Articles | Volume 9, issue 2
Geosci. Instrum. Method. Data Syst., 9, 483–490, 2020
https://doi.org/10.5194/gi-9-483-2020
Geosci. Instrum. Method. Data Syst., 9, 483–490, 2020
https://doi.org/10.5194/gi-9-483-2020

Research article 18 Dec 2020

Research article | 18 Dec 2020

Using near-surface atmospheric measurements as a proxy for quantifying field-scale soil gas flux

Andrew Barkwith et al.

Related authors

The Coastline Evolution Model 2D (CEM2D) V1.1
Chloe Leach, Tom Coulthard, Andrew Barkwith, Daniel R. Parsons, and Susan Manson
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-197,https://doi.org/10.5194/gmd-2019-197, 2019
Revised manuscript under review for GMD
Short summary
Development of an automatic delineation of cliff top and toe on very irregular planform coastlines (CliffMetrics v1.0)
Andres Payo, Bismarck Jigena Antelo, Martin Hurst, Monica Palaseanu-Lovejoy, Chris Williams, Gareth Jenkins, Kathryn Lee, David Favis-Mortlock, Andrew Barkwith, and Michael A. Ellis
Geosci. Model Dev., 11, 4317–4337, https://doi.org/10.5194/gmd-11-4317-2018,https://doi.org/10.5194/gmd-11-4317-2018, 2018
Short summary
Complex coastlines responding to climate change: do shoreline shapes reflect present forcing or “remember” the distant past?
Christopher W. Thomas, A. Brad Murray, Andrew D. Ashton, Martin D. Hurst, Andrew K. A. P. Barkwith, and Michael A. Ellis
Earth Surf. Dynam., 4, 871–884, https://doi.org/10.5194/esurf-4-871-2016,https://doi.org/10.5194/esurf-4-871-2016, 2016
Short summary

Related subject area

Sensing
A novel permanent gauge-cam station for surface-flow observations on the Tiber River
Flavia Tauro, Andrea Petroselli, Maurizio Porfiri, Lorenzo Giandomenico, Guido Bernardi, Francesco Mele, Domenico Spina, and Salvatore Grimaldi
Geosci. Instrum. Method. Data Syst., 5, 241–251, https://doi.org/10.5194/gi-5-241-2016,https://doi.org/10.5194/gi-5-241-2016, 2016
Short summary
Practical considerations for enhanced-resolution coil-wrapped distributed temperature sensing
Koen Hilgersom, Tim van Emmerik, Anna Solcerova, Wouter Berghuijs, John Selker, and Nick van de Giesen
Geosci. Instrum. Method. Data Syst., 5, 151–162, https://doi.org/10.5194/gi-5-151-2016,https://doi.org/10.5194/gi-5-151-2016, 2016
Short summary
The surface temperatures of Earth: steps towards integrated understanding of variability and change
C. J. Merchant, S. Matthiesen, N. A. Rayner, J. J. Remedios, P. D. Jones, F. Olesen, B. Trewin, P. W. Thorne, R. Auchmann, G. K. Corlett, P. C. Guillevic, and G. C. Hulley
Geosci. Instrum. Method. Data Syst., 2, 305–321, https://doi.org/10.5194/gi-2-305-2013,https://doi.org/10.5194/gi-2-305-2013, 2013

Cited articles

Ascione, A., Ciotoli, G., Bigi, S., Buscher, J., Mazzoli, S., Ruggiero, L., Sciarra, A., Tartarello, M. C., and Valente, E.: Assessing mantle versus crustal sources for non-volcanic degassing along fault zones in the actively extending southern Apennines mountain belt (Italy), GSA Bull., 130, 1697–1722, https://doi.org/10.1130/B31869.1, 2018. 
Aubinet, M., Vesala, T., and Papale, D.: Eddy Covariance – A Practical Guide to Measurement and Data Analysis, Springer, Dordrecht Heidelberg London New York, p. 449, https://doi.org/10.1007/978-94-007-2351-1, 2012. 
Baldocchi, D. D. and Meyers, T.: On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation: A perspective, Agr. Forest Meteorol., 90, 1–25, https://doi.org/10.1016/S0168-1923(97)00072-5, 1998. 
Beaubien, S. E., Jones, D. G., Gal, F., Barkwith, A., Braibant, G., Baubron, J.-C., Ciotoli, G., Graziani, S., Lister, T. R., Lombardi, S., Michel, K., Quattrocchi, F., and Strutt, M. H.: Monitoring of near-surface gas geochemistry at the Weyburn, Canada, CO2-EOR site, 2001–2011, Int. J. Greenh. Gas Control, 16, S236–S262, https://doi.org/10.1016/j.ijggc.2013.01.013, 2013. 
Billesbach, D. P., Fischer, M. L., Torn, M. S., and Berry, J. A.: A portable eddy covariance system for the measurement of ecosystem-atmosphere exchange of CO2, water vapor, and energy, J. Atmos. Oceanic Technol., 21, 639–650, https://doi.org/10.1175/1520-0426(2004)021<0639:APECSF>2.0.CO;2, 2004. 
Download
Short summary
Soil gas flux describes the movement of various gases either to or from the ground. Identifying changes in soil gas flux can lead to a better understanding and detection of leakage from carbon capture and storage (CCS) schemes, diffuse degassing in volcanic and geothermal areas, and greenhouse gas emissions. Traditional chamber-based techniques may require weeks of fieldwork to assess a site. We present a new method to speed up the assessment of diffuse leakage.