Articles | Volume 10, issue 2
https://doi.org/10.5194/gi-10-265-2021
https://doi.org/10.5194/gi-10-265-2021
Research article
 | 
03 Nov 2021
Research article |  | 03 Nov 2021

Evaluation of multivariate time series clustering for imputation of air pollution data

Wedad Alahamade, Iain Lake, Claire E. Reeves, and Beatriz De La Iglesia

Viewed

Total article views: 3,442 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
2,438 915 89 3,442 111 105
  • HTML: 2,438
  • PDF: 915
  • XML: 89
  • Total: 3,442
  • BibTeX: 111
  • EndNote: 105
Views and downloads (calculated since 17 May 2021)
Cumulative views and downloads (calculated since 17 May 2021)

Viewed (geographical distribution)

Total article views: 3,442 (including HTML, PDF, and XML) Thereof 3,223 with geography defined and 219 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 07 Sep 2025
Download
Short summary
The goal is to reduce the uncertainty in air quality assessment by imputing all missing pollutants in monitoring stations and identify where more measurements can be beneficial. The proposed approach is based on spatial or temporal similarity between stations. Our proposed approach enables us to impute and estimate plausible concentrations of multiple pollutants at stations across the UK, and the modelled concentrations from the selected models correlated well with the observed concentrations.
Share