Articles | Volume 10, issue 2
https://doi.org/10.5194/gi-10-227-2021
https://doi.org/10.5194/gi-10-227-2021
Research article
 | 
09 Sep 2021
Research article |  | 09 Sep 2021

The fluxgate magnetometer of the Low Orbit Pearl Satellites (LOPS): overview of in-flight performance and initial results

Ye Zhu, Aimin Du, Hao Luo, Donghai Qiao, Ying Zhang, Yasong Ge, Jiefeng Yang, Shuquan Sun, Lin Zhao, Jiaming Ou, Zhifang Guo, and Lin Tian

Related authors

Ion acceleration at dipolarization fronts associated with interchange instability in the magnetotail
Chao Sun, Yasong Ge, and Haoyu Lu
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2018-43,https://doi.org/10.5194/npg-2018-43, 2018
Preprint withdrawn
Short summary
Occurrence rate of dipolarization fronts in the plasma sheet: Cluster observations
Sudong Xiao, Tielong Zhang, Guoqiang Wang, Martin Volwerk, Yasong Ge, Daniel Schmid, Rumi Nakamura, Wolfgang Baumjohann, and Ferdinand Plaschke
Ann. Geophys., 35, 1015–1022, https://doi.org/10.5194/angeo-35-1015-2017,https://doi.org/10.5194/angeo-35-1015-2017, 2017
A statistical study on the shape and position of the magnetotail neutral sheet
Sudong Xiao, Tielong Zhang, Yasong Ge, Guoqiang Wang, Wolfgang Baumjohann, and Rumi Nakamura
Ann. Geophys., 34, 303–311, https://doi.org/10.5194/angeo-34-303-2016,https://doi.org/10.5194/angeo-34-303-2016, 2016
A physical explanation for the magnetic decrease ahead of dipolarization fronts
Z. H. Yao, J. Liu, C. J. Owen, C. Forsyth, I. J. Rae, Z. Y. Pu, H. S. Fu, X.-Z. Zhou, Q. Q. Shi, A. M. Du, R. L. Guo, and X. N. Chu
Ann. Geophys., 33, 1301–1309, https://doi.org/10.5194/angeo-33-1301-2015,https://doi.org/10.5194/angeo-33-1301-2015, 2015
Short summary
Evidence of transient reconnection in the outflow jet of primary reconnection site
R. Wang, R. Nakamura, T. Zhang, A. Du, W. Baumjohann, Q. Lu, and A. N. Fazakerley
Ann. Geophys., 32, 239–248, https://doi.org/10.5194/angeo-32-239-2014,https://doi.org/10.5194/angeo-32-239-2014, 2014

Related subject area

Magnetometers
Enabling in situ validation of mitigation algorithms for magnetic interference via a laboratory-generated dataset
Matthew G. Finley, Allison M. Flores, Katherine J. Morris, Robert M. Broadfoot, Sam Hisel, Jason Homann, Chris Piker, Ananya Sen Gupta, and David M. Miles
Geosci. Instrum. Method. Data Syst., 13, 263–275, https://doi.org/10.5194/gi-13-263-2024,https://doi.org/10.5194/gi-13-263-2024, 2024
Short summary
First in situ measurements of the prototype Tesseract fluxgate magnetometer on the ACES-II-Low sounding rocket
Kenton Greene, Scott R. Bounds, Robert M. Broadfoot, Connor Feltman, Samuel J. Hisel, Ryan M. Kraus, Amanda Lasko, Antonio Washington, and David M. Miles
Geosci. Instrum. Method. Data Syst., 13, 249–262, https://doi.org/10.5194/gi-13-249-2024,https://doi.org/10.5194/gi-13-249-2024, 2024
Short summary
Accuracy of the scalar magnetometer aboard ESA's JUICE mission
Christoph Amtmann, Andreas Pollinger, Michaela Ellmeier, Michele Dougherty, Patrick Brown, Roland Lammegger, Alexander Betzler, Martín Agú, Christian Hagen, Irmgard Jernej, Josef Wilfinger, Richard Baughen, Alex Strickland, and Werner Magnes
Geosci. Instrum. Method. Data Syst., 13, 177–191, https://doi.org/10.5194/gi-13-177-2024,https://doi.org/10.5194/gi-13-177-2024, 2024
Short summary
Analysis of Orientation Errors in Triaxial Fluxgate Sensors and Research on Their Calibration Methods
Xiujuan Hu, Shaopeng He, Qin Tian, Alimjan Mamatemin, Pengkun Guo, and Guoping Chang
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2024-5,https://doi.org/10.5194/gi-2024-5, 2024
Revised manuscript accepted for GI
Short summary
Copper permalloys for fluxgate magnetometer sensors
B. Barry Narod and David M. Miles
Geosci. Instrum. Method. Data Syst., 13, 131–161, https://doi.org/10.5194/gi-13-131-2024,https://doi.org/10.5194/gi-13-131-2024, 2024
Short summary

Cited articles

Alken, P. and Maus, S.: Spatio-temporal characterization of the equatorial electrojet from CHAMP, Ørsted, and SAC-C satellite magnetic measurements, J. Geophys. Res.-Space, 112, A9305, https://doi.org/10.1029/2007JA012524, 2007. 
Anderson, B. J., Takahashi, K., and Toth, B. A.: Sensing global Birkeland currents with iridium® engineering magnetometer data, Geophys. Res. Lett., 27, 4045–4048, https://doi.org/10.1029/2000GL000094, 2000. 
Anderson, B. J., Takahashi, K., Kamei, T., Waters, C. L., and Toth, B. A.: Birkeland current systemkey parameters derived fromIridium observations: Method and initial validation results, J. Geophys. Res., 107, 1079, https://doi.org/10.1029/2001JA000080, 2002. 
Anderson, B. J., Korth, H., Waters, C. L., Green, D. L., and Stauning, P.: Statistical Birkeland current distributions from magnetic field observations by the Iridium constellation, Ann. Geophys., 26, 671–687, https://doi.org/10.5194/angeo-26-671-2008, 2008. 
Auster, H.U., Lichopoj, A., Rustenbach, J., Bitterlich, H., Fornacon, K. H., Hillenmaier, O., Krause, R., Schenk, H. J., and Auster, V.: Concept and first results of a digital fluxgate magnetometer, Meas. Sci. Technol. 6, 477–481, https://doi.org/10.1088/0957-0233/6/5/007, 1995. 
Download
Short summary
The Low Orbit Pearl Satellites measure magnetic field with high spatial coverage. Although there is no magnetic cleanliness to the satellites, the triple sensor configuration enables removal of interference. Results show they can capture the Earth’s internal as well as external fields from the magnetosphere–ionosphere current system. This study implies that a large number of small low-cost satellites without magnetic cleanliness could be the future for space magnetic exploration.