez, M., Newman, C., Rafkin, S., Lemmon, M. T., Mischna, M., Merikallio, S., Haukka, H., Martin-Torres, J., Zorzano, M.-P., Peinado, V., Urqui, R., Lapinette, A., Scodary, A., Mäkinen, T., Vazquez, L., Rennó, N., and REMS/MSL Science Team: Pressure observations by the Curiosity rover: Initial results, J. Geophys. Res.-Planet., 119, 82–92, https://doi.org/10.1002/2013JE004423, 2014b.
Heilimo, J., Harri, A.-M., Aleksashkin, S., Koryanov, V., Arruego, I., Schmidt, W., Haukka, H., Finchenko, V., Martynov, M., Ostresko, B., Ponomarenko, A., Kazakovtsev, V., Martin, S., and Siili, T.: RITD – Adapting Mars Entry, Descent and Landing System for Earth, in: EGU General Assembly Conference Abstracts, vol. 16 of EGU General Assembly Conference Abstracts, 2014.
Kauhanen, J., Siili, T., Järvenoja, S., and Savijärvi, H.: The Mars Limited Area Model (MLAM) and simulations of atmospheric circulations for the Phoenix landing area and season-of-operation, J. Geophys. Res., 113, E00A14, https://doi.org/10.1029/2007JE003011, 2008.
Linkin, V., Harri, A.-M., Lipatov, A., Belostotskaja, K., Derbunovich, B., Ekonomov, A., Khloustova, L., Kremnev, R., Makarov, V., Martinov, B., Nenarokov, D., Prostov, M., Pustovalov, A., Shustko, G., Järvinen, I., Kivilinna, H., Korpela, S., Kumpulainen, K., Lehto, A., Pellinen, R., Pirjola, R., Riihelä, P., Salminen, A., Schmidt, W., Siili, T., Blamont, J., Carpentier, T., Debus, A., Hua, C. T., Karczewski, J.-F., Laplace, H., Levacher, P., Lognonné, P., Malique, C., Menvielle, M., Mouli, G., Pommereau, J.-P., Quotb, K., Runavot, J., Vienne, D., Grunthaner, F., Kuhnke, F., Mussmann, G., Rieder, R., Wänke, H., Economou, T., Herring, M., Lane, A., and McKay, C. P.: A sophisticated lander for scientific exploration of Mars: scientific objectives and implementation of the Mars-96 Small Station, Planet. Space Sci., 46, 717–737, https://doi.org/10.1016/S0032-0633(98)00008-7, 1998.
Lorenz, R. D.: Planetary penetrators: Their origins, history and future, Adv. Space Res., 48, 403–431, 2011.
Merrihew, S. C., Haberle, R. M., and Lemke, L. G.: A Micro-Meteorological mission for global network science on Mars: a conceptual design, Planet. Space Sci., 44, 1385–1393, https://doi.org/10.1016/S0032-0633(96)00055-4, 1996.
MESUR study report: Mars Environmental Survey (MESUR) science objectives and mission description., NASA Ames Rsesearch Center study report, 1991.
Paton, M. D., Harri, A.-M., Savijärvi, H., Mäkinen, T., Hagermann, A., Kemppinen, O., and Johnston, A.: Thermal and microstructural properties of fine-grained material at the Viking Lander 1 site, Icarus, 271, 360–374, https://doi.org/10.1016/j.icarus.2016.02.012, 2016.
Romero, P., Barderas, G., Vazquez-Poletti, J. L., and Llorente, I. M.: Spatial chronogram to detect Phobos eclipses on Mars with the MetNet Precursor Lander, Planet. Space Sci., 59, 1542–1550, 2011.
Savijärvi, H., Crisp, D., and Harri, A.-M.: Effects of CO2 and dust on present-day solar radiation and climate on Mars, Q. J. Roy. Meteor. Soc., 131, 2907–2922, https://doi.org/10.1256/qj.04.09, 2005.
Savijärvi, H., Harri, A.-M., and Kemppinen, O.: The diurnal water cycle at Curiosity: Role of exchange with the regolith, Icarus, 265, 63–69, https://doi.org/10.1016/j.icarus.2015.10.008, 2016.
Shalin, R. E.: Polymer Matrix Composites, Tech. rep., 1995.
Smith, P. H., Tamppari, L., Arvidson, R. E., Bass, D., Blaney, D., Boynton, W., Carswell, A., Catling, D., Clark, B., Duck, T., DeJong, E., Fisher, D., Goetz, W., Gunnlaugsson, P., Hecht, M., Hipkin, V., Hoffman, J., Hviid, S., Keller, H., Kounaves, S., Lange, C. F., Lemmon, M., Madsen, M., Malin, M., Markiewicz, W., Marshall, J., McKay, C., Mellon, M., Michelangeli, D., Ming, D., Morris, R., Renno, N., Pike, W. T., Staufer, U., Stoker, C., Taylor, P., Whiteway, J., Young, S., and Zent, A.: Introduction to special section on the Phoenix Mission: Landing Site Characterization Experiments, Mission Overviews, and Expected Science, J. Geophys. Res.-Planet., 113, E00A18, https://doi.org/10.1029/2008JE003083, 2008.
Smrekar, S., Catling, D., Lorenz, R., Magalhães, J., Moersch, J., Morgan, P., Murray, B., Presley, M., Yen, A., Zent, A., and Blaney, D.: Deep Space 2: the Mars microprobe mission, J. Geophys. Res., 104, 27013–27030, https://doi.org/10.1029/1999JE001073, 1999.
Soffen, G. A.: Scientific Results of the Viking Missions, Science, 194, 1274–1276, https://doi.org/10.1126/science.194.4271.1274, 1976.
Soffen, G. A. and Snyder, C. W.: The First Viking Mission to Mars, Science, 193, 759–766, https://doi.org/10.1126/science.193.4255.759, 1976.
Surkov, Y. A. and Kremnev, R. S.: Mars-96 mission: Mars exploration with the use of penetrators, Planet. Space Sci., 46, 1689 – 1696, https://doi.org/10.1016/S0032-0633(98)00071-3, 1998.
Taylor, P. A., Catling, D. C., Daly, M., Dickinson, C. S., Gunnlaugsson, H. P., Harri, A.-M., and Lange, C. F.: Temperature, pressure, and wind instrumentation in the Phoenix meteorological package, J. Geophys. Res.-Planet., 113, E00A10, https://doi.org/10.1029/2007JE003015, 2008.
Short summary
Investigations of Mars – its atmosphere, surface and interior – require simultaneous, distributed in situ measurements. We have developed an innovative prototype of the Mars Network Lander (MNL), a small lander/penetrator with a 20 % payload mass fraction. MNL features an innovative Entry, Descent and Landing System to increase reliability and reduce the system mass. It is ideally suited for piggy-backing on spacecraft, for network missions and pathfinders for high-value landed missions.
Investigations of Mars – its atmosphere, surface and interior – require simultaneous,...