Articles | Volume 10, issue 2
https://doi.org/10.5194/gi-10-169-2021
https://doi.org/10.5194/gi-10-169-2021
Research article
 | 
18 Aug 2021
Research article |  | 18 Aug 2021

Production of definitive data from Indonesian geomagnetic observatories

Relly Margiono, Christopher W. Turbitt, Ciarán D. Beggan, and Kathryn A. Whaler

Related authors

IUGG in the 21st century
Jo Ann Joselyn, Alik Ismail-Zadeh, Tom Beer, Harsh Gupta, Masaru Kono, Uri Shamir, Michael Sideris, and Kathryn Whaler
Hist. Geo Space. Sci., 10, 73–95, https://doi.org/10.5194/hgss-10-73-2019,https://doi.org/10.5194/hgss-10-73-2019, 2019
Short summary
Building a Raspberry Pi school magnetometer network in the UK
Ciarán D. Beggan and Steve R. Marple
Geosci. Commun., 1, 25–34, https://doi.org/10.5194/gc-1-25-2018,https://doi.org/10.5194/gc-1-25-2018, 2018
Short summary
Modelling geomagnetically induced currents in midlatitude Central Europe using a thin-sheet approach
Rachel L. Bailey, Thomas S. Halbedl, Ingrid Schattauer, Alexander Römer, Georg Achleitner, Ciaran D. Beggan, Viktor Wesztergom, Ramon Egli, and Roman Leonhardt
Ann. Geophys., 35, 751–761, https://doi.org/10.5194/angeo-35-751-2017,https://doi.org/10.5194/angeo-35-751-2017, 2017
Short summary
Automatic detection of ionospheric Alfvén resonances using signal and image processing techniques
C. D. Beggan
Ann. Geophys., 32, 951–958, https://doi.org/10.5194/angeo-32-951-2014,https://doi.org/10.5194/angeo-32-951-2014, 2014

Related subject area

Data quality
Airborne electromagnetic data levelling based on the structured variational method
Qiong Zhang, Xin Chen, Zhonghang Ji, Fei Yan, Zhengkun Jin, and Yunqing Liu
Geosci. Instrum. Method. Data Syst., 13, 193–203, https://doi.org/10.5194/gi-13-193-2024,https://doi.org/10.5194/gi-13-193-2024, 2024
Short summary
Upgrade of LSA-SAF Meteosat Second Generation daily surface albedo (MDAL) retrieval algorithm incorporating aerosol correction and other improvements
Daniel Juncu, Xavier Ceamanos, Isabel F. Trigo, Sandra Gomes, and Sandra C. Freitas
Geosci. Instrum. Method. Data Syst., 11, 389–412, https://doi.org/10.5194/gi-11-389-2022,https://doi.org/10.5194/gi-11-389-2022, 2022
Short summary
Swarm Langmuir probes' data quality validation and future improvements
Filomena Catapano, Stephan Buchert, Enkelejda Qamili, Thomas Nilsson, Jerome Bouffard, Christian Siemes, Igino Coco, Raffaella D'Amicis, Lars Tøffner-Clausen, Lorenzo Trenchi, Poul Erik Holmdahl Olsen, and Anja Stromme
Geosci. Instrum. Method. Data Syst., 11, 149–162, https://doi.org/10.5194/gi-11-149-2022,https://doi.org/10.5194/gi-11-149-2022, 2022
Short summary
Evaluating methods for reconstructing large gaps in historic snow depth time series
Johannes Aschauer and Christoph Marty
Geosci. Instrum. Method. Data Syst., 10, 297–312, https://doi.org/10.5194/gi-10-297-2021,https://doi.org/10.5194/gi-10-297-2021, 2021
Short summary
Auroral classification ergonomics and the implications for machine learning
Derek McKay and Andreas Kvammen
Geosci. Instrum. Method. Data Syst., 9, 267–273, https://doi.org/10.5194/gi-9-267-2020,https://doi.org/10.5194/gi-9-267-2020, 2020
Short summary

Cited articles

Ahadi, S., Puspito, N. T., Ibrahim, G., Saroso, S., Yumoto, K., and Muzli: Anomalous ULF Emissions and Their Possible Association with the Strong Earthquakes in Sumatra, Indonesia, during 2007-2012, Journal of Mathematical and Fundamental Sciences, 47, 84–103, https://doi.org/10.5614/j.math.fund.sci.2015.47.1.7, 2015. a
Brown, W., Mound, J., and Livermore, P.: Jerks abound: An analysis of geomagnetic observatory data from 1957 to 2008, Phys. Earth Planet. In., 223, 62–76, https://doi.org/10.1016/j.pepi.2013.06.001, 2013. a, b
Chulliat, A., Macmillan, S., Alken, P., Beggan, C., Nair, M., Hamilton, B., Woods, A., Ridley, V., Maus, S., and Thomson, A.: The US/UK World Magnetic Model for 2015–2020, Tech. rep., BGS and NOAA, available at: http://nora.nerc.ac.uk/id/eprint/510709 (last access: 11 August 2021), 2015. a
Clarke, E., Baillie, O., J. Reay, S., and Turbitt, C. W.: A method for the near real-time production of quasi-definitive magnetic observatory data, Earth Planets Space, 65, 16, https://doi.org/10.5047/eps.2013.10.001, 2013. a
Cox, G. A., Brown, W. J., Billingham, L., and Holme, R.: MagPySV: A Python Package for Processing and Denoising Geomagnetic Observatory Data, Geochem. Geophy. Geosy., 19, 3347–3363, https://doi.org/10.1029/2018GC007714, 2018. a
Download
Short summary
We have produced a standardised high-quality set of measurements to create definitive data for four Indonesian Geomagnetic Observatories for 2010–2018. We explain the steps taken to update the existing data collection and processing protocols and suggest improvements to further enhance the quality of the magnetic time series at each observatory. The new data will fill the gap in the western Pacific region and provide input into geomagnetic field modeling and secular variation studies.