Articles | Volume 8, issue 1
https://doi.org/10.5194/gi-8-113-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-8-113-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Automatic detection of calving events from time-lapse imagery at Tunabreen, Svalbard
Dorothée Vallot
CORRESPONDING AUTHOR
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Sigit Adinugroho
Faculty of Computer Science, Brawijaya University, Malang, Indonesia
Centre for Image Analysis, Department of Information Technology, Uppsala University, Uppsala, Sweden
Robin Strand
Centre for Image Analysis, Department of Information Technology, Uppsala University, Uppsala, Sweden
Penelope How
Institute of Geography, School of GeoSciences, University of Edinburgh, Edinburgh, UK
Rickard Pettersson
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Douglas I. Benn
School of Geography and Geosciences, University St Andrews, St Andrews, UK
Nicholas R. J. Hulton
Department of Arctic Geology, UNIS, The University Center in Svalbard, Svalbard, Norway
Related authors
Shahbaz Memon, Dorothée Vallot, Thomas Zwinger, Jan Åström, Helmut Neukirchen, Morris Riedel, and Matthias Book
Geosci. Model Dev., 12, 3001–3015, https://doi.org/10.5194/gmd-12-3001-2019, https://doi.org/10.5194/gmd-12-3001-2019, 2019
Short summary
Short summary
Scientific workflows enable complex scientific computational scenarios, which include data intensive scenarios, parametric executions, and interactive simulations. In this article, we applied the UNICORE workflow management system to automate a formerly hard-coded coupling of a glacier flow model and a calving model, which contain many tasks and dependencies, ranging from pre-processing and data management to repetitive executions on heterogeneous high-performance computing (HPC) resources.
Katrin Lindbäck, Jack Kohler, Rickard Pettersson, Christopher Nuth, Kirsty Langley, Alexandra Messerli, Dorothée Vallot, Kenichi Matsuoka, and Ola Brandt
Earth Syst. Sci. Data, 10, 1769–1781, https://doi.org/10.5194/essd-10-1769-2018, https://doi.org/10.5194/essd-10-1769-2018, 2018
Short summary
Short summary
Tidewater glaciers terminate directly into the sea and the glacier fronts are important feeding areas for birds and marine mammals. Svalbard tidewater glaciers are retreating, which will affect fjord circulation and ecosystems when glacier fronts end on land. In this paper, we present digital maps of ice thickness and topography under five tidewater glaciers in Kongsfjorden, northwestern Svalbard, which will be useful in studies of future glacier changes in the area.
Dorothée Vallot, Jan Åström, Thomas Zwinger, Rickard Pettersson, Alistair Everett, Douglas I. Benn, Adrian Luckman, Ward J. J. van Pelt, Faezeh Nick, and Jack Kohler
The Cryosphere, 12, 609–625, https://doi.org/10.5194/tc-12-609-2018, https://doi.org/10.5194/tc-12-609-2018, 2018
Short summary
Short summary
This paper presents a new perspective on the role of ice dynamics and ocean interaction in glacier calving processes applied to Kronebreen, a tidewater glacier in Svalbard. A global modelling approach includes ice flow modelling, undercutting estimation by a combination of glacier energy balance and plume modelling as well as calving by a discrete particle model. We show that modelling undercutting is necessary and calving is influenced by basal friction velocity and geometry.
Iain Wheel, Douglas I. Benn, Anna J. Crawford, Joe Todd, and Thomas Zwinger
Geosci. Model Dev., 17, 5759–5777, https://doi.org/10.5194/gmd-17-5759-2024, https://doi.org/10.5194/gmd-17-5759-2024, 2024
Short summary
Short summary
Calving, the detachment of large icebergs from glaciers, is one of the largest uncertainties in future sea level rise projections. This process is poorly understood, and there is an absence of detailed models capable of simulating calving. A new 3D calving model has been developed to better understand calving at glaciers where detailed modelling was previously limited. Importantly, the new model is very flexible. By allowing for unrestricted calving geometries, it can be applied at any location.
Tim van den Akker, Ward van Pelt, Rickard Petterson, and Veijo A. Pohjola
EGUsphere, https://doi.org/10.5194/egusphere-2024-1345, https://doi.org/10.5194/egusphere-2024-1345, 2024
Short summary
Short summary
Liquid water can persist within old snow on glaciers and ice caps, if it can percolate into it before it refreezes. Snow is a good insulator, and snow is porous where the percolated water can be stored. If this happens, the water piles up and forms a groundwater-like system. Here, we show observations of such a groundwater-like system found in Svalbard. We demonstrate that it behaves like a groundwater system, and use that to model the development of the water table from 1957 until present day.
Douglas I. Benn, Adrian Luckman, Jan A. Åström, Anna J. Crawford, Stephen L. Cornford, Suzanne L. Bevan, Thomas Zwinger, Rupert Gladstone, Karen Alley, Erin Pettit, and Jeremy Bassis
The Cryosphere, 16, 2545–2564, https://doi.org/10.5194/tc-16-2545-2022, https://doi.org/10.5194/tc-16-2545-2022, 2022
Short summary
Short summary
Thwaites Glacier (TG), in West Antarctica, is potentially unstable and may contribute significantly to sea-level rise as global warming continues. Using satellite data, we show that Thwaites Eastern Ice Shelf, the largest remaining floating extension of TG, has started to accelerate as it fragments along a shear zone. Computer modelling does not indicate that fragmentation will lead to imminent glacier collapse, but it is clear that major, rapid, and unpredictable changes are underway.
Gregoire Guillet, Owen King, Mingyang Lv, Sajid Ghuffar, Douglas Benn, Duncan Quincey, and Tobias Bolch
The Cryosphere, 16, 603–623, https://doi.org/10.5194/tc-16-603-2022, https://doi.org/10.5194/tc-16-603-2022, 2022
Short summary
Short summary
Surging glaciers show cyclical changes in flow behavior – between slow and fast flow – and can have drastic impacts on settlements in their vicinity.
One of the clusters of surging glaciers worldwide is High Mountain Asia (HMA).
We present an inventory of surging glaciers in HMA, identified from satellite imagery. We show that the number of surging glaciers was underestimated and that they represent 20 % of the area covered by glaciers in HMA, before discussing new physics for glacier surges.
Jan Bouke Pronk, Tobias Bolch, Owen King, Bert Wouters, and Douglas I. Benn
The Cryosphere, 15, 5577–5599, https://doi.org/10.5194/tc-15-5577-2021, https://doi.org/10.5194/tc-15-5577-2021, 2021
Short summary
Short summary
About 10 % of Himalayan glaciers flow directly into lakes. This study finds, using satellite imagery, that such glaciers show higher flow velocities than glaciers without ice–lake contact. In particular near the glacier tongue the impact of a lake on the glacier flow can be dramatic. The development of current and new meltwater bodies will influence the flow of an increasing number of Himalayan glaciers in the future, a scenario not currently considered in regional ice loss projections.
Suzanne L. Bevan, Adrian J. Luckman, Douglas I. Benn, Susheel Adusumilli, and Anna Crawford
The Cryosphere, 15, 3317–3328, https://doi.org/10.5194/tc-15-3317-2021, https://doi.org/10.5194/tc-15-3317-2021, 2021
Short summary
Short summary
The stability of the West Antarctic ice sheet depends on the behaviour of the fast-flowing glaciers, such as Thwaites, that connect it to the ocean. Here we show that a large ocean-melted cavity beneath Thwaites Glacier has remained stable since it first formed, implying that, in line with current theory, basal melt is now concentrated close to where the ice first goes afloat. We also show that Thwaites Glacier continues to thin and to speed up and that continued retreat is therefore likely.
Andreas Kellerer-Pirklbauer, Michael Avian, Douglas I. Benn, Felix Bernsteiner, Philipp Krisch, and Christian Ziesler
The Cryosphere, 15, 1237–1258, https://doi.org/10.5194/tc-15-1237-2021, https://doi.org/10.5194/tc-15-1237-2021, 2021
Short summary
Short summary
Present climate warming leads to glacier recession and formation of lakes. We studied the nature and rate of lake evolution in the period 1998–2019 at Pasterze Glacier, Austria. We detected for instance several large-scale and rapidly occurring ice-breakup events from below the water level. This process, previously not reported from the European Alps, might play an important role at alpine glaciers in the future as many glaciers are expected to recede into valley basins allowing lake formation.
Eef C. H. van Dongen, Guillaume Jouvet, Shin Sugiyama, Evgeny A. Podolskiy, Martin Funk, Douglas I. Benn, Fabian Lindner, Andreas Bauder, Julien Seguinot, Silvan Leinss, and Fabian Walter
The Cryosphere, 15, 485–500, https://doi.org/10.5194/tc-15-485-2021, https://doi.org/10.5194/tc-15-485-2021, 2021
Short summary
Short summary
The dynamic mass loss of tidewater glaciers is strongly linked to glacier calving. We study calving mechanisms under a thinning regime, based on 5 years of field and remote-sensing data of Bowdoin Glacier. Our data suggest that Bowdoin Glacier ungrounded recently, and its calving behaviour changed from calving due to surface crevasses to buoyancy-induced calving resulting from basal crevasses. This change may be a precursor to glacier retreat.
Ankit Pramanik, Jack Kohler, Katrin Lindbäck, Penelope How, Ward Van Pelt, Glen Liston, and Thomas V. Schuler
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-197, https://doi.org/10.5194/tc-2020-197, 2020
Revised manuscript not accepted
Short summary
Short summary
Freshwater discharge from tidewater glaciers influences fjord circulation and fjord ecosystem. Glacier hydrology plays crucial role in transporting water underneath glacier ice. We investigated hydrology beneath the tidewater glaciers of Kongsfjord basin in Northwest Svalbard and found that subglacial water flow differs substantially from surface flow of glacier ice. Furthermore, we derived freshwater discharge time-series from all the glaciers to the fjord.
Suzanne L. Bevan, Adrian J. Luckman, Douglas I. Benn, Tom Cowton, and Joe Todd
The Cryosphere, 13, 2303–2315, https://doi.org/10.5194/tc-13-2303-2019, https://doi.org/10.5194/tc-13-2303-2019, 2019
Short summary
Short summary
Kangerlussuaq Glacier in Greenland retreated significantly in the early 2000s and typified the response of calving glaciers to climate change. Satellite images show that it has recently retreated even further. The current retreat follows the appearance of extremely warm surface waters on the continental shelf during the summer of 2016, which likely entered the fjord and caused the rigid mass of sea ice and icebergs, which normally inhibits calving, to melt and break up.
Ward van Pelt, Veijo Pohjola, Rickard Pettersson, Sergey Marchenko, Jack Kohler, Bartłomiej Luks, Jon Ove Hagen, Thomas V. Schuler, Thorben Dunse, Brice Noël, and Carleen Reijmer
The Cryosphere, 13, 2259–2280, https://doi.org/10.5194/tc-13-2259-2019, https://doi.org/10.5194/tc-13-2259-2019, 2019
Short summary
Short summary
The climate in Svalbard is undergoing amplified change compared to the global mean, which has a strong impact on the climatic mass balance of glaciers and the state of seasonal snow in land areas. In this study we analyze a coupled energy balance–subsurface model dataset, which provides detailed information on distributed climatic mass balance, snow conditions, and runoff across Svalbard between 1957 and 2018.
Shahbaz Memon, Dorothée Vallot, Thomas Zwinger, Jan Åström, Helmut Neukirchen, Morris Riedel, and Matthias Book
Geosci. Model Dev., 12, 3001–3015, https://doi.org/10.5194/gmd-12-3001-2019, https://doi.org/10.5194/gmd-12-3001-2019, 2019
Short summary
Short summary
Scientific workflows enable complex scientific computational scenarios, which include data intensive scenarios, parametric executions, and interactive simulations. In this article, we applied the UNICORE workflow management system to automate a formerly hard-coded coupling of a glacier flow model and a calving model, which contain many tasks and dependencies, ranging from pre-processing and data management to repetitive executions on heterogeneous high-performance computing (HPC) resources.
Sergey Marchenko, Gong Cheng, Per Lötstedt, Veijo Pohjola, Rickard Pettersson, Ward van Pelt, and Carleen Reijmer
The Cryosphere, 13, 1843–1859, https://doi.org/10.5194/tc-13-1843-2019, https://doi.org/10.5194/tc-13-1843-2019, 2019
Short summary
Short summary
Thermal conductivity (k) of firn at Lomonosovfonna, Svalbard, is estimated using measured temperature evolution and density. The optimized k values (0.2–1.6 W (m K)−1) increase downwards and over time and are most sensitive to systematic errors in measured temperature values and their depths, particularly in the lower part of the profile. Compared to the density-based parameterizations, derived k values are consistently larger, suggesting a faster conductive heat exchange in firn.
Joe Todd, Poul Christoffersen, Thomas Zwinger, Peter Råback, and Douglas I. Benn
The Cryosphere, 13, 1681–1694, https://doi.org/10.5194/tc-13-1681-2019, https://doi.org/10.5194/tc-13-1681-2019, 2019
Short summary
Short summary
The Greenland Ice Sheet loses 30 %–60 % of its ice due to iceberg calving. Calving processes and their links to climate are not well understood or incorporated into numerical models of glaciers. Here we use a new 3-D calving model to investigate calving at Store Glacier, West Greenland, and test its sensitivity to increased submarine melting and reduced support from ice mélange (sea ice and icebergs). We find Store remains fairly stable despite these changes, but less so in the southern side.
Katrin Lindbäck, Jack Kohler, Rickard Pettersson, Christopher Nuth, Kirsty Langley, Alexandra Messerli, Dorothée Vallot, Kenichi Matsuoka, and Ola Brandt
Earth Syst. Sci. Data, 10, 1769–1781, https://doi.org/10.5194/essd-10-1769-2018, https://doi.org/10.5194/essd-10-1769-2018, 2018
Short summary
Short summary
Tidewater glaciers terminate directly into the sea and the glacier fronts are important feeding areas for birds and marine mammals. Svalbard tidewater glaciers are retreating, which will affect fjord circulation and ecosystems when glacier fronts end on land. In this paper, we present digital maps of ice thickness and topography under five tidewater glaciers in Kongsfjorden, northwestern Svalbard, which will be useful in studies of future glacier changes in the area.
Penelope How, Nicholas R. J. Hulton, and Lynne Buie
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2018-28, https://doi.org/10.5194/gi-2018-28, 2018
Revised manuscript not accepted
Short summary
Short summary
Terrestrial photogrammetry is the approach by which measurements are derived from images. It is a rapidly growing method in glaciology, providing detailed records of glacier change. However, glacial photogrammetry toolboxes are limited currently. PyTrx (freely available online) has been developed here as a Python-alternative toolbox with wider capabilities for deriving velocities, areas, and line measurements. Examples are presented throughout using time-lapse imagery from glaciers in Svalbard.
Dorothée Vallot, Jan Åström, Thomas Zwinger, Rickard Pettersson, Alistair Everett, Douglas I. Benn, Adrian Luckman, Ward J. J. van Pelt, Faezeh Nick, and Jack Kohler
The Cryosphere, 12, 609–625, https://doi.org/10.5194/tc-12-609-2018, https://doi.org/10.5194/tc-12-609-2018, 2018
Short summary
Short summary
This paper presents a new perspective on the role of ice dynamics and ocean interaction in glacier calving processes applied to Kronebreen, a tidewater glacier in Svalbard. A global modelling approach includes ice flow modelling, undercutting estimation by a combination of glacier energy balance and plume modelling as well as calving by a discrete particle model. We show that modelling undercutting is necessary and calving is influenced by basal friction velocity and geometry.
Penelope How, Douglas I. Benn, Nicholas R. J. Hulton, Bryn Hubbard, Adrian Luckman, Heïdi Sevestre, Ward J. J. van Pelt, Katrin Lindbäck, Jack Kohler, and Wim Boot
The Cryosphere, 11, 2691–2710, https://doi.org/10.5194/tc-11-2691-2017, https://doi.org/10.5194/tc-11-2691-2017, 2017
Short summary
Short summary
This study provides valuable insight into subglacial hydrology and dynamics at tidewater glaciers, which remains a poorly understood area of glaciology. It is a unique study because of the wealth of information provided by simultaneous observations of glacier hydrology at Kronebreen, a tidewater glacier in Svalbard. All these elements build a strong conceptual picture of the glacier's hydrological regime over the 2014 melt season.
Douglas I. Benn, Sarah Thompson, Jason Gulley, Jordan Mertes, Adrian Luckman, and Lindsey Nicholson
The Cryosphere, 11, 2247–2264, https://doi.org/10.5194/tc-11-2247-2017, https://doi.org/10.5194/tc-11-2247-2017, 2017
Short summary
Short summary
This paper provides the first complete view of the drainage system of a large Himalayan glacier, based on ice-cave exploration and satellite image analysis. Drainage tunnels inside glaciers have a major impact on melting rates, by providing lines of weakness inside the ice and potential pathways for melt-water, and play a key role in the response of debris-covered glaciers to sustained periods of negative mass balance.
Johannes Jakob Fürst, Fabien Gillet-Chaulet, Toby J. Benham, Julian A. Dowdeswell, Mariusz Grabiec, Francisco Navarro, Rickard Pettersson, Geir Moholdt, Christopher Nuth, Björn Sass, Kjetil Aas, Xavier Fettweis, Charlotte Lang, Thorsten Seehaus, and Matthias Braun
The Cryosphere, 11, 2003–2032, https://doi.org/10.5194/tc-11-2003-2017, https://doi.org/10.5194/tc-11-2003-2017, 2017
Short summary
Short summary
For the large majority of glaciers and ice caps, there is no information on the thickness of the ice cover. Any attempt to predict glacier demise under climatic warming and to estimate the future contribution to sea-level rise is limited as long as the glacier thickness is not well constrained. Here, we present a two-step mass-conservation approach for mapping ice thickness. Measurements are naturally reproduced. The reliability is readily assessible from a complementary map of error estimates.
Andreas Bech Mikkelsen, Alun Hubbard, Mike MacFerrin, Jason Eric Box, Sam H. Doyle, Andrew Fitzpatrick, Bent Hasholt, Hannah L. Bailey, Katrin Lindbäck, and Rickard Pettersson
The Cryosphere, 10, 1147–1159, https://doi.org/10.5194/tc-10-1147-2016, https://doi.org/10.5194/tc-10-1147-2016, 2016
Carmen P. Vega, Veijo A. Pohjola, Emilie Beaudon, Björn Claremar, Ward J. J. van Pelt, Rickard Pettersson, Elisabeth Isaksson, Tõnu Martma, Margit Schwikowski, and Carl E. Bøggild
The Cryosphere, 10, 961–976, https://doi.org/10.5194/tc-10-961-2016, https://doi.org/10.5194/tc-10-961-2016, 2016
Short summary
Short summary
To quantify post-depositional relocation of major ions by meltwater in snow and firn at Lomonosovfonna, Svalbard, consecutive ice cores drilled at this site were used to construct a synthetic core. The relocation length of most of the ions was on the order of 1 m between 2007 and 2010. Considering the ionic relocation lengths and annual melt percentages, we estimate that the atmospheric ionic signal remains preserved in recently drilled Lomonosovfonna ice cores at an annual or bi-annual resolution.
Y. Sjöberg, P. Marklund, R. Pettersson, and S. W. Lyon
The Cryosphere, 9, 465–478, https://doi.org/10.5194/tc-9-465-2015, https://doi.org/10.5194/tc-9-465-2015, 2015
Short summary
Short summary
Permafrost peatlands are hydrological and biogeochemical hotspots in discontinuous permafrost areas. We estimate the depths to the permafrost table surface and base across a peatland in northern Sweden using ground penetrating radar and electrical resistivity tomography. Seasonal frost tables, taliks, and the permafrost base could be detected. The results highlight the added value of combining techniques for assessing distributions of permafrost in the rapidly changing sporadic permafrost zone.
M. Schäfer, F. Gillet-Chaulet, R. Gladstone, R. Pettersson, V. A. Pohjola, T. Strozzi, and T. Zwinger
The Cryosphere, 8, 1951–1973, https://doi.org/10.5194/tc-8-1951-2014, https://doi.org/10.5194/tc-8-1951-2014, 2014
K. Lindbäck, R. Pettersson, S. H. Doyle, C. Helanow, P. Jansson, S. S. Kristensen, L. Stenseng, R. Forsberg, and A. L. Hubbard
Earth Syst. Sci. Data, 6, 331–338, https://doi.org/10.5194/essd-6-331-2014, https://doi.org/10.5194/essd-6-331-2014, 2014
C. Nuth, J. Kohler, M. König, A. von Deschwanden, J. O. Hagen, A. Kääb, G. Moholdt, and R. Pettersson
The Cryosphere, 7, 1603–1621, https://doi.org/10.5194/tc-7-1603-2013, https://doi.org/10.5194/tc-7-1603-2013, 2013
J. A. Åström, T. I. Riikilä, T. Tallinen, T. Zwinger, D. Benn, J. C. Moore, and J. Timonen
The Cryosphere, 7, 1591–1602, https://doi.org/10.5194/tc-7-1591-2013, https://doi.org/10.5194/tc-7-1591-2013, 2013
W. J. J. van Pelt, J. Oerlemans, C. H. Reijmer, R. Pettersson, V. A. Pohjola, E. Isaksson, and D. Divine
The Cryosphere, 7, 987–1006, https://doi.org/10.5194/tc-7-987-2013, https://doi.org/10.5194/tc-7-987-2013, 2013
S. H. Doyle, A. L. Hubbard, C. F. Dow, G. A. Jones, A. Fitzpatrick, A. Gusmeroli, B. Kulessa, K. Lindback, R. Pettersson, and J. E. Box
The Cryosphere, 7, 129–140, https://doi.org/10.5194/tc-7-129-2013, https://doi.org/10.5194/tc-7-129-2013, 2013
Related subject area
Image processing
Auroral alert version 1.0: two-step automatic detection of sudden aurora intensification from all-sky JPEG images
Integration of remote sensing and geographic information systems for geological fault detection on the island of Crete, Greece
Consideration of NDVI thematic changes in density analysis and floristic composition of Wadi Yalamlam, Saudi Arabia
Precise DEM extraction from Svalbard using 1936 high oblique imagery
A comparative study of auroral morphology distribution between the Northern and Southern Hemisphere based on automatic classification
Understanding of morphometric features for adequate water resource management in arid environments
Soil salinity mapping and hydrological drought indices assessment in arid environments based on remote sensing techniques
Realization of daily evapotranspiration in arid ecosystems based on remote sensing techniques
Digital photography for assessing the link between vegetation phenology and CO2 exchange in two contrasting northern ecosystems
Automatic georeferencing of astronaut auroral photography
Image georectification and feature tracking toolbox: ImGRAFT
Masatoshi Yamauchi and Urban Brändström
Geosci. Instrum. Method. Data Syst., 12, 71–90, https://doi.org/10.5194/gi-12-71-2023, https://doi.org/10.5194/gi-12-71-2023, 2023
Short summary
Short summary
Potential users of all-sky aurora images even include power companies, tourists, and aurora enthusiasts. However, these potential users are normally not familiar with interpreting these images. To make them comprehensive for more users, we developed an automatic evaluation system of auroral activity level. The method involves two steps: first making a simple set of numbers that describes the auroral activity and then further simplifying them into several levels (Level 6 is an auroral explosion).
Mohamed Elhag and Dalal Alshamsi
Geosci. Instrum. Method. Data Syst., 8, 45–54, https://doi.org/10.5194/gi-8-45-2019, https://doi.org/10.5194/gi-8-45-2019, 2019
Short summary
Short summary
The article deals with the designation of fault detection on the island of Crete. The delineation is based on the integration method of remote sensing and GIS. The crucial finding is how to differentiate between faults and water streams. The results showed a robust approach to fault detection.
Amal Y. Aldhebiani, Mohamed Elhag, Ahmad K. Hegazy, Hanaa K. Galal, and Norah S. Mufareh
Geosci. Instrum. Method. Data Syst., 7, 297–306, https://doi.org/10.5194/gi-7-297-2018, https://doi.org/10.5194/gi-7-297-2018, 2018
Short summary
Short summary
The current article focuses on plant diversity assessment in arid environments. Species richness and species evenness equations were used to meet the objectives. Remote sensing techniques were used to detect normalized difference vegetation index (NDVI) temporal changes. Two datasets were used to realize the NDVI, and post-chance detection (PCC) techniques were used to evaluate plant diversity status over a period of 4 years. The results show a recognizable loss in plant biodiversity.
Luc Girod, Niels Ivar Nielsen, Frédérique Couderette, Christopher Nuth, and Andreas Kääb
Geosci. Instrum. Method. Data Syst., 7, 277–288, https://doi.org/10.5194/gi-7-277-2018, https://doi.org/10.5194/gi-7-277-2018, 2018
Short summary
Short summary
Historical surveys performed through the use of aerial photography gave us the first maps of the Arctic. Nearly a century later, a renewed interest in studying the Arctic is rising from the need to understand and quantify climate change. It is therefore time to dig up the archives and extract the maximum of information from the images using the most modern methods. In this study, we show that the aerial survey of Svalbard in 1936–38 provides us with valuable data on the archipelago's glaciers.
Qiuju Yang and Ze-Jun Hu
Geosci. Instrum. Method. Data Syst., 7, 113–122, https://doi.org/10.5194/gi-7-113-2018, https://doi.org/10.5194/gi-7-113-2018, 2018
Short summary
Short summary
Based on the morphological characteristics of the four dayside auroral types on images at the Chinese Arctic Yellow River Station (YRS), and by extracting the local binary pattern features and using k-nearest classifier, we make an automatic classification to the auroral images of the YRS and the South Pole Station and obtain the occurrence distribution of the dayside aurora morphology. The results indicate that these auroral types present similar occurrence distributions in the two stations.
Mohamed Elhag, Hanaa K. Galal, and Haneen Alsubaie
Geosci. Instrum. Method. Data Syst., 6, 293–300, https://doi.org/10.5194/gi-6-293-2017, https://doi.org/10.5194/gi-6-293-2017, 2017
Short summary
Short summary
This article focus on morphometric features and their role in water resource management at the basin scale. The estimation of the features requires an adequate understanding of DEM feature extractions. The findings of the current study will help decision makers to improve the adopted water resource management strategies in similar geographic locations.
Mohamed Elhag and Jarbou A. Bahrawi
Geosci. Instrum. Method. Data Syst., 6, 149–158, https://doi.org/10.5194/gi-6-149-2017, https://doi.org/10.5194/gi-6-149-2017, 2017
Short summary
Short summary
The current work is aimed at the quantification of the hydrological drought indices' response to soil salinity. Work has been done to overcome the problems of soil salinity on a large scale for better water resource management, especially in arid environments.
Mohamed Elhag and Jarbou A. Bahrawi
Geosci. Instrum. Method. Data Syst., 6, 141–147, https://doi.org/10.5194/gi-6-141-2017, https://doi.org/10.5194/gi-6-141-2017, 2017
Short summary
Short summary
Work has been done to overcome the problems of evapotranspiration on a large scale for better water resources management, especially in arid environments.
Maiju Linkosalmi, Mika Aurela, Juha-Pekka Tuovinen, Mikko Peltoniemi, Cemal M. Tanis, Ali N. Arslan, Pasi Kolari, Kristin Böttcher, Tuula Aalto, Juuso Rainne, Juha Hatakka, and Tuomas Laurila
Geosci. Instrum. Method. Data Syst., 5, 417–426, https://doi.org/10.5194/gi-5-417-2016, https://doi.org/10.5194/gi-5-417-2016, 2016
Short summary
Short summary
Digital photography has become a widely used tool for monitoring the vegetation phenology. The seasonal cycle of the greenness index obtained from photographs correlated well with the CO2 exchange of the plants at our wetland and Scots pine forest sites. While the seasonal changes in the greenness were more obvious for the ecosystem dominated by annual plants, clear seasonal patterns were also observed for the evergreen forest.
Maik Riechert, Andrew P. Walsh, Alexander Gerst, and Matthew G. G. T. Taylor
Geosci. Instrum. Method. Data Syst., 5, 289–304, https://doi.org/10.5194/gi-5-289-2016, https://doi.org/10.5194/gi-5-289-2016, 2016
Short summary
Short summary
Astronauts on board the International Space Station have taken thousands of high-quality images of the northern and southern lights (aurorae). Because the images were not taken as part of a specific research project, no information about exactly where the camera was pointing was available. We have used the stars in the images to reconstruct this information. Now we can tell the latitudes and longitudes of the aurorae in the images and use them for research. The data are publicly available.
A. Messerli and A. Grinsted
Geosci. Instrum. Method. Data Syst., 4, 23–34, https://doi.org/10.5194/gi-4-23-2015, https://doi.org/10.5194/gi-4-23-2015, 2015
Short summary
Short summary
The use of time-lapse cameras is becoming an ever more popular method of observing changes in the natural environment. This study provides an overview of the newly developed Image GeoRectification And Feature Tracking toolbox (ImGRAFT). The paper outlines the main function of the toolbox and describes each of the key processes needed to transform a pair of terrestrial time-lapse images into a velocity field. The tool is presented using a case study of glacier surface motion at Engabreen, Norway.
Cited articles
Adinugroho, S.: Calving Events Detection and Quantification from Time-lapse
Images: A Case Study of Tunabreen Glacier, Svalbard, Master's thesis,
Uppsala University, Department of Information Technology, 2015. a
Adinugroho, S., Vallot, D., Westrin, P., and Strand, R.: Calving Events
Detection and Quantification from Time-lapse Images in Tunabreen Glacier,
in: 2015 International Conference on information & Communication technology
and systems (ICTS), IEEE, Surabaya, 16 September,
https://doi.org/10.1109/ICTS.2015.7379872, 2015. a, b
Ahn, Y. and Box, J. E.: Glacier velocities from time-lapse photos: technique
development and first results from the Extreme Ice Survey (EIS) in
Greenland, J. Glaciol., 56, 723–734,
https://doi.org/10.3189/002214310793146313, 2010. a
Amundson, J. M. and Truffer, M.: A unifying framework for iceberg-calving
models, J. Glaciol., 56, 822–830,
https://doi.org/10.3189/002214310794457173, 2010. a
Åström, J. A., Riikilä, T. I., Tallinen, T., Zwinger, T., Benn, D.,
Moore, J. C., and Timonen, J.: A particle based simulation model for glacier
dynamics, The Cryosphere, 7, 1591–1602,
https://doi.org/10.5194/tc-7-1591-2013, 2013. a
Bartholomaus, T. C., Larsen, C. F., O'Neel, S., and West, M. E.: Calving
seismicity from iceberg-sea surface interactions, J. Geophys.
Res.-Earth, 117, F04029, https://doi.org/10.1029/2012JF002513, 2012. a, b
Bay, H., Ess, A., Tuytelaars, T., and Gool, L. V.: Speeded-Up Robust
Features (SURF), Comput. Vis. Image Und., 110, 346–359,
https://doi.org/10.1016/j.cviu.2007.09.014, 2008. a
Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the
dynamics of calving glaciers, Earth-Sci. Rev., 82, 143–179,
https://doi.org/10.1016/j.earscirev.2007.02.002, 2007. a
Benn, D. I., Åström, J., Zwinger, T., Todd, J., Nick, F. M., Cook,
S.,
Hulton, N. R., and Luckman, A.: Melt-under-cutting and buoyancy-driven
calving from tidewater glaciers: new insights from discrete element and
continuum model simulations, J. Glaciol., 63, 691–702,
https://doi.org/10.1017/jog.2017.41, 2017. a, b
Bronger, T.: Lensfun, available at: http://www.lensfun.sourceforge.net
(last access: 1 February 2019), 2018. a
Chan, T. F. and Vese, L. A.: Active contours without edges, IEEE T.
Image Process., 10, 266–277, https://doi.org/10.1109/83.902291, 2001. a
Chapuis, A. and Tetzlaff, T.: The variability of tidewater-glacier calving:
origin of event-size and interval distributions, J. Glaciol., 60,
622–634, https://doi.org/10.3189/2014JoG13J215, 2014. a, b, c, d
Church, J., Clark, P., Cazenave, A., Gregory, J., Jevrejeva, S., Levermann,
A.,
Merrifield, M., Milne, G., Nerem, R., Nunn, P., Payne, A., Pfeffer, W.,
Stammer, D., and Unnikrishnan, A.: Sea Level Change, book section 13,
Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, 1137–1216, https://doi.org/10.1017/CBO9781107415324.026, 2013. a
Cook, S., Zwinger, T., Rutt, I., O'Neel, S., and Murray, T.: Testing the
effect of water in crevasses on a physically based calving model, Ann.
Glaciol., 53, 90–96, https://doi.org/10.3189/2012AoG60A107, 2012. a
Danielson, B. and Sharp, M.: Development and application of a time-lapse
photograph analysis method to investigate the link between tidewater glacier
flow variations and supraglacial lake drainage events, J. Glaciol.,
59, 287–302, https://doi.org/10.3189/2013JoG12J108, 2013. a
Dhar, D.: The Abelian Sandpile and Related Models, Physica A, 263,
4–25,
https://doi.org/10.1016/S0378-4371(98)00493-2, 1999. a
Edelsbrunner, H., Kirkpatrick, D., and Seidel, R.: On the shape of a set of
points in the plane, IEEE T. Inform. Theory, 29, 551–559,
https://doi.org/10.1109/TIT.1983.1056714, 1983. a
Flink, A. E., Noormets, R., Kirchner, N., Benn, D. I., Luckman, A., and
Lovell, H.: The evolution of a submarine landform record following recent
and multiple surges of Tunabreen glacier, Svalbard, Quaternary Sci. Rev.,
108, 37–50, https://doi.org/10.1016/j.quascirev.2014.11.006, 2015. a, b
Forwick, M., Vorren, T. O., Hald, M., Korsun, S., Roh, Y., Vogt, C., and Yoo,
K.-C.: Spatial and temporal influence of glaciers and rivers on the
sedimentary environment in Sassenfjorden and Tempelfjorden, Spitsbergen,
Geol. Soc. Spec. Publ., 344, 163–193,
https://doi.org/10.1144/SP344.13, 2010. a
Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr,
J., Berthier, E., Hock, R., Pfeffer, W. T., Kaser, G., Ligtenberg, S. R. M.,
Bolch, T., Sharp, M. J., Hagen, J. O., van den Broeke, M. R.,and Paul, F.: A
reconciled
estimate of glacier contributions to sea level rise: 2003 to 2009, Science,
340, 852–857, https://doi.org/10.1126/science.1234532, 2013. a
Hautière, N., Tarel, J., and Halmaoui, H.: Enhanced fog detection and
free-space segmentation for car navigation, Mach. Vision Appl., 25, 667–679,
https://doi.org/10.1007/s00138-011-0383-3, 2014. a
How, P., Benn, D. I., Hulton, N. R. J., Hubbard, B., Luckman, A., Sevestre,
H., van Pelt, W. J. J., Lindbäck, K., Kohler, J., and Boot, W.: Rapidly
changing subglacial hydrological pathways at a tidewater glacier revealed
through simultaneous observations of water pressure, supraglacial lakes,
meltwater plumes and surface velocities, The Cryosphere, 11, 2691–2710,
https://doi.org/10.5194/tc-11-2691-2017, 2017. a
James, M. R., How, P., and Wynn, P. M.: Pointcatcher software: analysis of
glacial time-lapse photography and integration with multitemporal digital
elevation models, J. Glaciol., 62, 159–169,
https://doi.org/10.1017/jog.2016.27, 2016. a
James, T. D., Murray, T., Selmes, N., Scharrer, K., and O'Leary, M.: Buoyant
flexure and basal crevassing in dynamic mass loss at Helheim Glacier, Nat.
Geosci., 7, 593–596, https://doi.org/10.1038/ngeo2204, 2014. a, b
Jensen, H. J.: Self-organized criticality: Emergent complex behavior in
physical and biological systems, vol. 10, Cambridge university press, 1998. a
Jiskoot, H., Harvey, T., and Gilson, G.: Arctic Coastal Fog over
Greenland Glaciers using an Improved MODIS Fog Detection Method and Ground
Observations, AGU Fall Meeting Abstracts, San Francisco, USA, 14–18 December 2015, C53A-0762, 2015. a
Köhler, A., Nuth, C., Kohler, J., Berthier, E., Weidle, C., and
Schweitzer,
J.: A 15 year record of frontal glacier ablation rates estimated from seismic
data, Geophys. Res. Lett., 43, 12155–12164,
https://doi.org/10.1002/2016GL070589, 2016. a
Kristensen, L. and Benn, D.: A surge of the glaciers Skobreen–Paulabreen,
Svalbard, observed by time-lapse photographs and remote sensing data, Polar
Res., 31, 11106, https://doi.org/10.3402/polar.v31i0.11106, 2012. a
Krug, J., Weiss, J., Gagliardini, O., and Durand, G.: Combining damage and
fracture mechanics to model calving, The Cryosphere, 8, 2101–2117,
https://doi.org/10.5194/tc-8-2101-2014, 2014. a
Krug, J., Durand, G., Gagliardini, O., and Weiss, J.: Modelling the impact of
submarine frontal melting and ice mélange on glacier dynamics, The
Cryosphere, 9, 989–1003, https://doi.org/10.5194/tc-9-989-2015, 2015. a
Kubat, M., Holte, R. C., and Matwin, S.: Machine Learning for the Detection
of
Oil Spills in Satellite Radar Images, Mach. Learn., 30, 195–215,
https://doi.org/10.1023/A:1007452223027, 1998. a, b
Kwasnitschka, T., Köser, K., Sticklus, J., Rothenbeck, M., Weiß, T.,
Wenzlaff, E., Schoening, T., Triebe, L., Steinführer, A., Devey, C. W.,
and Greinert, J.: DeepSurveyCam – A Deep Ocean Optical Mapping System,
Sensors, 16, 164, https://doi.org/10.3390/s16020164, 2016. a
Li, L. and Leung, M. K.: Integrating intensity and texture differences for
robust change detection, IEEE T. Image Process., 11, 105–112,
https://doi.org/10.1109/83.982818, 2002. a
Luckman, A., Benn, D. I., Cottier, F., Bevan, S., Nilsen, F., and Inall, M.:
Calving rates at tidewater glaciers vary strongly with ocean temperature,
Nat. Commun., 6, 8566, https://doi.org/10.1038/ncomms9566, 2015. a
Matthews, B.: Comparison of the predicted and observed secondary structure
of
T4 phage lysozyme, Biochim. Biophys. Acta,
405, 442–451, https://doi.org/10.1016/0005-2795(75)90109-9, 1975. a
Medrzycka, D., Benn, D. I., Box, J. E., Copland, L., and Balog, J.: Calving
Behavior at Rink Isbræ, West Greenland, from Time-Lapse Photos, Arct.
Antarct. Alp. Res., 48, 263–277, https://doi.org/10.1657/AAAR0015-059,
2016. a
Messerli, A. and Grinsted, A.: Image georectification and feature tracking
toolbox: ImGRAFT, Geosci. Instrum. Method. Data Syst., 4, 23–34,
https://doi.org/10.5194/gi-4-23-2015, 2015. a
Motyka, R. J., Dryer, W. P., Amundson, J., Truffer, M., and Fahnestock, M.:
Rapid submarine melting driven by subglacial discharge, LeConte Glacier,
Alaska, Geophys. Res. Lett., 40, 5153–5158,
https://doi.org/10.1002/grl.51011, 2013. a
Murray, T., Selmes, N., James, T. D., Edwards, S., Martin, I., O'Farrell, T.,
Aspey, R., Rutt, I., Nettles, M., and Baugé, T.: Dynamics of glacier
calving at the ungrounded margin of Helheim Glacier, southeast Greenland,
J. Geophys. Res.-Earth, 120, 964–982,
https://doi.org/10.1002/2015JF003531, 2015. a
Nick, F., Van der Veen, C. J., Vieli, A., and Benn, D.: A physically based
calving model applied to marine outlet glaciers and implications for the
glacier dynamics, J. Glaciol., 56, 781–794,
https://doi.org/10.3189/002214310794457344, 2010. a
Nuth, C., Kohler, J., König, M., von Deschwanden, A., Hagen, J. O.,
Kääb, A., Moholdt, G., and Pettersson, R.: Decadal changes from a
multi-temporal glacier inventory of Svalbard, The Cryosphere, 7, 1603–1621,
https://doi.org/10.5194/tc-7-1603-2013, 2013. a
Ojala, T., Pietikäinen, M., and Harwood, D.: A comparative study of
texture measures with classification based on featured distributions, Pattern
Recogn., 29, 51–59, https://doi.org/10.1016/0031-3203(95)00067-4, 1996. a
Ojala, T., Pietikäinen, M., and Maenpaa, T.: Multiresolution gray-scale
and
rotation invariant texture classification with local binary patterns, IEEE
T. Pattern Anal., 24, 971–987,
https://doi.org/10.1109/TPAMI.2002.1017623, 2002. a
O'Neel, S., Marshall, H. P., McNamara, D. E., and Pfeffer, W. T.: Seismic
detection and analysis of icequakes at Columbia Glacier, Alaska, J.
Geophys. Res.-Earth, 112, F03S23, https://doi.org/10.1029/2006JF000595, 2007. a
Pietikäinen, M., Hadid, A., Zhao, G., and Ahonen, T.: Local Binary
Patterns for Still Images, Computer Vision Using Local Binary Patterns, Springer, 13–47,
https://doi.org/10.1007/978-0-85729-748-8_2, 2011. a
Rignot, E., Fenty, I., Xu, Y., Cai, C., and Kemp, C.: Undercutting of
marine-terminating glaciers in West Greenland, Geophys. Res. Lett.,
42, 5909–5917, https://doi.org/10.1002/2015GL064236, 2015. a
Schild, K. M. and Hamilton, G. S.: Seasonal variations of outlet glacier
terminus position in Greenland, J. Glaciol., 59, 759–770,
https://doi.org/10.3189/2013JoG12J238, 2013. a
Schild, K. M., Hawley, R. L., Chipman, J. W., and Benn, D. I.: Quantifying
suspended sediment concentration in subglacial sediment plumes discharging
from two Svalbard tidewater glaciers using Landsat-8 and in situ
measurements, Int. J. Remote Sens., 38, 6865–6881,
https://doi.org/10.1080/01431161.2017.1365388, 2017. a
Stehman, S. V.: Selecting and interpreting measures of thematic
classification
accuracy, Remote Sens. Environ., 62, 77–89,
https://doi.org/10.1016/S0034-4257(97)00083-7, 1997. a
Straneo, F. and Heimbach, P.: North Atlantic warming and the retreat of
Greenland's outlet glaciers, Nature, 504, 36–43, https://doi.org/10.1038/nature12854,
2013. a
Torr, P. and Zisserman, A.: MLESAC: A New Robust Estimator with Application
to
Estimating Image Geometry, Comput. Vis. Image Und., 78,
138–156, https://doi.org/10.1006/cviu.1999.0832, 2000. a
Truffer, M. and Motyka, R. J.: Where glaciers meet water: Subaqueous melt
and
its relevance to glaciers in various settings, Rev. Geophys., 54,
220–239, https://doi.org/10.1002/2015RG000494, 2015RG000494, 2016. a
Vallot, D., Åström, J., Zwinger, T., Pettersson, R., Everett, A., Benn,
D. I., Luckman, A., van Pelt, W. J. J., Nick, F., and Kohler, J.: Effects of
undercutting and sliding on calving: a global approach applied to Kronebreen,
Svalbard, The Cryosphere, 12, 609–625,
https://doi.org/10.5194/tc-12-609-2018, 2018. a
Vallot, D., Adinugroho, S., Strand, R., and Pettersson, R.: Program to
automatically detect calving at the front of a tidewater glacier from
timelapse images, Zenodo, https://doi.org/10.5281/zenodo.2595541,
2019.
a
Van der Veen, C.: Calving glaciers, Prog. Phys. Geog., 26,
96–122, https://doi.org/10.1191/0309133302pp327ra, 2002. a
Walter, F., O'Neel, S., McNamara, D., Pfeffer, W. T., Bassis, J. N., and
Fricker, H. A.: Iceberg calving during transition from grounded to floating
ice: Columbia Glacier, Alaska, Geophys. Res. Lett., 37, L15501,
https://doi.org/10.1029/2010GL043201, 2010. a
Warren, C., Benn, D., Winchester, V., and Harrison, S.: Buoyancy-driven
lacustrine calving, Glaciar Nef, Chilean Patagonia, J. Glaciol.,
47, 135–146, https://doi.org/10.3189/172756501781832403, 2001. a
Zheng, Y., Zhang, X., Hou, B., and Liu, G.: Using Combined Difference Image
and k-Means Clustering for SAR Image Change Detection, IEEE Geosci.
Remote S., 11, 691–695, https://doi.org/10.1109/LGRS.2013.2275738,
2014. a, b
Short summary
This paper presents a novel method to quantify the sizes and frequency of calving events from time-lapse camera images. The calving front of a tidewater glacier experiences different episodes of iceberg deliveries that can be captured by a time-lapse camera situated in front of the glacier. An automatic way of detecting calving events is presented here and compared to manually detected events.
This paper presents a novel method to quantify the sizes and frequency of calving events from...