Articles | Volume 7, issue 4
https://doi.org/10.5194/gi-7-277-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-7-277-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Precise DEM extraction from Svalbard using 1936 high oblique imagery
Department of Geosciences, University of Oslo, Postboks 1047 Blindern, 0316 Oslo, Norway
Niels Ivar Nielsen
Department of Geosciences, University of Oslo, Postboks 1047 Blindern, 0316 Oslo, Norway
Frédérique Couderette
Department of Geosciences, University of Oslo, Postboks 1047 Blindern, 0316 Oslo, Norway
École Nationale des Sciences Géographiques, 6 et 8 Avenue Blaise Pascal,
Cité Descartes, 77420 Champs-sur-Marne, France
Christopher Nuth
Department of Geosciences, University of Oslo, Postboks 1047 Blindern, 0316 Oslo, Norway
Andreas Kääb
Department of Geosciences, University of Oslo, Postboks 1047 Blindern, 0316 Oslo, Norway
Related authors
Juditha Aga, Livia Piermattei, Luc Girod, Kristoffer Aalstad, Trond Eiken, Andreas Kääb, and Sebastian Westermann
Earth Surf. Dynam., 12, 1049–1070, https://doi.org/10.5194/esurf-12-1049-2024, https://doi.org/10.5194/esurf-12-1049-2024, 2024
Short summary
Short summary
Coastal rock cliffs on Svalbard are considered to be fairly stable; however, long-term trends in coastal-retreat rates remain unknown. This study examines changes in the coastline position along Brøggerhalvøya, Svalbard, using aerial images from 1970, 1990, 2010, and 2021. Our analysis shows that coastal-retreat rates accelerate during the period 2010–2021, which coincides with increasing storminess and retreating sea ice.
Andreas Kääb and Luc Girod
The Cryosphere, 17, 2533–2541, https://doi.org/10.5194/tc-17-2533-2023, https://doi.org/10.5194/tc-17-2533-2023, 2023
Short summary
Short summary
Following the detachment of the 130 × 106 m3 Sedongpu Glacier (south-eastern Tibet) in 2018, the Sedongpu Valley underwent massive large-volume landscape changes. An enormous volume of in total around 330 × 106 m3 was rapidly eroded, forming a new canyon of up to 300 m depth, 1 km width, and almost 4 km length. Such consequences of glacier change in mountains have so far not been considered at this magnitude and speed.
Luuk D. van der Valk, Adriaan J. Teuling, Luc Girod, Norbert Pirk, Robin Stoffer, and Chiel C. van Heerwaarden
The Cryosphere, 16, 4319–4341, https://doi.org/10.5194/tc-16-4319-2022, https://doi.org/10.5194/tc-16-4319-2022, 2022
Short summary
Short summary
Most large-scale hydrological and climate models struggle to capture the spatially highly variable wind-driven melt of patchy snow cover. In the field, we find that 60 %–80 % of the total melt is wind driven at the upwind edge of a snow patch, while it does not contribute at the downwind edge. Our idealized simulations show that the variation is due to a patch-size-independent air-temperature reduction over snow patches and also allow us to study the role of wind-driven snowmelt on larger scales.
Frank Paul, Livia Piermattei, Désirée Treichler, Lin Gilbert, Luc Girod, Andreas Kääb, Ludivine Libert, Thomas Nagler, Tazio Strozzi, and Jan Wuite
The Cryosphere, 16, 2505–2526, https://doi.org/10.5194/tc-16-2505-2022, https://doi.org/10.5194/tc-16-2505-2022, 2022
Short summary
Short summary
Glacier surges are widespread in the Karakoram and have been intensely studied using satellite data and DEMs. We use time series of such datasets to study three glacier surges in the same region of the Karakoram. We found strongly contrasting advance rates and flow velocities, maximum velocities of 30 m d−1, and a change in the surge mechanism during a surge. A sensor comparison revealed good agreement, but steep terrain and the two smaller glaciers caused limitations for some of them.
Andreas Kääb, Mylène Jacquemart, Adrien Gilbert, Silvan Leinss, Luc Girod, Christian Huggel, Daniel Falaschi, Felipe Ugalde, Dmitry Petrakov, Sergey Chernomorets, Mikhail Dokukin, Frank Paul, Simon Gascoin, Etienne Berthier, and Jeffrey S. Kargel
The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, https://doi.org/10.5194/tc-15-1751-2021, 2021
Short summary
Short summary
Hardly recognized so far, giant catastrophic detachments of glaciers are a rare but great potential for loss of lives and massive damage in mountain regions. Several of the events compiled in our study involve volumes (up to 100 million m3 and more), avalanche speeds (up to 300 km/h), and reaches (tens of kilometres) that are hard to imagine. We show that current climate change is able to enhance associated hazards. For the first time, we elaborate a set of factors that could cause these events.
L. Girod and S. Filhol
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2020, 375–379, https://doi.org/10.5194/isprs-annals-V-3-2020-375-2020, https://doi.org/10.5194/isprs-annals-V-3-2020-375-2020, 2020
Robert McNabb, Christopher Nuth, Andreas Kääb, and Luc Girod
The Cryosphere, 13, 895–910, https://doi.org/10.5194/tc-13-895-2019, https://doi.org/10.5194/tc-13-895-2019, 2019
Short summary
Short summary
Estimating glacier changes involves measuring elevation changes, often using elevation models derived from satellites. Many elevation models have data gaps (voids), which affect estimates of glacier change. We compare 11 methods for interpolating voids, finding that some methods bias estimates of glacier change by up to 20 %, though most methods have a smaller effect. Some methods produce reliable results even with large void areas, suggesting that noisy elevation data are still useful.
Luc Girod, Christopher Nuth, Andreas Kääb, Bernd Etzelmüller, and Jack Kohler
The Cryosphere, 11, 827–840, https://doi.org/10.5194/tc-11-827-2017, https://doi.org/10.5194/tc-11-827-2017, 2017
Short summary
Short summary
While gathering data on a changing environment is often a costly and complicated endeavour, it is also the backbone of all research. What if one could measure elevation change by just strapping a camera and a hiking GPS under an helicopter or a small airplane used for transportation and gather data on the ground bellow the flight path? In this article, we present a way to do exactly that and show an example survey where it helped compute the volume of ice lost by a glacier in Svalbard.
Luc Girod, Christopher Nuth, and Andreas Kääb
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B8, 489–494, https://doi.org/10.5194/isprs-archives-XLI-B8-489-2016, https://doi.org/10.5194/isprs-archives-XLI-B8-489-2016, 2016
Juditha Aga, Livia Piermattei, Luc Girod, Kristoffer Aalstad, Trond Eiken, Andreas Kääb, and Sebastian Westermann
Earth Surf. Dynam., 12, 1049–1070, https://doi.org/10.5194/esurf-12-1049-2024, https://doi.org/10.5194/esurf-12-1049-2024, 2024
Short summary
Short summary
Coastal rock cliffs on Svalbard are considered to be fairly stable; however, long-term trends in coastal-retreat rates remain unknown. This study examines changes in the coastline position along Brøggerhalvøya, Svalbard, using aerial images from 1970, 1990, 2010, and 2021. Our analysis shows that coastal-retreat rates accelerate during the period 2010–2021, which coincides with increasing storminess and retreating sea ice.
Diego Cusicanqui, Pascal Lacroix, Xavier Bodin, Benjamin Aubrey Robson, Andreas Kääb, and Shelley MacDonell
EGUsphere, https://doi.org/10.5194/egusphere-2024-2393, https://doi.org/10.5194/egusphere-2024-2393, 2024
Short summary
Short summary
This study presents for the first time a robust methodological approach to detect and analyse rock glacier kinematics using 24 years of Landsat 7/8 imagery. Within a small region in the semi-arid andes, 382 movements were monitored showing an average velocity of 0.3 ± 0.07 m yr-1, with rock glaciers moving faster. We highlight the value of integrating optical imagery and radar interferometry supporting monitoring of rock glacier kinematics, using available medium-resolution optical imagery.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Andreas Kääb and Luc Girod
The Cryosphere, 17, 2533–2541, https://doi.org/10.5194/tc-17-2533-2023, https://doi.org/10.5194/tc-17-2533-2023, 2023
Short summary
Short summary
Following the detachment of the 130 × 106 m3 Sedongpu Glacier (south-eastern Tibet) in 2018, the Sedongpu Valley underwent massive large-volume landscape changes. An enormous volume of in total around 330 × 106 m3 was rapidly eroded, forming a new canyon of up to 300 m depth, 1 km width, and almost 4 km length. Such consequences of glacier change in mountains have so far not been considered at this magnitude and speed.
Sebastian Westermann, Thomas Ingeman-Nielsen, Johanna Scheer, Kristoffer Aalstad, Juditha Aga, Nitin Chaudhary, Bernd Etzelmüller, Simon Filhol, Andreas Kääb, Cas Renette, Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Robin B. Zweigel, Léo Martin, Sarah Morard, Matan Ben-Asher, Michael Angelopoulos, Julia Boike, Brian Groenke, Frederieke Miesner, Jan Nitzbon, Paul Overduin, Simone M. Stuenzi, and Moritz Langer
Geosci. Model Dev., 16, 2607–2647, https://doi.org/10.5194/gmd-16-2607-2023, https://doi.org/10.5194/gmd-16-2607-2023, 2023
Short summary
Short summary
The CryoGrid community model is a new tool for simulating ground temperatures and the water and ice balance in cold regions. It is a modular design, which makes it possible to test different schemes to simulate, for example, permafrost ground in an efficient way. The model contains tools to simulate frozen and unfrozen ground, snow, glaciers, and other massive ice bodies, as well as water bodies.
Fuming Xie, Shiyin Liu, Yongpeng Gao, Yu Zhu, Tobias Bolch, Andreas Kääb, Shimei Duan, Wenfei Miao, Jianfang Kang, Yaonan Zhang, Xiran Pan, Caixia Qin, Kunpeng Wu, Miaomiao Qi, Xianhe Zhang, Ying Yi, Fengze Han, Xiaojun Yao, Qiao Liu, Xin Wang, Zongli Jiang, Donghui Shangguan, Yong Zhang, Richard Grünwald, Muhammad Adnan, Jyoti Karki, and Muhammad Saifullah
Earth Syst. Sci. Data, 15, 847–867, https://doi.org/10.5194/essd-15-847-2023, https://doi.org/10.5194/essd-15-847-2023, 2023
Short summary
Short summary
In this study, first we generated inventories which allowed us to systematically detect glacier change patterns in the Karakoram range. We found that, by the 2020s, there were approximately 10 500 glaciers in the Karakoram mountains covering an area of 22 510.73 km2, of which ~ 10.2 % is covered by debris. During the past 30 years (from 1990 to 2020), the total glacier cover area in Karakoram remained relatively stable, with a slight increase in area of 23.5 km2.
Luuk D. van der Valk, Adriaan J. Teuling, Luc Girod, Norbert Pirk, Robin Stoffer, and Chiel C. van Heerwaarden
The Cryosphere, 16, 4319–4341, https://doi.org/10.5194/tc-16-4319-2022, https://doi.org/10.5194/tc-16-4319-2022, 2022
Short summary
Short summary
Most large-scale hydrological and climate models struggle to capture the spatially highly variable wind-driven melt of patchy snow cover. In the field, we find that 60 %–80 % of the total melt is wind driven at the upwind edge of a snow patch, while it does not contribute at the downwind edge. Our idealized simulations show that the variation is due to a patch-size-independent air-temperature reduction over snow patches and also allow us to study the role of wind-driven snowmelt on larger scales.
Maximillian Van Wyk de Vries, Shashank Bhushan, Mylène Jacquemart, César Deschamps-Berger, Etienne Berthier, Simon Gascoin, David E. Shean, Dan H. Shugar, and Andreas Kääb
Nat. Hazards Earth Syst. Sci., 22, 3309–3327, https://doi.org/10.5194/nhess-22-3309-2022, https://doi.org/10.5194/nhess-22-3309-2022, 2022
Short summary
Short summary
On 7 February 2021, a large rock–ice avalanche occurred in Chamoli, Indian Himalaya. The resulting debris flow swept down the nearby valley, leaving over 200 people dead or missing. We use a range of satellite datasets to investigate how the collapse area changed prior to collapse. We show that signs of instability were visible as early 5 years prior to collapse. However, it would likely not have been possible to predict the timing of the event from current satellite datasets.
Frank Paul, Livia Piermattei, Désirée Treichler, Lin Gilbert, Luc Girod, Andreas Kääb, Ludivine Libert, Thomas Nagler, Tazio Strozzi, and Jan Wuite
The Cryosphere, 16, 2505–2526, https://doi.org/10.5194/tc-16-2505-2022, https://doi.org/10.5194/tc-16-2505-2022, 2022
Short summary
Short summary
Glacier surges are widespread in the Karakoram and have been intensely studied using satellite data and DEMs. We use time series of such datasets to study three glacier surges in the same region of the Karakoram. We found strongly contrasting advance rates and flow velocities, maximum velocities of 30 m d−1, and a change in the surge mechanism during a surge. A sensor comparison revealed good agreement, but steep terrain and the two smaller glaciers caused limitations for some of them.
Bas Altena, Andreas Kääb, and Bert Wouters
The Cryosphere, 16, 2285–2300, https://doi.org/10.5194/tc-16-2285-2022, https://doi.org/10.5194/tc-16-2285-2022, 2022
Short summary
Short summary
Repeat overflights of satellites are used to estimate surface displacements. However, such products lack a simple error description for individual measurements, but variation in precision occurs, since the calculation is based on the similarity of texture. Fortunately, variation in precision manifests itself in the correlation peak, which is used for the displacement calculation. This spread is used to make a connection to measurement precision, which can be of great use for model inversion.
Isabelle Gärtner-Roer, Nina Brunner, Reynald Delaloye, Wilfried Haeberli, Andreas Kääb, and Patrick Thee
The Cryosphere, 16, 2083–2101, https://doi.org/10.5194/tc-16-2083-2022, https://doi.org/10.5194/tc-16-2083-2022, 2022
Short summary
Short summary
We intensely investigated the Gruben site in the Swiss Alps, where glaciers and permafrost landforms closely interact, to better understand cold-climate environments. By the interpretation of air photos from 5 decades, we describe long-term developments of the existing landforms. In combination with high-resolution positioning measurements and ground surface temperatures, we were also able to link these to short-term changes and describe different landform responses to climate forcing.
Tazio Strozzi, Andreas Wiesmann, Andreas Kääb, Thomas Schellenberger, and Frank Paul
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-44, https://doi.org/10.5194/essd-2022-44, 2022
Revised manuscript not accepted
Short summary
Short summary
Knowledge on surface velocity of glaciers and ice caps contributes to a better understanding of a wide range of processes related to glacier dynamics, mass change and response to climate. Based on the release of historical satellite radar data from various space agencies we compiled nearly complete mosaics of winter ice surface velocities for the 1990's over the Eastern Arctic. Compared to the present state, we observe a general increase of ice velocities along with a retreat of glacier fronts.
Paul Willem Leclercq, Andreas Kääb, and Bas Altena
The Cryosphere, 15, 4901–4907, https://doi.org/10.5194/tc-15-4901-2021, https://doi.org/10.5194/tc-15-4901-2021, 2021
Short summary
Short summary
In this study we present a novel method to detect glacier surge activity. Surges are relevant as they disturb the link between glacier change and climate, and studying surges can also increase understanding of glacier flow. We use variations in Sentinel-1 radar backscatter strength, calculated with the use of Google Earth Engine, to detect surge activity. In our case study for the year 2018–2019 we find 69 cases of surging glaciers globally. Many of these were not previously known to be surging.
Andreas Kääb, Mylène Jacquemart, Adrien Gilbert, Silvan Leinss, Luc Girod, Christian Huggel, Daniel Falaschi, Felipe Ugalde, Dmitry Petrakov, Sergey Chernomorets, Mikhail Dokukin, Frank Paul, Simon Gascoin, Etienne Berthier, and Jeffrey S. Kargel
The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, https://doi.org/10.5194/tc-15-1751-2021, 2021
Short summary
Short summary
Hardly recognized so far, giant catastrophic detachments of glaciers are a rare but great potential for loss of lives and massive damage in mountain regions. Several of the events compiled in our study involve volumes (up to 100 million m3 and more), avalanche speeds (up to 300 km/h), and reaches (tens of kilometres) that are hard to imagine. We show that current climate change is able to enhance associated hazards. For the first time, we elaborate a set of factors that could cause these events.
Andreas Kääb, Tazio Strozzi, Tobias Bolch, Rafael Caduff, Håkon Trefall, Markus Stoffel, and Alexander Kokarev
The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021, https://doi.org/10.5194/tc-15-927-2021, 2021
Short summary
Short summary
We present a map of rock glacier motion over parts of the northern Tien Shan and time series of surface speed for six of them over almost 70 years.
This is by far the most detailed investigation of this kind available for central Asia.
We detect a 2- to 4-fold increase in rock glacier motion between the 1950s and present, which we attribute to atmospheric warming.
Relative to the shrinking glaciers in the region, this implies increased importance of periglacial sediment transport.
Andreas Alexander, Jaroslav Obu, Thomas V. Schuler, Andreas Kääb, and Hanne H. Christiansen
The Cryosphere, 14, 4217–4231, https://doi.org/10.5194/tc-14-4217-2020, https://doi.org/10.5194/tc-14-4217-2020, 2020
Short summary
Short summary
In this study we present subglacial air, ice and sediment temperatures from within the basal drainage systems of two cold-based glaciers on Svalbard during late spring and the summer melt season. We put the data into the context of air temperature and rainfall at the glacier surface and show the importance of surface events on the subglacial thermal regime and erosion around basal drainage channels. Observed vertical erosion rates thereby reachup to 0.9 m d−1.
L. Girod and S. Filhol
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2020, 375–379, https://doi.org/10.5194/isprs-annals-V-3-2020-375-2020, https://doi.org/10.5194/isprs-annals-V-3-2020-375-2020, 2020
Andreas Alexander, Maarja Kruusmaa, Jeffrey A. Tuhtan, Andrew J. Hodson, Thomas V. Schuler, and Andreas Kääb
The Cryosphere, 14, 1009–1023, https://doi.org/10.5194/tc-14-1009-2020, https://doi.org/10.5194/tc-14-1009-2020, 2020
Short summary
Short summary
This work shows the potential of pressure and inertia sensing drifters to measure flow parameters along glacial channels. The technology allows us to record the spatial distribution of water pressures, as well as an estimation of the flow velocity along the flow path in the channels. The measurements show a high repeatability and the potential to identify channel morphology from sensor readings.
Jaroslav Obu, Sebastian Westermann, Gonçalo Vieira, Andrey Abramov, Megan Ruby Balks, Annett Bartsch, Filip Hrbáček, Andreas Kääb, and Miguel Ramos
The Cryosphere, 14, 497–519, https://doi.org/10.5194/tc-14-497-2020, https://doi.org/10.5194/tc-14-497-2020, 2020
Short summary
Short summary
Little is known about permafrost in the Antarctic outside of the few research stations. We used a simple equilibrium permafrost model to estimate permafrost temperatures in the whole Antarctic. The lowest permafrost temperature on Earth is −36 °C in the Queen Elizabeth Range in the Transantarctic Mountains. Temperatures are commonly between −23 and −18 °C in mountainous areas rising above the Antarctic Ice Sheet, between −14 and −8 °C in coastal areas, and up to 0 °C on the Antarctic Peninsula.
Andreas Köhler, Michał Pętlicki, Pierre-Marie Lefeuvre, Giuseppa Buscaino, Christopher Nuth, and Christian Weidle
The Cryosphere, 13, 3117–3137, https://doi.org/10.5194/tc-13-3117-2019, https://doi.org/10.5194/tc-13-3117-2019, 2019
Short summary
Short summary
Ice loss at the front of glaciers can be observed with high temporal resolution using seismometers. We combine seismic and underwater sound measurements of iceberg calving at Kronebreen, a glacier in Svalbard, with laser scanning of the glacier front. We develop a method to determine calving ice loss directly from seismic and underwater calving signals. This allowed us to quantify the contribution of calving to the total ice loss at the glacier front, which also includes underwater melting.
Désirée Treichler, Andreas Kääb, Nadine Salzmann, and Chong-Yu Xu
The Cryosphere, 13, 2977–3005, https://doi.org/10.5194/tc-13-2977-2019, https://doi.org/10.5194/tc-13-2977-2019, 2019
Short summary
Short summary
Glacier growth such as that found on the Tibetan Plateau (TP) is counterintuitive in a warming world. Climate models and meteorological data are conflicting about the reasons for this glacier anomaly. We quantify the glacier changes in High Mountain Asia using satellite laser altimetry as well as the growth of over 1300 inland lakes on the TP. Our study suggests that increased summer precipitation is likely the largest contributor to the recently observed increases in glacier and lake masses.
Andreas Kääb, Bas Altena, and Joseph Mascaro
Hydrol. Earth Syst. Sci., 23, 4233–4247, https://doi.org/10.5194/hess-23-4233-2019, https://doi.org/10.5194/hess-23-4233-2019, 2019
Short summary
Short summary
Knowledge of water surface velocities in rivers is useful for understanding a wide range of processes and systems, but is difficult to measure over large reaches. Here, we present a novel method to exploit near-simultaneous imagery produced by the Planet cubesat constellation to track river ice floes and estimate water surface velocities. We demonstrate the method for a 60 km long reach of the Amur River and a 200 km long reach of the Yukon River.
B. Altena, O. N. Haga, C. Nuth, and A. Kääb
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1723–1727, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1723-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1723-2019, 2019
Daniel Falaschi, Andreas Kääb, Frank Paul, Takeo Tadono, Juan Antonio Rivera, and Luis Eduardo Lenzano
The Cryosphere, 13, 997–1004, https://doi.org/10.5194/tc-13-997-2019, https://doi.org/10.5194/tc-13-997-2019, 2019
Short summary
Short summary
In March 2007, the Leñas Glacier in the Central Andes of Argentina collapsed and released an ice avalanche that travelled a distance of 2 km. We analysed aerial photos, satellite images and field evidence to investigate the evolution of the glacier from the 1950s through the present day. A clear potential trigger of the collapse could not be identified from available meteorological and seismic data, nor could a significant change in glacier geometry leading to glacier instability be detected.
Robert McNabb, Christopher Nuth, Andreas Kääb, and Luc Girod
The Cryosphere, 13, 895–910, https://doi.org/10.5194/tc-13-895-2019, https://doi.org/10.5194/tc-13-895-2019, 2019
Short summary
Short summary
Estimating glacier changes involves measuring elevation changes, often using elevation models derived from satellites. Many elevation models have data gaps (voids), which affect estimates of glacier change. We compare 11 methods for interpolating voids, finding that some methods bias estimates of glacier change by up to 20 %, though most methods have a smaller effect. Some methods produce reliable results even with large void areas, suggesting that noisy elevation data are still useful.
Bas Altena, Ted Scambos, Mark Fahnestock, and Andreas Kääb
The Cryosphere, 13, 795–814, https://doi.org/10.5194/tc-13-795-2019, https://doi.org/10.5194/tc-13-795-2019, 2019
Short summary
Short summary
Many glaciers in southern Alaska and the Yukon experience changes in flow speed, which occur in episodes or sporadically. These flow changes can be measured with satellites, but the resulting raw velocity products are messy. Thus in this study we developed an automatic method to produce a synthesized velocity product over a large glacier region of roughly 600 km by 200 km. Velocities are at a monthly resolution and at 300 m resolution, making all kinds of glacier dynamics observable.
Katrin Lindbäck, Jack Kohler, Rickard Pettersson, Christopher Nuth, Kirsty Langley, Alexandra Messerli, Dorothée Vallot, Kenichi Matsuoka, and Ola Brandt
Earth Syst. Sci. Data, 10, 1769–1781, https://doi.org/10.5194/essd-10-1769-2018, https://doi.org/10.5194/essd-10-1769-2018, 2018
Short summary
Short summary
Tidewater glaciers terminate directly into the sea and the glacier fronts are important feeding areas for birds and marine mammals. Svalbard tidewater glaciers are retreating, which will affect fjord circulation and ecosystems when glacier fronts end on land. In this paper, we present digital maps of ice thickness and topography under five tidewater glaciers in Kongsfjorden, northwestern Svalbard, which will be useful in studies of future glacier changes in the area.
Adrien Gilbert, Silvan Leinss, Jeffrey Kargel, Andreas Kääb, Simon Gascoin, Gregory Leonard, Etienne Berthier, Alina Karki, and Tandong Yao
The Cryosphere, 12, 2883–2900, https://doi.org/10.5194/tc-12-2883-2018, https://doi.org/10.5194/tc-12-2883-2018, 2018
Short summary
Short summary
In Tibet, two glaciers suddenly collapsed in summer 2016 and produced two gigantic ice avalanches, killing nine people. This kind of phenomenon is extremely rare. By combining a detailed modelling study and high-resolution satellite observations, we show that the event was triggered by an increasing meltwater supply in the fine-grained material underneath the two glaciers. Contrary to what is often thought, this event is not linked to a change in the thermal condition at the glacier base.
Martina Barandun, Matthias Huss, Ryskul Usubaliev, Erlan Azisov, Etienne Berthier, Andreas Kääb, Tobias Bolch, and Martin Hoelzle
The Cryosphere, 12, 1899–1919, https://doi.org/10.5194/tc-12-1899-2018, https://doi.org/10.5194/tc-12-1899-2018, 2018
Short summary
Short summary
In this study, we used three independent methods (in situ measurements, comparison of digital elevation models and modelling) to reconstruct the mass change from 2000 to 2016 for three glaciers in the Tien Shan and Pamir. Snow lines observed on remote sensing images were used to improve conventional modelling by constraining a mass balance model. As a result, glacier mass changes for unmeasured years and glaciers can be better assessed. Substantial mass loss was confirmed for the three glaciers.
Chiyuki Narama, Mirlan Daiyrov, Murataly Duishonakunov, Takeo Tadono, Hayato Sato, Andreas Kääb, Jinro Ukita, and Kanatbek Abdrakhmatov
Nat. Hazards Earth Syst. Sci., 18, 983–995, https://doi.org/10.5194/nhess-18-983-2018, https://doi.org/10.5194/nhess-18-983-2018, 2018
Short summary
Short summary
Four large drainages from glacial lakes occurred during 2006–2014 in the western Teskey Range, Kyrgyzstan. These floods caused extensive damage, killing people and livestock, as well as destroying property and crops. Due to their subsurface outlet, we refer to these short-lived glacial lakes as being of the
tunnel-type, a type that drastically grows and drains over a few months.
Solveig H. Winsvold, Andreas Kääb, Christopher Nuth, Liss M. Andreassen, Ward J. J. van Pelt, and Thomas Schellenberger
The Cryosphere, 12, 867–890, https://doi.org/10.5194/tc-12-867-2018, https://doi.org/10.5194/tc-12-867-2018, 2018
B. Altena, A. Mousivand, J. Mascaro, and A. Kääb
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W3, 7–11, https://doi.org/10.5194/isprs-archives-XLII-3-W3-7-2017, https://doi.org/10.5194/isprs-archives-XLII-3-W3-7-2017, 2017
Johannes Jakob Fürst, Fabien Gillet-Chaulet, Toby J. Benham, Julian A. Dowdeswell, Mariusz Grabiec, Francisco Navarro, Rickard Pettersson, Geir Moholdt, Christopher Nuth, Björn Sass, Kjetil Aas, Xavier Fettweis, Charlotte Lang, Thorsten Seehaus, and Matthias Braun
The Cryosphere, 11, 2003–2032, https://doi.org/10.5194/tc-11-2003-2017, https://doi.org/10.5194/tc-11-2003-2017, 2017
Short summary
Short summary
For the large majority of glaciers and ice caps, there is no information on the thickness of the ice cover. Any attempt to predict glacier demise under climatic warming and to estimate the future contribution to sea-level rise is limited as long as the glacier thickness is not well constrained. Here, we present a two-step mass-conservation approach for mapping ice thickness. Measurements are naturally reproduced. The reliability is readily assessible from a complementary map of error estimates.
Andreas Kääb, Bas Altena, and Joseph Mascaro
Nat. Hazards Earth Syst. Sci., 17, 627–639, https://doi.org/10.5194/nhess-17-627-2017, https://doi.org/10.5194/nhess-17-627-2017, 2017
Short summary
Short summary
We evaluate for the first time a new class of optical satellite images for measuring Earth surface displacements due to earthquakes – images from cubesats. The PlanetScope cubesats used in this study are 10 cm × 10 cm × 30 cm small and standardized satellites. Around 120 of these cubesats orbit around Earth and are about to provide daily 2–4 m resolution images of the entire land surface of the Earth.
Luc Girod, Christopher Nuth, Andreas Kääb, Bernd Etzelmüller, and Jack Kohler
The Cryosphere, 11, 827–840, https://doi.org/10.5194/tc-11-827-2017, https://doi.org/10.5194/tc-11-827-2017, 2017
Short summary
Short summary
While gathering data on a changing environment is often a costly and complicated endeavour, it is also the backbone of all research. What if one could measure elevation change by just strapping a camera and a hiking GPS under an helicopter or a small airplane used for transportation and gather data on the ground bellow the flight path? In this article, we present a way to do exactly that and show an example survey where it helped compute the volume of ice lost by a glacier in Svalbard.
Tazio Strozzi, Andreas Kääb, and Thomas Schellenberger
The Cryosphere, 11, 553–566, https://doi.org/10.5194/tc-11-553-2017, https://doi.org/10.5194/tc-11-553-2017, 2017
Short summary
Short summary
The strong atmospheric warming observed since the 1990s in polar regions requires quantifying the contribution to sea level rise of glaciers and ice caps, but for large areas we do not have much information on ice dynamic fluctuations. The recent increase in satellite data opens up new possibilities to monitor ice flow. We observed over Stonebreen on Edgeøya (Svalbard) a strong increase since 2012 in ice surface velocity along with a decrease in volume and an advance in frontal extension.
Thomas Schellenberger, Thorben Dunse, Andreas Kääb, Thomas Vikhamar Schuler, Jon Ove Hagen, and Carleen H. Reijmer
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-5, https://doi.org/10.5194/tc-2017-5, 2017
Preprint withdrawn
Short summary
Short summary
Basin-3, NE-Svalbard, was still surging with 10 m d-1 in July 2016. After a speed peak of 18.8 m d-1 in Dec 2012/Jan 2013, speed-ups are overlying the fast flow every summer. The glacier is massively calving icebergs (5.2 Gt yr-1 ~ 2 L drinking water for every human being daily!) which in the same order of magnitude as all other Svalbard glaciers together.
Since autumn 2015 also Basin-2 is surging with maximum velocities of 8.7 m d-1, an advance of more than 2 km and a mass loss of 0.7 Gt yr-1.
Désirée Treichler and Andreas Kääb
The Cryosphere, 10, 2129–2146, https://doi.org/10.5194/tc-10-2129-2016, https://doi.org/10.5194/tc-10-2129-2016, 2016
Short summary
Short summary
Satellite data are often the only source of information on mountain glaciers. We show that data from ICESat laser satellite can accurately reflect glacier volume development in 2003–2008, also for individual years. We detect a spatially varying elevation bias in commonly used data sets, and provide a correction that strongly increases the significance of the glacier change estimates – a crucial driver of climate-induced meltwater changes that directly affect the life of lowland populations.
Luc Girod, Christopher Nuth, and Andreas Kääb
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B8, 489–494, https://doi.org/10.5194/isprs-archives-XLI-B8-489-2016, https://doi.org/10.5194/isprs-archives-XLI-B8-489-2016, 2016
T. Schellenberger, T. Dunse, A. Kääb, J. Kohler, and C. H. Reijmer
The Cryosphere, 9, 2339–2355, https://doi.org/10.5194/tc-9-2339-2015, https://doi.org/10.5194/tc-9-2339-2015, 2015
Short summary
Short summary
Kronebreen and Kongsbreen are among the fastest flowing glaciers on Svalbard, and surface speeds reached up to 3.2m d-1 at Kronebreen in summer 2013 and 2.7m d-1 at Kongsbreen in late autumn 2012 as retrieved from SAR satellite data. Both glaciers retreated significantly during the observation period, Kongsbreen up to 1800m or 2.5km2 and Kronebreen up to 850m or 2.8km2. Both glaciers are important contributors to the total dynamic mass loss from the Svalbard archipelago.
A. Kääb, D. Treichler, C. Nuth, and E. Berthier
The Cryosphere, 9, 557–564, https://doi.org/10.5194/tc-9-557-2015, https://doi.org/10.5194/tc-9-557-2015, 2015
Short summary
Short summary
Based on satellite laser altimetry over the Pamir--Karakoram Himalaya we detect strongest elevation losses over east Nyainqentanglha Shan and Spiti--Lahaul but slight elevation gains over west Kunlun Shan rather than over Karakoram. The current sea-level contribution of Pamir--Karakoram Himalaya glaciers is about 10% of the total global contribution of glaciers outside the ice sheets. We also improve estimates of glacier imbalance contribution to river discharge in the Himalayas.
T. Dunse, T. Schellenberger, J. O. Hagen, A. Kääb, T. V. Schuler, and C. H. Reijmer
The Cryosphere, 9, 197–215, https://doi.org/10.5194/tc-9-197-2015, https://doi.org/10.5194/tc-9-197-2015, 2015
A. Kääb, L. Girod, and I. Berthling
The Cryosphere, 8, 1041–1056, https://doi.org/10.5194/tc-8-1041-2014, https://doi.org/10.5194/tc-8-1041-2014, 2014
A. Kääb, M. Lamare, and M. Abrams
Hydrol. Earth Syst. Sci., 17, 4671–4683, https://doi.org/10.5194/hess-17-4671-2013, https://doi.org/10.5194/hess-17-4671-2013, 2013
C. Nuth, J. Kohler, M. König, A. von Deschwanden, J. O. Hagen, A. Kääb, G. Moholdt, and R. Pettersson
The Cryosphere, 7, 1603–1621, https://doi.org/10.5194/tc-7-1603-2013, https://doi.org/10.5194/tc-7-1603-2013, 2013
J. Gardelle, E. Berthier, Y. Arnaud, and A. Kääb
The Cryosphere, 7, 1263–1286, https://doi.org/10.5194/tc-7-1263-2013, https://doi.org/10.5194/tc-7-1263-2013, 2013
M. Zemp, E. Thibert, M. Huss, D. Stumm, C. Rolstad Denby, C. Nuth, S. U. Nussbaumer, G. Moholdt, A. Mercer, C. Mayer, P. C. Joerg, P. Jansson, B. Hynek, A. Fischer, H. Escher-Vetter, H. Elvehøy, and L. M. Andreassen
The Cryosphere, 7, 1227–1245, https://doi.org/10.5194/tc-7-1227-2013, https://doi.org/10.5194/tc-7-1227-2013, 2013
Related subject area
Image processing
Auroral alert version 1.0: two-step automatic detection of sudden aurora intensification from all-sky JPEG images
Automatic detection of calving events from time-lapse imagery at Tunabreen, Svalbard
Integration of remote sensing and geographic information systems for geological fault detection on the island of Crete, Greece
Consideration of NDVI thematic changes in density analysis and floristic composition of Wadi Yalamlam, Saudi Arabia
A comparative study of auroral morphology distribution between the Northern and Southern Hemisphere based on automatic classification
Understanding of morphometric features for adequate water resource management in arid environments
Soil salinity mapping and hydrological drought indices assessment in arid environments based on remote sensing techniques
Realization of daily evapotranspiration in arid ecosystems based on remote sensing techniques
Digital photography for assessing the link between vegetation phenology and CO2 exchange in two contrasting northern ecosystems
Automatic georeferencing of astronaut auroral photography
Image georectification and feature tracking toolbox: ImGRAFT
Masatoshi Yamauchi and Urban Brändström
Geosci. Instrum. Method. Data Syst., 12, 71–90, https://doi.org/10.5194/gi-12-71-2023, https://doi.org/10.5194/gi-12-71-2023, 2023
Short summary
Short summary
Potential users of all-sky aurora images even include power companies, tourists, and aurora enthusiasts. However, these potential users are normally not familiar with interpreting these images. To make them comprehensive for more users, we developed an automatic evaluation system of auroral activity level. The method involves two steps: first making a simple set of numbers that describes the auroral activity and then further simplifying them into several levels (Level 6 is an auroral explosion).
Dorothée Vallot, Sigit Adinugroho, Robin Strand, Penelope How, Rickard Pettersson, Douglas I. Benn, and Nicholas R. J. Hulton
Geosci. Instrum. Method. Data Syst., 8, 113–127, https://doi.org/10.5194/gi-8-113-2019, https://doi.org/10.5194/gi-8-113-2019, 2019
Short summary
Short summary
This paper presents a novel method to quantify the sizes and frequency of calving events from time-lapse camera images. The calving front of a tidewater glacier experiences different episodes of iceberg deliveries that can be captured by a time-lapse camera situated in front of the glacier. An automatic way of detecting calving events is presented here and compared to manually detected events.
Mohamed Elhag and Dalal Alshamsi
Geosci. Instrum. Method. Data Syst., 8, 45–54, https://doi.org/10.5194/gi-8-45-2019, https://doi.org/10.5194/gi-8-45-2019, 2019
Short summary
Short summary
The article deals with the designation of fault detection on the island of Crete. The delineation is based on the integration method of remote sensing and GIS. The crucial finding is how to differentiate between faults and water streams. The results showed a robust approach to fault detection.
Amal Y. Aldhebiani, Mohamed Elhag, Ahmad K. Hegazy, Hanaa K. Galal, and Norah S. Mufareh
Geosci. Instrum. Method. Data Syst., 7, 297–306, https://doi.org/10.5194/gi-7-297-2018, https://doi.org/10.5194/gi-7-297-2018, 2018
Short summary
Short summary
The current article focuses on plant diversity assessment in arid environments. Species richness and species evenness equations were used to meet the objectives. Remote sensing techniques were used to detect normalized difference vegetation index (NDVI) temporal changes. Two datasets were used to realize the NDVI, and post-chance detection (PCC) techniques were used to evaluate plant diversity status over a period of 4 years. The results show a recognizable loss in plant biodiversity.
Qiuju Yang and Ze-Jun Hu
Geosci. Instrum. Method. Data Syst., 7, 113–122, https://doi.org/10.5194/gi-7-113-2018, https://doi.org/10.5194/gi-7-113-2018, 2018
Short summary
Short summary
Based on the morphological characteristics of the four dayside auroral types on images at the Chinese Arctic Yellow River Station (YRS), and by extracting the local binary pattern features and using k-nearest classifier, we make an automatic classification to the auroral images of the YRS and the South Pole Station and obtain the occurrence distribution of the dayside aurora morphology. The results indicate that these auroral types present similar occurrence distributions in the two stations.
Mohamed Elhag, Hanaa K. Galal, and Haneen Alsubaie
Geosci. Instrum. Method. Data Syst., 6, 293–300, https://doi.org/10.5194/gi-6-293-2017, https://doi.org/10.5194/gi-6-293-2017, 2017
Short summary
Short summary
This article focus on morphometric features and their role in water resource management at the basin scale. The estimation of the features requires an adequate understanding of DEM feature extractions. The findings of the current study will help decision makers to improve the adopted water resource management strategies in similar geographic locations.
Mohamed Elhag and Jarbou A. Bahrawi
Geosci. Instrum. Method. Data Syst., 6, 149–158, https://doi.org/10.5194/gi-6-149-2017, https://doi.org/10.5194/gi-6-149-2017, 2017
Short summary
Short summary
The current work is aimed at the quantification of the hydrological drought indices' response to soil salinity. Work has been done to overcome the problems of soil salinity on a large scale for better water resource management, especially in arid environments.
Mohamed Elhag and Jarbou A. Bahrawi
Geosci. Instrum. Method. Data Syst., 6, 141–147, https://doi.org/10.5194/gi-6-141-2017, https://doi.org/10.5194/gi-6-141-2017, 2017
Short summary
Short summary
Work has been done to overcome the problems of evapotranspiration on a large scale for better water resources management, especially in arid environments.
Maiju Linkosalmi, Mika Aurela, Juha-Pekka Tuovinen, Mikko Peltoniemi, Cemal M. Tanis, Ali N. Arslan, Pasi Kolari, Kristin Böttcher, Tuula Aalto, Juuso Rainne, Juha Hatakka, and Tuomas Laurila
Geosci. Instrum. Method. Data Syst., 5, 417–426, https://doi.org/10.5194/gi-5-417-2016, https://doi.org/10.5194/gi-5-417-2016, 2016
Short summary
Short summary
Digital photography has become a widely used tool for monitoring the vegetation phenology. The seasonal cycle of the greenness index obtained from photographs correlated well with the CO2 exchange of the plants at our wetland and Scots pine forest sites. While the seasonal changes in the greenness were more obvious for the ecosystem dominated by annual plants, clear seasonal patterns were also observed for the evergreen forest.
Maik Riechert, Andrew P. Walsh, Alexander Gerst, and Matthew G. G. T. Taylor
Geosci. Instrum. Method. Data Syst., 5, 289–304, https://doi.org/10.5194/gi-5-289-2016, https://doi.org/10.5194/gi-5-289-2016, 2016
Short summary
Short summary
Astronauts on board the International Space Station have taken thousands of high-quality images of the northern and southern lights (aurorae). Because the images were not taken as part of a specific research project, no information about exactly where the camera was pointing was available. We have used the stars in the images to reconstruct this information. Now we can tell the latitudes and longitudes of the aurorae in the images and use them for research. The data are publicly available.
A. Messerli and A. Grinsted
Geosci. Instrum. Method. Data Syst., 4, 23–34, https://doi.org/10.5194/gi-4-23-2015, https://doi.org/10.5194/gi-4-23-2015, 2015
Short summary
Short summary
The use of time-lapse cameras is becoming an ever more popular method of observing changes in the natural environment. This study provides an overview of the newly developed Image GeoRectification And Feature Tracking toolbox (ImGRAFT). The paper outlines the main function of the toolbox and describes each of the key processes needed to transform a pair of terrestrial time-lapse images into a velocity field. The tool is presented using a case study of glacier surface motion at Engabreen, Norway.
Cited articles
Baldi, P., Cenni, N., Fabris, M., and Zanutta, A.: Kinematics of a landslide
derived from archival photogrammetry and GPS data, Geomorphology, 102,
435–444, https://doi.org/10.1016/j.geomorph.2008.04.027, 2008. a
Brown, D. C.: Decentering distortion of lenses, Photometric Engineering, 32,
444–462, 1966. a
Brown, D. C.: Close-range camera calibration, Photogramm. Eng, 37, 855–866,
1971. a
Chandler, J. H. and Cooper, M. A. R.: The Extraction Of Positional Data From
Historical Photographs And Their Application To Geomorphology, The
Photogrammetric Record, 13, 69–78, https://doi.org/10.1111/j.1477-9730.1989.tb00647.x,
1989. a
Child, S., Stearns, L., and Girod, L.: Surface elevation change of
Transantarctic Mountain outlet glaciers from 1960–2016 using
Structure-from-Motion photogrammetry, in: IGS – Polar Ice, Polar Climate,
Polar Change – 2017, Boulder, Colorado, USA, 19 August 2017. a
Couderette, F.: 1936 oblique images: Spreading the time series of Svalbard
glacier, Master's thesis, École Nationale des Sciences Géographiques,
Champs-sur-Marne, France, 2016. a
Csatho, B. M.: A history of Greenland's ice loss: aerial photographs,
remote-sensing observations and geological evidence together provide a
reconstruction of mass loss from the Greenland Ice Sheet since 1900 –
a great resource for climate scientists, Nature, 582, 341–344, 2015. a
Etzelmüller, B. and Sollid, J. L.: Long-term mass balance of selected
polythermal glaciers on Spitsbergen, Svalbard, Norsk Geogr. Tidsskr., 50,
55–66, https://doi.org/10.1080/00291959608552352, 1996. a
Falkingham, P. L., Bates, K. T., and Farlow, J. O.: Historical
photogrammetry: Bird's Paluxy River dinosaur chase sequence digitally
reconstructed as it was prior to excavation 70 years ago, PLoS One, 9,
e93247, https://doi.org/10.1371/journal.pone.0093247, 2014. a
Fox, A. J. and Cziferszky, A.: Unlocking the time capsule of historic aerial
photography to measure changes in antarctic peninsula glaciers, The
Photogrammetric Record, 23, 51–68, https://doi.org/10.1111/j.1477-9730.2008.00463.x,
2014. a
Furukawa, Y. and Ponce, J.: Accurate, dense, and robust multiview stereopsis,
IEEE T. Pattern Anal., 32, 1362–1376, https://doi.org/10.1109/TPAMI.2009.161, 2010. a
Gomez, C., Hayakawa, Y., and Obanawa, H.: A study of Japanese landscapes
using structure from motion derived DSMs and DEMs based on historical aerial
photographs: New opportunities for vegetation monitoring and diachronic
geomorphology, Geomorphology, 242, 11–20, 2015. a
Kääb, A.: Monitoring high-mountain terrain deformation from repeated
air-and spaceborne optical data: examples using digital aerial imagery and
ASTER data, ISPRS J. Photogramm., 57, 39–52, 2002. a
Lowe, D. G.: Distinctive Image Features from Scale-Invariant Keypoints, Int.
J. Comput. Vision, 60, 91–110, https://doi.org/10.1023/B:VISI.0000029664.99615.94,
2004. a
McGlone, C., Mikhail, E., and Bethel, J.: Manual of photogrammetry, 5th edn.,
American Society for Photogrammetry and Remote Sensing, 2004. a
Mertes, J. R., Gulley, J. D., Benn, D. I., Thompson, S. S., and Nicholson,
L. I.: Using structure-from-motion to create glacier DEMs and orthoimagery
from historical terrestrial and oblique aerial imagery, Earth Surf. Proc.
Land., 42, 2350–2364, https://doi.org/10.1002/esp.4188, 2017. a, b, c, d
Mölg, N. and Bolch, T.: Structure-from-Motion Using Historical Aerial
Images to Analyse Changes in Glacier Surface Elevation, Remote Sensing, 9,
https://doi.org/10.3390/rs9101021, 2017. a
Thornes, J. and Brunsden, D.: Geomorphology and Time, The Field of geography,
Methuen, available at: https://books.google.no/books?id=V8cOAAAAQAAJ
(last access: 8 October 2018), 1977. a
Short summary
Historical surveys performed through the use of aerial photography gave us the first maps of the Arctic. Nearly a century later, a renewed interest in studying the Arctic is rising from the need to understand and quantify climate change. It is therefore time to dig up the archives and extract the maximum of information from the images using the most modern methods. In this study, we show that the aerial survey of Svalbard in 1936–38 provides us with valuable data on the archipelago's glaciers.
Historical surveys performed through the use of aerial photography gave us the first maps of the...