Articles | Volume 7, issue 4
https://doi.org/10.5194/gi-7-317-2018
https://doi.org/10.5194/gi-7-317-2018
Research article
 | 
30 Nov 2018
Research article |  | 30 Nov 2018

Neutral temperature and atmospheric water vapour retrieval from spectral fitting of auroral and airglow emissions

Joshua M. Chadney and Daniel K. Whiter

Related authors

Effect of water vapour absorption on hydroxyl temperatures measured from Svalbard
Joshua M. Chadney, Daniel K. Whiter, and Betty S. Lanchester
Ann. Geophys., 35, 481–491, https://doi.org/10.5194/angeo-35-481-2017,https://doi.org/10.5194/angeo-35-481-2017, 2017
Short summary

Related subject area

Retrieval techniques
A user-orientated column modelling framework for efficient analyses of the Martian atmosphere
Mark Paton, Ari-Matti Harri, Oliver Vierkens, and Hannu Savijärvi
Geosci. Instrum. Method. Data Syst., 8, 251–263, https://doi.org/10.5194/gi-8-251-2019,https://doi.org/10.5194/gi-8-251-2019, 2019
Short summary
Automated observatory in Antarctica: real-time data transfer on constrained networks in practice
Stephan Bracke, Alexandre Gonsette, Jean Rasson, Antoine Poncelet, and Olivier Hendrickx
Geosci. Instrum. Method. Data Syst., 6, 285–292, https://doi.org/10.5194/gi-6-285-2017,https://doi.org/10.5194/gi-6-285-2017, 2017
Short summary
Observation of 2nd Schumann eigenmode on Titan's surface
C. Béghin, G. Wattieaux, R. Grard, M. Hamelin, and J. P. Lebreton
Geosci. Instrum. Method. Data Syst., 2, 237–248, https://doi.org/10.5194/gi-2-237-2013,https://doi.org/10.5194/gi-2-237-2013, 2013
Potential soil moisture products from the aquarius radiometer and scatterometer using an observing system simulation experiment
Y. Luo, X. Feng, P. Houser, V. Anantharaj, X. Fan, G. De Lannoy, X. Zhan, and L. Dabbiru
Geosci. Instrum. Method. Data Syst., 2, 113–120, https://doi.org/10.5194/gi-2-113-2013,https://doi.org/10.5194/gi-2-113-2013, 2013
Retrieval of ionospheric profiles from the Mars Express MARSIS experiment data and comparison with radio occultation data
B. Sánchez-Cano, O. Witasse, M. Herraiz, S. M. Radicella, J. Bauer, P.-L. Blelly, and G. Rodríguez-Caderot
Geosci. Instrum. Method. Data Syst., 1, 77–84, https://doi.org/10.5194/gi-1-77-2012,https://doi.org/10.5194/gi-1-77-2012, 2012

Cited articles

Baker, D. J. and Stair, A. T.: Rocket measurements of the altitude distributions of the hydroxyl airglow, Phys. Scripta, 37, 611–622, https://doi.org/10.1088/0031-8949/37/4/021, 1988. a
Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and Ware, R. H.: GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system, J. Geophys. Res., 97, 15787, https://doi.org/10.1029/92JD01517, 1992. a
Chaboureau, J.-P., Chédin, A., and Scott, N. A.: Remote sensing of the vertical distribution of atmospheric water vapor from the TOVS observations: Method and validation, J. Geophys. Res.-Atmos., 103, 8743–8752, https://doi.org/10.1029/98JD00045, 1998. a
Chadney, J. M., Whiter, D. K., and Lanchester, B. S.: Effect of water vapour absorption on hydroxyl temperatures measured from Svalbard, Ann. Geophys., 35, 481–491, https://doi.org/10.5194/angeo-35-481-2017, 2017. a, b, c, d, e, f
Chakrabarti, S., Pallamraju, D., Baumgardner, J., and Vaillancourt, J.: HiTIES: A High Throughput Imaging Echelle Spectrogragh for ground-based visible airglow and auroral studies, J. Geophys. Res., 106, 30337, https://doi.org/10.1029/2001JA001105, 2001. a, b
Download
Short summary
We measure spectra of upper atmospheric emissions in optical wavelengths using the High Throughput Imaging Echelle Spectrograph (HiTIES) located on Svalbard. These spectra contain superposed emissions originating from different altitudes. In this paper, we describe a fitting method which allows us to separate the measured emissions, thus allowing us to measure neutral temperatures at different altitudes and the density of water vapour in the atmosphere above the instrument.