Articles | Volume 10, issue 2
https://doi.org/10.5194/gi-10-265-2021
https://doi.org/10.5194/gi-10-265-2021
Research article
 | 
03 Nov 2021
Research article |  | 03 Nov 2021

Evaluation of multivariate time series clustering for imputation of air pollution data

Wedad Alahamade, Iain Lake, Claire E. Reeves, and Beatriz De La Iglesia

Related authors

Radical chemistry and ozone production at a UK coastal receptor site
Robert Woodward-Massey, Roberto Sommariva, Lisa K. Whalley, Danny R. Cryer, Trevor Ingham, William J. Bloss, Stephen M. Ball, Sam Cox, James D. Lee, Chris P. Reed, Leigh R. Crilley, Louisa J. Kramer, Brian J. Bandy, Grant L. Forster, Claire E. Reeves, Paul S. Monks, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 14393–14424, https://doi.org/10.5194/acp-23-14393-2023,https://doi.org/10.5194/acp-23-14393-2023, 2023
Short summary
Sources of surface O3 in the UK: tagging O3 within WRF-Chem
Johana Romero-Alvarez, Aurelia Lupaşcu, Douglas Lowe, Alba Badia, Scott Archer-Nicholls, Steve Dorling, Claire E. Reeves, and Tim Butler
Atmos. Chem. Phys., 22, 13797–13815, https://doi.org/10.5194/acp-22-13797-2022,https://doi.org/10.5194/acp-22-13797-2022, 2022
Short summary
Radical chemistry at a UK coastal receptor site – Part 1: observations of OH, HO2, RO2, and OH reactivity and comparison to MCM model predictions
Robert Woodward-Massey, Roberto Sommariva, Lisa K. Whalley, Danny R. Cryer, Trevor Ingham, William J1 Bloss, Sam Cox, James D. Lee, Chris P. Reed, Leigh R. Crilley, Louisa J. Kramer, Brian J. Bandy, Grant L. Forster, Claire E. Reeves, Paul S. Monks, and Dwayne E. Heard
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-207,https://doi.org/10.5194/acp-2022-207, 2022
Preprint withdrawn
Short summary
Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality
Benjamin A. Nault, Duseong S. Jo, Brian C. McDonald, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Jason C. Schroder, James Allan, Donald R. Blake, Manjula R. Canagaratna, Hugh Coe, Matthew M. Coggon, Peter F. DeCarlo, Glenn S. Diskin, Rachel Dunmore, Frank Flocke, Alan Fried, Jessica B. Gilman, Georgios Gkatzelis, Jacqui F. Hamilton, Thomas F. Hanisco, Patrick L. Hayes, Daven K. Henze, Alma Hodzic, James Hopkins, Min Hu, L. Greggory Huey, B. Thomas Jobson, William C. Kuster, Alastair Lewis, Meng Li, Jin Liao, M. Omar Nawaz, Ilana B. Pollack, Jeffrey Peischl, Bernhard Rappenglück, Claire E. Reeves, Dirk Richter, James M. Roberts, Thomas B. Ryerson, Min Shao, Jacob M. Sommers, James Walega, Carsten Warneke, Petter Weibring, Glenn M. Wolfe, Dominique E. Young, Bin Yuan, Qiang Zhang, Joost A. de Gouw, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 11201–11224, https://doi.org/10.5194/acp-21-11201-2021,https://doi.org/10.5194/acp-21-11201-2021, 2021
Short summary
Air–sea exchange of acetone, acetaldehyde, DMS and isoprene at a UK coastal site
Daniel P. Phillips, Frances E. Hopkins, Thomas G. Bell, Peter S. Liss, Philip D. Nightingale, Claire E. Reeves, Charel Wohl, and Mingxi Yang
Atmos. Chem. Phys., 21, 10111–10132, https://doi.org/10.5194/acp-21-10111-2021,https://doi.org/10.5194/acp-21-10111-2021, 2021
Short summary

Related subject area

Data mining
Leveling airborne geophysical data using a unidirectional variational model
Qiong Zhang, Changchang Sun, Fei Yan, Chao Lv, and Yunqing Liu
Geosci. Instrum. Method. Data Syst., 11, 183–194, https://doi.org/10.5194/gi-11-183-2022,https://doi.org/10.5194/gi-11-183-2022, 2022
Short summary
Review on Mineral Characterization of Precambrian Charnockites – using PIXE Technique
Avupati Venkata Surya Satyanarayana, Mokka Jagannadharao, Kemburu Chandra Mouli, and Kollu Sai Satya Mounika
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2020-15,https://doi.org/10.5194/gi-2020-15, 2020
Revised manuscript not accepted
Short summary

Cited articles

Alahamade, W.: Wedad-O-A/Modelled-concentrations-: Modelled_Concentration_Air_Qaulity (v3.5.2), Zenodo [code and data set], https://doi.org/10.5281/zenodo.5602618, 2021. a
Alahamade, W., Lake, I., Reeves, C. E., and De La Iglesia, B.: Clustering Imputation for Air Pollution Data, in: International Conference on Hybrid Artificial Intelligence Systems, Lecture Notes in Computer Science, 585–597, https://doi.org/10.1007/978-3-030-61705-9_48, Springer, Cham, 2020. a, b
Alahamade, W., Lake, I., Reeves, C. E., and De La Iglesia, B.: A Multi-variate Time Series clustering approach based on Intermediate Fusion A case study in air pollution data imputation, Neurocomputing, in press, 2021. a, b, c
Austin, E., Coull, B. A., Zanobetti, A., and Koutrakis, P.: A framework to spatially cluster air pollution monitoring sites in US based on the PM2.5 composition, Environ. Int., 59, 244–254, 2013. a, b
Carbajal-Hernández, J. J., Sánchez-Fernández, L. P., Carrasco-Ochoa, J. A., and Martínez-Trinidad, J. F.: Assessment and prediction of air quality using fuzzy logic and autoregressive models, Atmos. Environ., 60, 37–50, 2012. a
Download
Short summary
The goal is to reduce the uncertainty in air quality assessment by imputing all missing pollutants in monitoring stations and identify where more measurements can be beneficial. The proposed approach is based on spatial or temporal similarity between stations. Our proposed approach enables us to impute and estimate plausible concentrations of multiple pollutants at stations across the UK, and the modelled concentrations from the selected models correlated well with the observed concentrations.