Articles | Volume 12, issue 2
https://doi.org/10.5194/gi-12-155-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-12-155-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards affordable 3D physics-based river flow rating: application over the Luangwa River basin
Hubert T. Samboko
CORRESPONDING AUTHOR
Department of Water Resources, Faculty of Civil Engineering and
Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft,
the Netherlands
Sten Schurer
Department of Water Resources, Faculty of Civil Engineering and
Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft,
the Netherlands
Hubert H. G. Savenije
Department of Water Resources, Faculty of Civil Engineering and
Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft,
the Netherlands
Hodson Makurira
Department of Construction and Civil Engineering, University of
Zimbabwe, Box MP 167, Mt. Pleasant, Harare, Zimbabwe
Kawawa Banda
Department of Geology, Integrated Water Resources Management Center,
University of Zambia, Great East Road Campus, P.O. Box 32379, Lusaka, Zambia
Hessel Winsemius
Department of Water Resources, Faculty of Civil Engineering and
Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft,
the Netherlands
Deltares, Delft, the Netherlands
Rainbow Sensing, The Hague, the Netherlands
Related authors
Hubert T. Samboko, Sten Schurer, Hubert H. G. Savenije, Hodson Makurira, Kawawa Banda, and Hessel Winsemius
Geosci. Instrum. Method. Data Syst., 11, 1–23, https://doi.org/10.5194/gi-11-1-2022, https://doi.org/10.5194/gi-11-1-2022, 2022
Short summary
Short summary
The study was conducted along the Luangwa River in Zambia. It combines low-cost instruments such as UAVs and GPS kits to collect data for the purposes of water management. A novel technique which seamlessly merges the dry and wet bathymetry before application in a hydraulic model was applied. Successful implementation resulted in water authorities with small budgets being able to monitor flows safely and efficiently without significant compromise on accuracy.
Hongkai Gao, Markus Hrachowitz, Lan Wang-Erlandsson, Fabrizio Fenicia, Qiaojuan Xi, Jianyang Xia, Wei Shao, Ge Sun, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 4477–4499, https://doi.org/10.5194/hess-28-4477-2024, https://doi.org/10.5194/hess-28-4477-2024, 2024
Short summary
Short summary
The concept of the root zone is widely used but lacks a precise definition. Its importance in Earth system science is not well elaborated upon. Here, we clarified its definition with several similar terms to bridge the multi-disciplinary gap. We underscore the key role of the root zone in the Earth system, which links the biosphere, hydrosphere, lithosphere, atmosphere, and anthroposphere. To better represent the root zone, we advocate for a paradigm shift towards ecosystem-centred modelling.
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024, https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Short summary
The fall and flushing of new leaves in the miombo woodlands co-occur in the dry season before the commencement of seasonal rainfall. The miombo species are also said to have access to soil moisture in deep soils, including groundwater in the dry season. Satellite-based evaporation estimates, temporal trends, and magnitudes differ the most in the dry season, most likely due to inadequate understanding and representation of the highlighted miombo species attributes in simulations.
Hubert H. G. Savenije
Proc. IAHS, 385, 1–4, https://doi.org/10.5194/piahs-385-1-2024, https://doi.org/10.5194/piahs-385-1-2024, 2024
Short summary
Short summary
Hydrology is the bloodstream of the Earth, acting as a living organism, with the ecosystem as its active agent. The ecosystem optimises its survival within the constraints of energy, water, climate and nutrients. It is capable of adjusting the hydrological system and, through evolution, adjust its efficiency of carbon sequestration and moisture uptake. In trying to understand future functioning of hydrology, we have to take into account the adaptability of the ecosystem.
Jiaxing Liang, Hongkai Gao, Fabrizio Fenicia, Qiaojuan Xi, Yahui Wang, and Hubert H. G. Savenije
EGUsphere, https://doi.org/10.5194/egusphere-2024-550, https://doi.org/10.5194/egusphere-2024-550, 2024
Short summary
Short summary
The root zone storage capacity (Sumax) is a key element in hydrology and land-atmospheric interaction. In this study, we utilized a hydrological model and a dynamic parameter identification method, to quantify the temporal trends of Sumax for 497 catchments in the USA. We found that 423 catchments (85 %) showed increasing Sumax, which averagely increased from 178 to 235 mm between 1980 and 2014. The increasing trend was also validated by multi-sources data and independent methods.
Hongkai Gao, Fabrizio Fenicia, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2607–2620, https://doi.org/10.5194/hess-27-2607-2023, https://doi.org/10.5194/hess-27-2607-2023, 2023
Short summary
Short summary
It is a deeply rooted perception that soil is key in hydrology. In this paper, we argue that it is the ecosystem, not the soil, that is in control of hydrology. Firstly, in nature, the dominant flow mechanism is preferential, which is not particularly related to soil properties. Secondly, the ecosystem, not the soil, determines the land–surface water balance and hydrological processes. Moving from a soil- to ecosystem-centred perspective allows more realistic and simpler hydrological models.
Dirk Eilander, Anaïs Couasnon, Frederiek C. Sperna Weiland, Willem Ligtvoet, Arno Bouwman, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 23, 2251–2272, https://doi.org/10.5194/nhess-23-2251-2023, https://doi.org/10.5194/nhess-23-2251-2023, 2023
Short summary
Short summary
This study presents a framework for assessing compound flood risk using hydrodynamic, impact, and statistical modeling. A pilot in Mozambique shows the importance of accounting for compound events in risk assessments. We also show how the framework can be used to assess the effectiveness of different risk reduction measures. As the framework is based on global datasets and is largely automated, it can easily be applied in other areas for first-order assessments of compound flood risk.
Nutchanart Sriwongsitanon, Wasana Jandang, James Williams, Thienchart Suwawong, Ekkarin Maekan, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2149–2171, https://doi.org/10.5194/hess-27-2149-2023, https://doi.org/10.5194/hess-27-2149-2023, 2023
Short summary
Short summary
We developed predictive semi-distributed rainfall–runoff models for nested sub-catchments in the upper Ping basin, which yielded better or similar performance compared to calibrated lumped models. The normalised difference infrared index proves to be an effective proxy for distributed root zone moisture capacity over sub-catchments and is well correlated with the percentage of evergreen forest. In validation, soil moisture simulations appeared to be highly correlated with the soil wetness index.
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Bart Schilperoort, Nick van de Giesen, Imasiku Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 1695–1722, https://doi.org/10.5194/hess-27-1695-2023, https://doi.org/10.5194/hess-27-1695-2023, 2023
Short summary
Short summary
Miombo woodland plants continue to lose water even during the driest part of the year. This appears to be facilitated by the adapted features such as deep rooting (beyond 5 m) with access to deep soil moisture, potentially even ground water. It appears the trend and amount of water that the plants lose is correlated more to the available energy. This loss of water in the dry season by miombo woodland plants appears to be incorrectly captured by satellite-based evaporation estimates.
Dirk Eilander, Anaïs Couasnon, Tim Leijnse, Hiroaki Ikeuchi, Dai Yamazaki, Sanne Muis, Job Dullaart, Arjen Haag, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 23, 823–846, https://doi.org/10.5194/nhess-23-823-2023, https://doi.org/10.5194/nhess-23-823-2023, 2023
Short summary
Short summary
In coastal deltas, flooding can occur from interactions between coastal, riverine, and pluvial drivers, so-called compound flooding. Global models however ignore these interactions. We present a framework for automated and reproducible compound flood modeling anywhere globally and validate it for two historical events in Mozambique with good results. The analysis reveals differences in compound flood dynamics between both events related to the magnitude of and time lag between drivers.
Luke N. J. Wedmore, Tess Turner, Juliet Biggs, Jack N. Williams, Henry M. Sichingabula, Christine Kabumbu, and Kawawa Banda
Solid Earth, 13, 1731–1753, https://doi.org/10.5194/se-13-1731-2022, https://doi.org/10.5194/se-13-1731-2022, 2022
Short summary
Short summary
Mapping and compiling the attributes of faults capable of hosting earthquakes are important for the next generation of seismic hazard assessment. We document 18 active faults in the Luangwa Rift, Zambia, in an active fault database. These faults are between 9 and 207 km long offset Quaternary sediments, have scarps up to ~30 m high, and are capable of hosting earthquakes from Mw 5.8 to 8.1. We associate the Molaza Fault with surface ruptures from two unattributed M 6+ 20th century earthquakes.
Hongkai Gao, Chuntan Han, Rensheng Chen, Zijing Feng, Kang Wang, Fabrizio Fenicia, and Hubert Savenije
Hydrol. Earth Syst. Sci., 26, 4187–4208, https://doi.org/10.5194/hess-26-4187-2022, https://doi.org/10.5194/hess-26-4187-2022, 2022
Short summary
Short summary
Frozen soil hydrology is one of the 23 unsolved problems in hydrology (UPH). In this study, we developed a novel conceptual frozen soil hydrological model, FLEX-Topo-FS. The model successfully reproduced the soil freeze–thaw process, and its impacts on hydrologic connectivity, runoff generation, and groundwater. We believe this study is a breakthrough for the 23 UPH, giving us new insights on frozen soil hydrology, with broad implications for predicting cold region hydrology in future.
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Petra Hulsman, Nick van de Giesen, Imasiku Nyambe, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-114, https://doi.org/10.5194/hess-2022-114, 2022
Manuscript not accepted for further review
Short summary
Short summary
We compare performance of evaporation models in the Luangwa Basin located in a semi-arid and complex Miombo ecosystem in Africa. Miombo plants changes colour, drop off leaves and acquire new leaves during the dry season. In addition, the plant roots go deep in the soil and appear to access groundwater. Results show that evaporation models with structure and process that do not capture this unique plant structure and behaviour appears to have difficulties to correctly estimating evaporation.
Laurène J. E. Bouaziz, Emma E. Aalbers, Albrecht H. Weerts, Mark Hegnauer, Hendrik Buiteveld, Rita Lammersen, Jasper Stam, Eric Sprokkereef, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 26, 1295–1318, https://doi.org/10.5194/hess-26-1295-2022, https://doi.org/10.5194/hess-26-1295-2022, 2022
Short summary
Short summary
Assuming stationarity of hydrological systems is no longer appropriate when considering land use and climate change. We tested the sensitivity of hydrological predictions to changes in model parameters that reflect ecosystem adaptation to climate and potential land use change. We estimated a 34 % increase in the root zone storage parameter under +2 K global warming, resulting in up to 15 % less streamflow in autumn, due to 14 % higher summer evaporation, compared to a stationary system.
Hubert T. Samboko, Sten Schurer, Hubert H. G. Savenije, Hodson Makurira, Kawawa Banda, and Hessel Winsemius
Geosci. Instrum. Method. Data Syst., 11, 1–23, https://doi.org/10.5194/gi-11-1-2022, https://doi.org/10.5194/gi-11-1-2022, 2022
Short summary
Short summary
The study was conducted along the Luangwa River in Zambia. It combines low-cost instruments such as UAVs and GPS kits to collect data for the purposes of water management. A novel technique which seamlessly merges the dry and wet bathymetry before application in a hydraulic model was applied. Successful implementation resulted in water authorities with small budgets being able to monitor flows safely and efficiently without significant compromise on accuracy.
Dirk Eilander, Willem van Verseveld, Dai Yamazaki, Albrecht Weerts, Hessel C. Winsemius, and Philip J. Ward
Hydrol. Earth Syst. Sci., 25, 5287–5313, https://doi.org/10.5194/hess-25-5287-2021, https://doi.org/10.5194/hess-25-5287-2021, 2021
Short summary
Short summary
Digital elevation models and derived flow directions are crucial to distributed hydrological modeling. As the spatial resolution of models is typically coarser than these data, we need methods to upscale flow direction data while preserving the river structure. We propose the Iterative Hydrography Upscaling (IHU) method and show it outperforms other often-applied methods. We publish the multi-resolution MERIT Hydro IHU hydrography dataset and the algorithm as part of the pyflwdir Python package.
Hongkai Gao, Chuntan Han, Rensheng Chen, Zijing Feng, Kang Wang, Fabrizio Fenicia, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-264, https://doi.org/10.5194/hess-2021-264, 2021
Manuscript not accepted for further review
Short summary
Short summary
Permafrost hydrology is one of the 23 major unsolved problems in hydrology. In this study, we used a stepwise modeling and dynamic parameter method to examine the impact of permafrost on streamflow in the Hulu catchment in western China. We found that: topography and landscape are dominant controls on catchment response; baseflow recession is slower than other regions; precipitation-runoff relationship is non-stationary; permafrost impacts on streamflow mostly at the beginning of melting season.
Laurène J. E. Bouaziz, Fabrizio Fenicia, Guillaume Thirel, Tanja de Boer-Euser, Joost Buitink, Claudia C. Brauer, Jan De Niel, Benjamin J. Dewals, Gilles Drogue, Benjamin Grelier, Lieke A. Melsen, Sotirios Moustakas, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Albrecht H. Weerts, Patrick Willems, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 1069–1095, https://doi.org/10.5194/hess-25-1069-2021, https://doi.org/10.5194/hess-25-1069-2021, 2021
Short summary
Short summary
We quantify the differences in internal states and fluxes of 12 process-based models with similar streamflow performance and assess their plausibility using remotely sensed estimates of evaporation, snow cover, soil moisture and total storage anomalies. The dissimilarities in internal process representation imply that these models cannot all simultaneously be close to reality. Therefore, we invite modelers to evaluate their models using multiple variables and to rely on multi-model studies.
Petra Hulsman, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 957–982, https://doi.org/10.5194/hess-25-957-2021, https://doi.org/10.5194/hess-25-957-2021, 2021
Short summary
Short summary
Satellite observations have increasingly been used for model calibration, while model structural developments largely rely on discharge data. For large river basins, this often results in poor representations of system internal processes. This study explores the combined use of satellite-based evaporation and total water storage data for model structural improvement and spatial–temporal model calibration for a large, semi-arid and data-scarce river system.
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Bart Schilperoort, Adriana del Pilar González-Angarita, and Hubert Savenije
Hydrol. Earth Syst. Sci., 25, 619–635, https://doi.org/10.5194/hess-25-619-2021, https://doi.org/10.5194/hess-25-619-2021, 2021
Short summary
Short summary
During rainfall events, evaporation from tropical forests is usually ignored. However, the water retained in the canopy during rainfall increases the evaporation despite the high-humidity conditions. In a tropical wet forest in Costa Rica, it was possible to depict vapor plumes rising from the forest canopy during rainfall. These plumes are evidence of forest evaporation. Also, we identified the conditions that allowed this phenomenon to happen using time-lapse videos and meteorological data.
Bart Schilperoort, Miriam Coenders-Gerrits, César Jiménez Rodríguez, Christiaan van der Tol, Bas van de Wiel, and Hubert Savenije
Biogeosciences, 17, 6423–6439, https://doi.org/10.5194/bg-17-6423-2020, https://doi.org/10.5194/bg-17-6423-2020, 2020
Short summary
Short summary
With distributed temperature sensing (DTS) we measured a vertical temperature profile in a forest, from the forest floor to above the treetops. Using this temperature profile we can see which parts of the forest canopy are colder (thus more dense) or warmer (and less dense) and study the effect this has on the suppression of turbulent mixing. This can be used to improve our knowledge of the interaction between the atmosphere and forests and improve carbon dioxide flux measurements over forests.
Justus G. V. van Ramshorst, Miriam Coenders-Gerrits, Bart Schilperoort, Bas J. H. van de Wiel, Jonathan G. Izett, John S. Selker, Chad W. Higgins, Hubert H. G. Savenije, and Nick C. van de Giesen
Atmos. Meas. Tech., 13, 5423–5439, https://doi.org/10.5194/amt-13-5423-2020, https://doi.org/10.5194/amt-13-5423-2020, 2020
Short summary
Short summary
In this work we present experimental results of a novel actively heated fiber-optic (AHFO) observational wind-probing technique. We utilized a controlled wind-tunnel setup to assess both the accuracy and precision of AHFO under a range of operational conditions (wind speed, angles of attack and temperature differences). AHFO has the potential to provide high-resolution distributed observations of wind speeds, allowing for better spatial characterization of fine-scale processes.
Petra Hulsman, Hessel C. Winsemius, Claire I. Michailovsky, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 24, 3331–3359, https://doi.org/10.5194/hess-24-3331-2020, https://doi.org/10.5194/hess-24-3331-2020, 2020
Short summary
Short summary
In the absence of discharge data in ungauged basins, remotely sensed river water level data, i.e. altimetry, may provide valuable information to calibrate hydrological models. This study illustrated that for large rivers in data-scarce regions, river altimetry data from multiple locations combined with GRACE data have the potential to fill this gap when combined with estimates of the river geometry, thereby allowing a step towards more reliable hydrological modelling in data-scarce regions.
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Jochen Wenninger, Adriana Gonzalez-Angarita, and Hubert Savenije
Hydrol. Earth Syst. Sci., 24, 2179–2206, https://doi.org/10.5194/hess-24-2179-2020, https://doi.org/10.5194/hess-24-2179-2020, 2020
Short summary
Short summary
Tropical forest ecosystems are able to export a lot of water to the atmosphere by means of evaporation. However, little is known on how their complex structure affects this water flux. This paper analyzes the contribution of three canopy layers in terms of water fluxes and stable water isotope signatures. During the dry season in 2018 the two lower canopy layers provide 20 % of measured evaporation, highlighting the importance of knowing how forest structure can affect the hydrological cycle.
Philip J. Ward, Veit Blauhut, Nadia Bloemendaal, James E. Daniell, Marleen C. de Ruiter, Melanie J. Duncan, Robert Emberson, Susanna F. Jenkins, Dalia Kirschbaum, Michael Kunz, Susanna Mohr, Sanne Muis, Graeme A. Riddell, Andreas Schäfer, Thomas Stanley, Ted I. E. Veldkamp, and Hessel C. Winsemius
Nat. Hazards Earth Syst. Sci., 20, 1069–1096, https://doi.org/10.5194/nhess-20-1069-2020, https://doi.org/10.5194/nhess-20-1069-2020, 2020
Short summary
Short summary
We review the scientific literature on natural hazard risk assessments at the global scale. In doing so, we examine similarities and differences between the approaches taken across the different hazards and identify potential ways in which different hazard communities can learn from each other. Finally, we discuss opportunities for learning from methods and approaches being developed and applied to assess natural hazard risks at more continental or regional scales.
Timothy Tiggeloven, Hans de Moel, Hessel C. Winsemius, Dirk Eilander, Gilles Erkens, Eskedar Gebremedhin, Andres Diaz Loaiza, Samantha Kuzma, Tianyi Luo, Charles Iceland, Arno Bouwman, Jolien van Huijstee, Willem Ligtvoet, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 1025–1044, https://doi.org/10.5194/nhess-20-1025-2020, https://doi.org/10.5194/nhess-20-1025-2020, 2020
Short summary
Short summary
We present a framework to evaluate the benefits and costs of coastal adaptation through dikes to reduce future flood risk. If no adaptation takes place, we find that global coastal flood risk increases 150-fold by 2080, with sea-level rise contributing the most. Moreover, 15 countries account for 90 % of this increase; that adaptation shows high potential to cost-effectively reduce flood risk. The results will be integrated into the Aqueduct Global Flood Analyzer web tool.
Nutchanart Sriwongsitanon, Wasana Jandang, Thienchart Suwawong, and Hubert H.~G. Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-82, https://doi.org/10.5194/hess-2020-82, 2020
Manuscript not accepted for further review
Short summary
Short summary
In this paper we present a method to distribute crucial model parameters over subcatchments so as to enhance overall rainfall-runoff performance. We also analyse how soil moisture indicators can be used to distribute root zone moisture capacity over subcatchments. NDII proves to be very effective for this purpose, resulting in better overall model performance, good temporal correspondence between modelled soil moisture and the SWI, and improved recession behavior and dry season flow.
Anaïs Couasnon, Dirk Eilander, Sanne Muis, Ted I. E. Veldkamp, Ivan D. Haigh, Thomas Wahl, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, https://doi.org/10.5194/nhess-20-489-2020, 2020
Short summary
Short summary
When a high river discharge coincides with a high storm surge level, this can exarcebate flood level, depth, and duration, resulting in a so-called compound flood event. These events are not currently included in global flood models. In this research, we analyse the timing and correlation between modelled discharge and storm surge level time series in deltas and estuaries. Our results provide a first indication of regions along the global coastline with a high compound flooding potential.
Zhilin Zhang and Hubert Savenije
Earth Syst. Dynam., 10, 667–684, https://doi.org/10.5194/esd-10-667-2019, https://doi.org/10.5194/esd-10-667-2019, 2019
Short summary
Short summary
Natural systems evolve towards a state of maximum power, including estuarine circulation. The energy of lighter fresh water drives circulation, while it dissipates by friction. This rotational flow causes the spread of salinity, which is represented by the dispersion coefficient. In this paper, the maximum power concept provides a new equation for this coefficient. Together with the steady-state equation, this results in a new analytical model for density-driven salinity intrusion.
Jannis M. Hoch, Dirk Eilander, Hiroaki Ikeuchi, Fedor Baart, and Hessel C. Winsemius
Nat. Hazards Earth Syst. Sci., 19, 1723–1735, https://doi.org/10.5194/nhess-19-1723-2019, https://doi.org/10.5194/nhess-19-1723-2019, 2019
Short summary
Short summary
Flood events are often complex in their origin and dynamics. The choice of computer model to simulate can hence determine which level of complexity can be represented. We here compare different models varying in complexity (hydrology with routing, 1-D routing, 1D/2D hydrodynamics) and assess how model choice influences the accuracy of results. This was achieved by using GLOFRIM, a model coupling framework. Results show that accuracy depends on the model choice and the output variable considered.
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Thom Bogaard, Erika Vatiero, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-344, https://doi.org/10.5194/hess-2019-344, 2019
Revised manuscript not accepted
Short summary
Short summary
Knowing the isotopic composition of water vapor in the air is a difficult task. The estimation of δ18O and δ2H has to be done carefully, because it is accompanied by a high risk of methodological errors (if it is sampled) or wrong assumptions that can lead to incorrect values (if it is modeled). The aim of this work was to compare available sampling methods for water vapor in the air and estimate their isotopic composition, comparing the results against direct measurements of the sampled air.
Webster Gumindoga, Tom H. M. Rientjes, Alemseged Tamiru Haile, Hodson Makurira, and Paolo Reggiani
Hydrol. Earth Syst. Sci., 23, 2915–2938, https://doi.org/10.5194/hess-23-2915-2019, https://doi.org/10.5194/hess-23-2915-2019, 2019
Short summary
Short summary
We evaluate the influence of elevation and distance from large-scale open water bodies on bias for CMORPH satellite rainfall in the Zambezi basin. Effects of distance > 10 km from water bodies are minimal, whereas the effects at shorter distances are indicated but are not conclusive for lack of rain gauges. Taylor diagrams show station elevation influencing CMORPH performance. The
spatio-temporaland newly developed
elevation zonebias schemes proved more effective in removing CMORPH bias.
Huayang Cai, Hubert H. G. Savenije, Erwan Garel, Xianyi Zhang, Leicheng Guo, Min Zhang, Feng Liu, and Qingshu Yang
Hydrol. Earth Syst. Sci., 23, 2779–2794, https://doi.org/10.5194/hess-23-2779-2019, https://doi.org/10.5194/hess-23-2779-2019, 2019
Short summary
Short summary
Tide–river dynamics play an essential role in large-scale river deltas as they exert a tremendous impact on delta morphodynamics, salt intrusion and deltaic ecosystems. For the first time, we illustrate that there is a critical river discharge, beyond which tidal damping is reduced with increasing river discharge, and we explore the underlying mechanism using an analytical model. The results are useful for guiding sustainable water management and sediment transport in tidal rivers.
Erwin Zehe, Ralf Loritz, Conrad Jackisch, Martijn Westhoff, Axel Kleidon, Theresa Blume, Sibylle K. Hassler, and Hubert H. Savenije
Hydrol. Earth Syst. Sci., 23, 971–987, https://doi.org/10.5194/hess-23-971-2019, https://doi.org/10.5194/hess-23-971-2019, 2019
Martijn Westhoff, Axel Kleidon, Stan Schymanski, Benjamin Dewals, Femke Nijsse, Maik Renner, Henk Dijkstra, Hisashi Ozawa, Hubert Savenije, Han Dolman, Antoon Meesters, and Erwin Zehe
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-6, https://doi.org/10.5194/esd-2019-6, 2019
Publication in ESD not foreseen
Short summary
Short summary
Even models relying on physical laws have parameters that need to be measured or estimated. Thermodynamic optimality principles potentially offer a way to reduce the number of estimated parameters by stating that a system evolves to an optimum state. These principles have been applied successfully within the Earth system, but it is often unclear what to optimize and how. In this review paper we identify commonalities between different successful applications as well as some doubtful applications.
Hongkai Gao, Christian Birkel, Markus Hrachowitz, Doerthe Tetzlaff, Chris Soulsby, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 23, 787–809, https://doi.org/10.5194/hess-23-787-2019, https://doi.org/10.5194/hess-23-787-2019, 2019
Short summary
Short summary
Supported by large-sample ecological observations, a novel, simple and topography-driven runoff generation module (HSC-MCT) was created. The HSC-MCT is calibration-free, and therefore it can be used to predict in ungauged basins, and has great potential to be generalized at the global scale. Also, it allows us to reproduce the variation of saturation areas, which has great potential to be used for broader hydrological, ecological, climatological, and biogeochemical studies.
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Proc. IAHS, 380, 3–8, https://doi.org/10.5194/piahs-380-3-2018, https://doi.org/10.5194/piahs-380-3-2018, 2018
Laurène Bouaziz, Albrecht Weerts, Jaap Schellekens, Eric Sprokkereef, Jasper Stam, Hubert Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 22, 6415–6434, https://doi.org/10.5194/hess-22-6415-2018, https://doi.org/10.5194/hess-22-6415-2018, 2018
Short summary
Short summary
We quantify net intercatchment groundwater flows in the Meuse basin in a complementary three-step approach through (1) water budget accounting, (2) testing a set of conceptual hydrological models and (3) evaluating against remote sensing actual evaporation data. We show that net intercatchment groundwater flows can make up as much as 25 % of mean annual precipitation in the headwaters and should therefore be accounted for in conceptual models to prevent overestimating actual evaporation rates.
Dirk-Jan D. Kok, Saket Pande, Jules B. van Lier, Angela R. C. Ortigara, Hubert Savenije, and Stefan Uhlenbrook
Hydrol. Earth Syst. Sci., 22, 5781–5799, https://doi.org/10.5194/hess-22-5781-2018, https://doi.org/10.5194/hess-22-5781-2018, 2018
Short summary
Short summary
Phosphorus (P) is important to global food security. Thus it is concerning that natural P reserves are predicted to deplete within the century. Here we explore the potential of P recovery from wastewater (WW) at global scale. We identify high production and demand sites to determine optimal market prices and trade flows. We show that 20 % of the agricultural demand can be met, yet only 4 % can be met economically. Nonetheless, this recovery stimulates circular economic development in WW treatment.
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 5735–5739, https://doi.org/10.5194/hess-22-5735-2018, https://doi.org/10.5194/hess-22-5735-2018, 2018
César~Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Thom Bogaard, Erika Vatiero, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-538, https://doi.org/10.5194/hess-2018-538, 2018
Manuscript not accepted for further review
Short summary
Short summary
The measurement of stable isotopes in water vapor has been improved with the use of laser technologies. Its direct application in the field depends on the availability of infrastructure or the budget of the project. For those cases when it is not possible, we provide an alternative method to sample the air for its later measurement. This method is based on the use of a low-cost polyethylene bag, getting stable measurements with a volume of 450 mL of air reducing the risk of sample deterioration.
Petra Hulsman, Thom A. Bogaard, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 22, 5081–5095, https://doi.org/10.5194/hess-22-5081-2018, https://doi.org/10.5194/hess-22-5081-2018, 2018
Short summary
Short summary
In many river basins, the development of hydrological models is challenged by poor discharge data availability and quality. In contrast, water level data are more reliable, as these are direct measurements and are unprocessed. In this study, an alternative calibration method is presented using water-level time series and the Strickler–Manning formula instead of discharge. This is applied to a semi-distributed rainfall-runoff model for the semi-arid, poorly gauged Mara River basin in Kenya.
Lan Wang-Erlandsson, Ingo Fetzer, Patrick W. Keys, Ruud J. van der Ent, Hubert H. G. Savenije, and Line J. Gordon
Hydrol. Earth Syst. Sci., 22, 4311–4328, https://doi.org/10.5194/hess-22-4311-2018, https://doi.org/10.5194/hess-22-4311-2018, 2018
Short summary
Short summary
Winds carry air moisture from one place to another. Thus, land-use change that alters air moisture content can also modify downwind rainfall and distant river flows. This aspect has rarely been taken into account in studies of river flow changes. We show here that remote land-use change effect on rainfall can exceed that of local, and that foreign nation influence on river flows is much more prevalent than previously thought. This has important implications for both land and water governance.
Huayang Cai, Marco Toffolon, Hubert H. G. Savenije, Qingshu Yang, and Erwan Garel
Ocean Sci., 14, 769–782, https://doi.org/10.5194/os-14-769-2018, https://doi.org/10.5194/os-14-769-2018, 2018
Stefanie R. Lutz, Andrea Popp, Tim van Emmerik, Tom Gleeson, Liz Kalaugher, Karsten Möbius, Tonie Mudde, Brett Walton, Rolf Hut, Hubert Savenije, Louise J. Slater, Anna Solcerova, Cathelijne R. Stoof, and Matthias Zink
Hydrol. Earth Syst. Sci., 22, 3589–3599, https://doi.org/10.5194/hess-22-3589-2018, https://doi.org/10.5194/hess-22-3589-2018, 2018
Short summary
Short summary
Media play a key role in the communication between scientists and the general public. However, the interaction between scientists and journalists is not always straightforward. In this opinion paper, we present insights from hydrologists and journalists into the benefits, aftermath and potential pitfalls of science–media interaction. We aim to encourage scientists to participate in the diverse and evolving media landscape, and we call on the scientific community to support scientists who do so.
Thomas Matingo, Webster Gumindoga, and Hodson Makurira
Proc. IAHS, 378, 59–65, https://doi.org/10.5194/piahs-378-59-2018, https://doi.org/10.5194/piahs-378-59-2018, 2018
Short summary
Short summary
This paper is about evaluation of sub daily satellite rainfall estimates through flash flood modelling. The 30 minute timestep for CMORPH captures flash floods effectively and for TRMM the 3 hr timestep was the best. In general CMORPH performed better than TRMM in termsof NSE and RVE when applied to HEC-HMS model. It can be concluded that floods occur rapidly and the chances of capturing them are higher when finer resolution are applied.
Jose A. Malanco, Hodson Makurira, Evans Kaseke, and Webster Gumindoga
Proc. IAHS, 378, 73–78, https://doi.org/10.5194/piahs-378-73-2018, https://doi.org/10.5194/piahs-378-73-2018, 2018
Short summary
Short summary
This study determines the actual causes of water shortage at Mushandike Irrigation Scheme in Zimbabwe. The water stress at the scheme has been largely attributed to climate change and the uncontrolled expansion of the land under irrigation. Results show that water shortages at the scheme are a result of over-abstraction from the dam beyond the firm yield, adoption of inefficient irrigation methods and high channel losses in the canal system and are not related to hydro-climatic conditions.
Webster Gumindoga, Hodson Makurira, and Bezel Garedondo
Proc. IAHS, 378, 43–50, https://doi.org/10.5194/piahs-378-43-2018, https://doi.org/10.5194/piahs-378-43-2018, 2018
Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 22, 1911–1916, https://doi.org/10.5194/hess-22-1911-2018, https://doi.org/10.5194/hess-22-1911-2018, 2018
Short summary
Short summary
This paper provides the connection between two simple equations describing groundwater flow at different scales: the Darcy equation describes groundwater flow at pore scale, the linear reservoir equation at catchment scale. The connection between the two appears to be very simple. The two parameters of the equations are proportional, depending on the porosity of the subsoil and the resistance for the groundwater to enter the surface drainage network.
Zhilin Zhang and Hubert H. G. Savenije
Earth Syst. Dynam., 9, 241–247, https://doi.org/10.5194/esd-9-241-2018, https://doi.org/10.5194/esd-9-241-2018, 2018
Short summary
Short summary
This paper presents a new equation for the dispersion of salinity in alluvial estuaries based on the maximum power concept. The new equation is physically based and replaces previous empirical equations. It is very useful for application in practice because in contrast to previous methods it no longer requires a calibration parameter, turning the method into a predictive method. The paper presents successful applications in more than 23 estuaries in different parts of the world.
Dirk-Jan Daniel Kok, Saket Pande, Angela Renata Cordeiro Ortigara, Hubert Savenije, and Stefan Uhlenbrook
Proc. IAHS, 376, 83–86, https://doi.org/10.5194/piahs-376-83-2018, https://doi.org/10.5194/piahs-376-83-2018, 2018
Short summary
Short summary
Phosphorus is necessary for the development of crops and is therefore essential in safeguarding our food security. Several studies predict that our rock phosphate reserves, used to create synthetic, phosphatic fertilizers, may become depleted within this century. This study roughly approximates for which areas in Africa we can instead recover phosphorus from wastewater in order to reduce our dependancy on unsustainable rock phosphate.
Bart Schilperoort, Miriam Coenders-Gerrits, Willem Luxemburg, César Jiménez Rodríguez, César Cisneros Vaca, and Hubert Savenije
Hydrol. Earth Syst. Sci., 22, 819–830, https://doi.org/10.5194/hess-22-819-2018, https://doi.org/10.5194/hess-22-819-2018, 2018
Short summary
Short summary
Using the
DTStechnology, we measured the evaporation of a forest using fibre optic cables. The cables work like long thermometers, with a measurement every 12.5 cm. We placed the cables vertically along the tower, one cable being dry, the other kept wet. By looking at the dry and wet cable temperatures over the height we are able to study heat storage and the amount of water the forest is evaporating. These results can be used to better understand the storage and heat exchange of forests.
Axel Kleidon and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-674, https://doi.org/10.5194/hess-2017-674, 2017
Revised manuscript not accepted
Short summary
Short summary
At larger scales, the flow of rivers can often be described by a relatively simple, exponential decay, and it is unclear how such simple behaviour can be explained given that river basins show such vast complexity. Here, we use a highly idealised model to show that such simple behaviour can be explained by viewing it as the emergent consequence of the groundwater system (which feeds river flow) minimising its energy dissipation.
Jannis M. Hoch, Jeffrey C. Neal, Fedor Baart, Rens van Beek, Hessel C. Winsemius, Paul D. Bates, and Marc F. P. Bierkens
Geosci. Model Dev., 10, 3913–3929, https://doi.org/10.5194/gmd-10-3913-2017, https://doi.org/10.5194/gmd-10-3913-2017, 2017
Short summary
Short summary
To improve flood hazard assessments, it is vital to model all relevant processes. We here present GLOFRIM, a framework for coupling hydrologic and hydrodynamic models to increase the number of physical processes represented in hazard computations. GLOFRIM is openly available, versatile, and extensible with more models. Results also underpin its added value for model benchmarking, showing that not only model forcing but also grid properties and the numerical scheme influence output accuracy.
Naze Candogan Yossef, Rens van Beek, Albrecht Weerts, Hessel Winsemius, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 4103–4114, https://doi.org/10.5194/hess-21-4103-2017, https://doi.org/10.5194/hess-21-4103-2017, 2017
Short summary
Short summary
This paper presents a skill assessment of the global seasonal streamflow forecasting system FEWS-World. For 20 large basins of the world, forecasts using the ESP procedure are compared to forecasts using actual S3 seasonal meteorological forecast ensembles by ECMWF. The results are discussed in the context of prevailing hydroclimatic conditions per basin. The study concludes that in general, the skill of ECMWF S3 forecasts is close to that of the ESP forecasts.
Randal D. Koster, Alan K. Betts, Paul A. Dirmeyer, Marc Bierkens, Katrina E. Bennett, Stephen J. Déry, Jason P. Evans, Rong Fu, Felipe Hernandez, L. Ruby Leung, Xu Liang, Muhammad Masood, Hubert Savenije, Guiling Wang, and Xing Yuan
Hydrol. Earth Syst. Sci., 21, 3777–3798, https://doi.org/10.5194/hess-21-3777-2017, https://doi.org/10.5194/hess-21-3777-2017, 2017
Short summary
Short summary
Large-scale hydrological variability can affect society in profound ways; floods and droughts, for example, often cause major damage and hardship. A recent gathering of hydrologists at a symposium to honor the career of Professor Eric Wood motivates the present survey of recent research on this variability. The surveyed literature and the illustrative examples provided in the paper show that research into hydrological variability continues to be strong, vibrant, and multifaceted.
Zhilin Zhang and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 21, 3287–3305, https://doi.org/10.5194/hess-21-3287-2017, https://doi.org/10.5194/hess-21-3287-2017, 2017
Short summary
Short summary
An estuary is where fresh water rivers meet the salty open sea. This mixture of salty fresh water leads to a varying water quality. There a model works well showing how far the salty water can travel, with an empirical parameter that needs to be calibrated every time. This paper provides a possible solution for this parameter to make the model predictive. Also, the model was improved by considering 2-D exchange flow. This new model was supported by observations in 18 estuaries around the world.
Catchments as meta-organisms – a new blueprint for hydrological modelling
Hubert H. G. Savenije and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 21, 1107–1116, https://doi.org/10.5194/hess-21-1107-2017, https://doi.org/10.5194/hess-21-1107-2017, 2017
Short summary
Short summary
The natural environment that we live in is the result of evolution. This does not only apply to ecosystems, but also to the physical environment through which the water flows. This has resulted in the formation of flow patterns that obey sometimes surprisingly simple mathematical laws. Hydrological models should represent the physics of these patterns and should account for the fact that the ecosystem adjusts itself continuously to changing circumstances. Physics-based models are alive!
Tanja de Boer-Euser, Laurène Bouaziz, Jan De Niel, Claudia Brauer, Benjamin Dewals, Gilles Drogue, Fabrizio Fenicia, Benjamin Grelier, Jiri Nossent, Fernando Pereira, Hubert Savenije, Guillaume Thirel, and Patrick Willems
Hydrol. Earth Syst. Sci., 21, 423–440, https://doi.org/10.5194/hess-21-423-2017, https://doi.org/10.5194/hess-21-423-2017, 2017
Short summary
Short summary
In this study, the rainfall–runoff models of eight international research groups were compared for a set of subcatchments of the Meuse basin to investigate the influence of certain model components on the modelled discharge. Although the models showed similar performances based on general metrics, clear differences could be observed for specific events. The differences during drier conditions could indeed be linked to differences in model structures.
Jannis M. Hoch, Arjen V. Haag, Arthur van Dam, Hessel C. Winsemius, Ludovicus P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 117–132, https://doi.org/10.5194/hess-21-117-2017, https://doi.org/10.5194/hess-21-117-2017, 2017
Short summary
Short summary
Modelling inundations is pivotal to assess current and future flood hazard, and to define sound measures and policies. Yet, many models focus on the hydrologic or hydrodynamic aspect of floods only. We combined both by spatially coupling a hydrologic with a hydrodynamic model. This way we are able to balance the weaknesses of each model with the strengths of the other. We found that model coupling can indeed strongly improve discharge simulation, and see big potential in our approach.
Remko Nijzink, Christopher Hutton, Ilias Pechlivanidis, René Capell, Berit Arheimer, Jim Freer, Dawei Han, Thorsten Wagener, Kevin McGuire, Hubert Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 20, 4775–4799, https://doi.org/10.5194/hess-20-4775-2016, https://doi.org/10.5194/hess-20-4775-2016, 2016
Short summary
Short summary
The core component of many hydrological systems, the moisture storage capacity available to vegetation, is typically treated as a calibration parameter in hydrological models and often considered to remain constant in time. In this paper we test the potential of a recently introduced method to robustly estimate catchment-scale root-zone storage capacities exclusively based on climate data to reproduce the temporal evolution of root-zone storage under change (deforestation).
Ali D. Abdullah, Jacqueline I. A. Gisen, Pieter van der Zaag, Hubert H. G. Savenije, Usama F. A. Karim, Ilyas Masih, and Ioana Popescu
Hydrol. Earth Syst. Sci., 20, 4031–4042, https://doi.org/10.5194/hess-20-4031-2016, https://doi.org/10.5194/hess-20-4031-2016, 2016
Short summary
Short summary
A comprehensive and detailed data set of the salinity distribution over an entire year in a complex and dynamic (because heavily utilized and modified) deltaic river system was thoroughly analysed, and formed the basis for a validated analytical model that can predict the extent of seawater among other salinity sources in an estuary. The procedure can be applied to other estuaries.
Nutchanart Sriwongsitanon, Hongkai Gao, Hubert H. G. Savenije, Ekkarin Maekan, Sirikanya Saengsawang, and Sansarith Thianpopirug
Hydrol. Earth Syst. Sci., 20, 3361–3377, https://doi.org/10.5194/hess-20-3361-2016, https://doi.org/10.5194/hess-20-3361-2016, 2016
Short summary
Short summary
We demonstrated that the readily available NDII remote sensing product is a very useful proxy for moisture storage in the root zone of vegetation. We compared the temporal variation of the NDII with the root zone storage in a hydrological model of eight catchments in the Upper Ping River in Thailand, yielding very good results. Having a reliable NDII product that can help us to estimate the actual moisture storage in catchments is a major contribution to prediction in ungauged basins.
Nadja I. den Besten, Saket Pande, and Hubert H. G. Savenije
Proc. IAHS, 373, 115–118, https://doi.org/10.5194/piahs-373-115-2016, https://doi.org/10.5194/piahs-373-115-2016, 2016
Short summary
Short summary
Maharashtra is one of the states in India that has witnessed highest rates of farmer suicides as proportion of total number of suicides. We interpret the crisis using a socio-hydrological model in two adjoining regions in Maharashtra, Marathwada and Desh, with higher farmer suicide rates in the former. The analysis confirms existing narratives: low (soil) water storage capacities, no irrigation and access to alternative sources of incomes are to blame for the crisis.
Paolo Scussolini, Jeroen C. J. H. Aerts, Brenden Jongman, Laurens M. Bouwer, Hessel C. Winsemius, Hans de Moel, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 16, 1049–1061, https://doi.org/10.5194/nhess-16-1049-2016, https://doi.org/10.5194/nhess-16-1049-2016, 2016
Short summary
Short summary
Assessments of flood risk, on global to local scales, are becoming more urgent with ongoing climate change and with rapid socioeconomic developments. Such assessments need information about existing flood protection, still largely unavailable. Here we present the first open-source database of FLood PROtection Standards, FLOPROS, which enables more accurate modelling of flood risk. We also invite specialists to contribute new information to this evolving database.
Lan Wang-Erlandsson, Wim G. M. Bastiaanssen, Hongkai Gao, Jonas Jägermeyr, Gabriel B. Senay, Albert I. J. M. van Dijk, Juan P. Guerschman, Patrick W. Keys, Line J. Gordon, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 20, 1459–1481, https://doi.org/10.5194/hess-20-1459-2016, https://doi.org/10.5194/hess-20-1459-2016, 2016
Short summary
Short summary
We present an "Earth observation-based" method for estimating root zone storage capacity – a critical parameter in land surface modelling that represents the maximum amount of soil moisture available for vegetation. Variability within a land cover type is captured, and a global model evaporation simulation is overall improved, particularly in sub-humid to humid regions with seasonality. This new method can eliminate the need for unreliable soil and root depth data in land surface modelling.
Huayang Cai, Hubert H. G. Savenije, Chenjuan Jiang, Lili Zhao, and Qingshu Yang
Hydrol. Earth Syst. Sci., 20, 1177–1195, https://doi.org/10.5194/hess-20-1177-2016, https://doi.org/10.5194/hess-20-1177-2016, 2016
Short summary
Short summary
In this paper, an analytical model for tide-river dynamics has been used to understand the influence of tide and fresh water discharge on the rise of mean water level along the estuary, which remains poorly understood. It is shown that the mean water level is influenced primarily by the tide-river interaction in the tide-dominated region, while it is mainly controlled by the river flow in the upstream part of the estuary.
Remko C. Nijzink, Luis Samaniego, Juliane Mai, Rohini Kumar, Stephan Thober, Matthias Zink, David Schäfer, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 20, 1151–1176, https://doi.org/10.5194/hess-20-1151-2016, https://doi.org/10.5194/hess-20-1151-2016, 2016
Short summary
Short summary
The heterogeneity of landscapes in river basins strongly affects the hydrological response. In this study, the distributed mesoscale Hydrologic Model (mHM) was equipped with additional processes identified by landscapes within one modelling cell. Seven study catchments across Europe were selected to test the value of this additional sub-grid heterogeneity. In addition, the models were constrained based on expert knowledge. Generally, the modifications improved the representation of low flows.
Demetris Koutsoyiannis, Günter Blöschl, András Bárdossy, Christophe Cudennec, Denis Hughes, Alberto Montanari, Insa Neuweiler, and Hubert Savenije
Hydrol. Earth Syst. Sci., 20, 1081–1084, https://doi.org/10.5194/hess-20-1081-2016, https://doi.org/10.5194/hess-20-1081-2016, 2016
W. Gumindoga, T. H. M. Rientjes, A. T. Haile, H. Makurira, and P. Reggiani
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-33, https://doi.org/10.5194/hess-2016-33, 2016
Manuscript not accepted for further review
J. I. A. Gisen, H. H. G. Savenije, and R. C. Nijzink
Hydrol. Earth Syst. Sci., 19, 2791–2803, https://doi.org/10.5194/hess-19-2791-2015, https://doi.org/10.5194/hess-19-2791-2015, 2015
Short summary
Short summary
We revised the predictive equations for two calibrated parameters in salt intrusion model (the Van der Burgh coefficient K and dispersion coefficient D) using an extended database of 89 salinity profiles including 8 newly conducted salinity measurements. The revised predictive equations consist of easily measured parameters such as the geometry of estuary, tide, friction and the Richardson number. These equations are useful in obtaining the first estimate of salinity distribution in an estuary.
F. Wetterhall, H. C. Winsemius, E. Dutra, M. Werner, and E. Pappenberger
Hydrol. Earth Syst. Sci., 19, 2577–2586, https://doi.org/10.5194/hess-19-2577-2015, https://doi.org/10.5194/hess-19-2577-2015, 2015
Short summary
Short summary
Dry spells can have a devastating impact on agricuture in areas where irrigation is not available. Forecasting these dry spells could enhance preparedness in sensitive regions and avoid economic loss due to harvest failure. In this study, ECMWF seasonal forecasts are applied in the Limpopo basin in southeastern Africa to forecast dry spells in the seasonal rains. The results indicate skill in the forecast which is further improved by post-processing of the precipitation forecasts.
D. Diederen, H. H. G. Savenije, and M. Toffolon
Ocean Sci. Discuss., https://doi.org/10.5194/osd-12-925-2015, https://doi.org/10.5194/osd-12-925-2015, 2015
Revised manuscript not accepted
S. Pande, L. Arkesteijn, H. Savenije, and L. A. Bastidas
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-3945-2015, https://doi.org/10.5194/hessd-12-3945-2015, 2015
Revised manuscript not accepted
P. Trambauer, M. Werner, H. C. Winsemius, S. Maskey, E. Dutra, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 19, 1695–1711, https://doi.org/10.5194/hess-19-1695-2015, https://doi.org/10.5194/hess-19-1695-2015, 2015
J. D. Edixhoven, J. Gupta, and H. H. G. Savenije
Earth Syst. Dynam., 5, 491–507, https://doi.org/10.5194/esd-5-491-2014, https://doi.org/10.5194/esd-5-491-2014, 2014
Short summary
Short summary
Phosphate rock is a finite resource required for fertilizer production. Following a debate over the PR depletion timeline, global PR reserves were recently increased 4-fold based mainly on a restatement of Moroccan reserves. We review whether this restatement is methodologically compatible with resource terminology used in major resource classifications, whether resource classification nomenclature is sufficiently understood in the literature, and whether the recent restatements are reliable.
S. Gharari, M. Hrachowitz, F. Fenicia, H. Gao, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 18, 4839–4859, https://doi.org/10.5194/hess-18-4839-2014, https://doi.org/10.5194/hess-18-4839-2014, 2014
S. Gharari, M. Shafiei, M. Hrachowitz, R. Kumar, F. Fenicia, H. V. Gupta, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 18, 4861–4870, https://doi.org/10.5194/hess-18-4861-2014, https://doi.org/10.5194/hess-18-4861-2014, 2014
L. Wang-Erlandsson, R. J. van der Ent, L. J. Gordon, and H. H. G. Savenije
Earth Syst. Dynam., 5, 441–469, https://doi.org/10.5194/esd-5-441-2014, https://doi.org/10.5194/esd-5-441-2014, 2014
Short summary
Short summary
We investigate the temporal characteristics of partitioned evaporation on land, and we present STEAM (Simple Terrestrial Evaporation to Atmosphere Model) -- a hydrological land-surface model developed to provide inputs to moisture tracking. The terrestrial residence timescale of transpiration (days to months) has larger inter-seasonal variation and is substantially longer than that of interception (hours). This can cause differences in moisture recycling, which is investigated more in Part 2.
R. J. van der Ent, L. Wang-Erlandsson, P. W. Keys, and H. H. G. Savenije
Earth Syst. Dynam., 5, 471–489, https://doi.org/10.5194/esd-5-471-2014, https://doi.org/10.5194/esd-5-471-2014, 2014
T. H. M. van Emmerik, Z. Li, M. Sivapalan, S. Pande, J. Kandasamy, H. H. G. Savenije, A. Chanan, and S. Vigneswaran
Hydrol. Earth Syst. Sci., 18, 4239–4259, https://doi.org/10.5194/hess-18-4239-2014, https://doi.org/10.5194/hess-18-4239-2014, 2014
H. Cai, H. H. G. Savenije, and C. Jiang
Hydrol. Earth Syst. Sci., 18, 4153–4168, https://doi.org/10.5194/hess-18-4153-2014, https://doi.org/10.5194/hess-18-4153-2014, 2014
M. Valk, H. H. G. Savenije, C. C. J. M. Tiberius, and W. M. J. Luxemburg
Hydrol. Earth Syst. Sci., 18, 2599–2613, https://doi.org/10.5194/hess-18-2599-2014, https://doi.org/10.5194/hess-18-2599-2014, 2014
C. Volta, S. Arndt, H. H. G. Savenije, G. G. Laruelle, and P. Regnier
Geosci. Model Dev., 7, 1271–1295, https://doi.org/10.5194/gmd-7-1271-2014, https://doi.org/10.5194/gmd-7-1271-2014, 2014
G. Blöschl, A. Bárdossy, D. Koutsoyiannis, Z. W. Kundzewicz, I. Littlewood, A. Montanari, and H. Savenije
Hydrol. Earth Syst. Sci., 18, 2433–2435, https://doi.org/10.5194/hess-18-2433-2014, https://doi.org/10.5194/hess-18-2433-2014, 2014
H. Gao, M. Hrachowitz, F. Fenicia, S. Gharari, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 18, 1895–1915, https://doi.org/10.5194/hess-18-1895-2014, https://doi.org/10.5194/hess-18-1895-2014, 2014
H. C. Winsemius, E. Dutra, F. A. Engelbrecht, E. Archer Van Garderen, F. Wetterhall, F. Pappenberger, and M. G. F. Werner
Hydrol. Earth Syst. Sci., 18, 1525–1538, https://doi.org/10.5194/hess-18-1525-2014, https://doi.org/10.5194/hess-18-1525-2014, 2014
S. Pande, L. Arkesteijn, H. H. G. Savenije, and L. A. Bastidas
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-2555-2014, https://doi.org/10.5194/hessd-11-2555-2014, 2014
Manuscript not accepted for further review
U. Ehret, H. V. Gupta, M. Sivapalan, S. V. Weijs, S. J. Schymanski, G. Blöschl, A. N. Gelfan, C. Harman, A. Kleidon, T. A. Bogaard, D. Wang, T. Wagener, U. Scherer, E. Zehe, M. F. P. Bierkens, G. Di Baldassarre, J. Parajka, L. P. H. van Beek, A. van Griensven, M. C. Westhoff, and H. C. Winsemius
Hydrol. Earth Syst. Sci., 18, 649–671, https://doi.org/10.5194/hess-18-649-2014, https://doi.org/10.5194/hess-18-649-2014, 2014
H. H. G. Savenije, A. Y. Hoekstra, and P. van der Zaag
Hydrol. Earth Syst. Sci., 18, 319–332, https://doi.org/10.5194/hess-18-319-2014, https://doi.org/10.5194/hess-18-319-2014, 2014
H. Cai, H. H. G. Savenije, and M. Toffolon
Hydrol. Earth Syst. Sci., 18, 287–304, https://doi.org/10.5194/hess-18-287-2014, https://doi.org/10.5194/hess-18-287-2014, 2014
R. J. van der Ent, O. A. Tuinenburg, H.-R. Knoche, H. Kunstmann, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 17, 4869–4884, https://doi.org/10.5194/hess-17-4869-2013, https://doi.org/10.5194/hess-17-4869-2013, 2013
B. M. C. Fischer, M. L. Mul, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 17, 2161–2170, https://doi.org/10.5194/hess-17-2161-2013, https://doi.org/10.5194/hess-17-2161-2013, 2013
H. C. Winsemius, L. P. H. Van Beek, B. Jongman, P. J. Ward, and A. Bouwman
Hydrol. Earth Syst. Sci., 17, 1871–1892, https://doi.org/10.5194/hess-17-1871-2013, https://doi.org/10.5194/hess-17-1871-2013, 2013
T. Euser, H. C. Winsemius, M. Hrachowitz, F. Fenicia, S. Uhlenbrook, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 17, 1893–1912, https://doi.org/10.5194/hess-17-1893-2013, https://doi.org/10.5194/hess-17-1893-2013, 2013
A. M. J. Coenders-Gerrits, L. Hopp, H. H. G. Savenije, and L. Pfister
Hydrol. Earth Syst. Sci., 17, 1749–1763, https://doi.org/10.5194/hess-17-1749-2013, https://doi.org/10.5194/hess-17-1749-2013, 2013
R. S. Westerhoff, M. P. H. Kleuskens, H. C. Winsemius, H. J. Huizinga, G. R. Brakenridge, and C. Bishop
Hydrol. Earth Syst. Sci., 17, 651–663, https://doi.org/10.5194/hess-17-651-2013, https://doi.org/10.5194/hess-17-651-2013, 2013
M. Hrachowitz, H. Savenije, T. A. Bogaard, D. Tetzlaff, and C. Soulsby
Hydrol. Earth Syst. Sci., 17, 533–564, https://doi.org/10.5194/hess-17-533-2013, https://doi.org/10.5194/hess-17-533-2013, 2013
Related subject area
Airborne instruments
Drone-towed controlled-source electromagnetic (CSEM) system for near-surface geophysical prospecting: on instrument noise, temperature drift, transmission frequency, and survey set-up
Measuring electrical properties of the lower troposphere using enhanced meteorological radiosondes
Evaluating low-cost topographic surveys for computations of conveyance
Experiments on magnetic interference for a portable airborne magnetometry system using a hybrid unmanned aerial vehicle (UAV)
A Tethered Air Blimp (TAB) for observing the microclimate over a complex terrain
Magnetic airborne survey – geophysical flight
Tobias Bjerg Vilhelmsen and Arne Døssing
Geosci. Instrum. Method. Data Syst., 11, 435–450, https://doi.org/10.5194/gi-11-435-2022, https://doi.org/10.5194/gi-11-435-2022, 2022
Short summary
Short summary
Electromagnetic sensors in a drone set-up allow a lot of movability and downscale the cost and risk typically associated with an airborne system. This paper discusses the pros and cons of our newly developed drone-towed sensor system, where we use the controlled-source electromagnetic sensor GEM-2. We conduct six different tests dealing with altitude dependency, temperature drift, transmission frequencies, T and P mode, and drone noise. Additionally, we show a data set collected with the system.
R. Giles Harrison
Geosci. Instrum. Method. Data Syst., 11, 37–57, https://doi.org/10.5194/gi-11-37-2022, https://doi.org/10.5194/gi-11-37-2022, 2022
Short summary
Short summary
Weather balloons are released every day around the world to obtain the latest atmospheric data for weather forecasting. Expanding the range of sensors they carry can make additional quantities available, such as for atmospheric turbulence, cloud electricity, energetic particles from space and, in emergency situations, volcanic ash or radioactivity. An adaptable system has been developed to provide these and other measurements, without interfering with the core weather data.
Hubert T. Samboko, Sten Schurer, Hubert H. G. Savenije, Hodson Makurira, Kawawa Banda, and Hessel Winsemius
Geosci. Instrum. Method. Data Syst., 11, 1–23, https://doi.org/10.5194/gi-11-1-2022, https://doi.org/10.5194/gi-11-1-2022, 2022
Short summary
Short summary
The study was conducted along the Luangwa River in Zambia. It combines low-cost instruments such as UAVs and GPS kits to collect data for the purposes of water management. A novel technique which seamlessly merges the dry and wet bathymetry before application in a hydraulic model was applied. Successful implementation resulted in water authorities with small budgets being able to monitor flows safely and efficiently without significant compromise on accuracy.
Jirigalatu, Vamsi Krishna, Eduardo Lima Simões da Silva, and Arne Døssing
Geosci. Instrum. Method. Data Syst., 10, 25–34, https://doi.org/10.5194/gi-10-25-2021, https://doi.org/10.5194/gi-10-25-2021, 2021
Short summary
Short summary
UAV-borne magnetometry has gradually become an important tool for geophysical studies. However, developing such a UAV-borne aeromagnetometry system is challenging owing to strong magnetic interference introduced by onboard electric and electronic components. One static and two dynamic experiments were conducted to understand the platform's magnetic interference. The results reveal that the strongest magnetic interference is from some current-carrying cables.
Manoj K. Nambiar, Ryan A. E. Byerlay, Amir Nazem, M. Rafsan Nahian, Mohsen Moradi, and Amir A. Aliabadi
Geosci. Instrum. Method. Data Syst., 9, 193–211, https://doi.org/10.5194/gi-9-193-2020, https://doi.org/10.5194/gi-9-193-2020, 2020
Short summary
Short summary
A novel airborne sensing platform is developed for meteorological measurements including variables such as components of wind velocity vector, temperature, pressure, and relative humidity. The system is called the Tethered Air Blimp (TAB). This system is deployed at a complex mining facility in northern Canada to measure dynamics of the atmosphere in various diurnal times, latitudes, longitudes, and altitudes. It measures convective, neutral, and stable boundary layers up to 150 m.
Erick de Barros Camara and Suze Nei Pereira Guimarães
Geosci. Instrum. Method. Data Syst., 5, 181–192, https://doi.org/10.5194/gi-5-181-2016, https://doi.org/10.5194/gi-5-181-2016, 2016
Short summary
Short summary
This paper provides a technical review process in the area of airborne
acquisition of geophysical data, with emphasis for magnetometry. In summary,
it addresses the calibration processes of geophysical equipment as well as the
aircraft to minimize possible errors in measurements. The corrections used
in data processing and filtering are demonstrated with the same results as well as the evolution of these techniques in Brazil and worldwide.
Cited articles
Abas, I., Luxemburg, W., Banda, K., and Hubert, S.: A robust approach to
physically-based rating curve development in remote rivers through UAV
imagery, Geophys. Res. Abstr., 21, 2019–5765, 2019.
Alvarez, L. V., Moreno, H. A., Segales, A. R., Pham, T. G., Pillar-Little,
E. A., and Chilson, P. B.: Merging Unmanned Aerial Systems (UAS) Imagery and
Echo Soundings with an Adaptive Sampling Technique for Bathymetric Surveys,
Remote Sens., 10, 1362, https://doi.org/10.3390/RS10091362,
2018.
Arcement, G. J. and Schneider, V. R.: Guide for selecting Manning's
roughness coefficients for natural channels and flood plains, Water Supply
Pap., 38, 2339, https://doi.org/10.3133/WSP2339, 1989.
Awasthi, B., Karki, S., Regmi, P., Dhami, D. S., Thapa, S., and Panday, U.
S.: Analyzing the Effect of Distribution Pattern and Number of GCPs on
Overall Accuracy of UAV Photogrammetric Results, Lect. Notes Civ. Eng., 51,
339–354, https://doi.org/10.1007/978-3-030-37393-1_29, 2019.
Coppo Frias, M., Liu, S., Mo, X., Nielsen, K., Ranndal, H., Jiang, L., Ma, J., and Bauer-Gottwein, P.: River hydraulic modeling with ICESat-2 land and water surface elevation, Hydrol. Earth Syst. Sci., 27, 1011–1032, https://doi.org/10.5194/hess-27-1011-2023, 2023.
Coveney, S. and Roberts, K.: Lightweight UAV digital elevation models and
orthoimagery for environmental applications: data accuracy evaluation and
potential for river flood risk modelling, Int. J. Remote Sens., 38,
3159–3180, https://doi.org/10.1080/01431161.2017.1292074, 2017.
Deltares: D-Flow Flexible Mesh User Manual, https://oss.deltares.nl/web/delft3dfm/manuals
(last access: 13 November 2022), 2020.
Dey, S., Saksena, S., and Merwade, V.: Assessing the effect of different
bathymetric models on hydraulic simulation of rivers in data sparse regions,
J. Hydrol., 575, 838–851, https://doi.org/10.1016/J.JHYDROL.2019.05.085, 2019.
Ferrer-González, E., Agüera-Vega, F., Carvajal-Ramírez, F., and
Martínez-Carricondo, P.: UAV photogrammetry accuracy assessment for
corridor mapping based on the number and distribution of ground control
points, Remote Sens., 12, 2447, https://doi.org/10.3390/RS12152447, 2020.
Filippucci, P., Brocca, L., Bonafoni, S., Saltalippi, C., Wagner, W., and
Tarpanelli, A.: Sentinel-2 high-resolution data for river discharge
monitoring, Remote Sens. Environ., 281, 113255,
https://doi.org/10.1016/J.RSE.2022.113255, 2022.
Kim, Y.: Uncertainty analysis for non-intrusive measurement of river
discharge using image velocimetry,
https://www.gettextbooks.com/isbn/9780542833311/ (last access: 6 January 2019),
2006.
Liu, X., Zhang, Z., Peterson, J., and Chandra, S.: Large Area DEM Generation
Using Airborne LiDAR Data and Quality Control, Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, World Academic Union, 77–85, 2008.
Martínez-Carricondo, P., Agüera-Vega, F., Carvajal-Ramírez,
F., Mesas-Carrascosa, F. J., García-Ferrer, A., and Pérez-Porras, F.
J.: Assessment of UAV-photogrammetric mapping accuracy based on variation of
ground control points, Int. J. Appl. Earth Obs., 72, 1–10,
https://doi.org/10.1016/J.JAG.2018.05.015, 2018.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R.
D., and Veith, T. L.: Model evaluation guidelines for systematic
quantification of accuracy in watershed simulations, T. ASABE, 50, 885–900, https://doi.org/10.13031/2013.23153,
1983.
Oniga, V. E., Breaban, A. I., Pfeifer, N., and Chirila, C.: Determining the
suitable number of ground control points for UAS images georeferencing by
varying number and spatial distribution, Remote Sens., 12, 876,
https://doi.org/10.3390/RS12050876, 2020.
Rafik, H. and Ibrekk, H. O.: Environmental and Water Resources Management
Environment Strategy Papers No. 2 Rafik Hirji Hans Olav Ibrekk, https://api.semanticscholar.org/CorpusID:127266855 (last access: 14 April 2023), 2001.
Saleh, F., Ducharne, A., Flipo, N., Oudin, L., and Ledoux, E.: Impact of
river bed morphology on discharge and water levels simulated by a 1D
Saint-Venant hydraulic model at regional scale, J. Hydrol., 476, 169–177,
https://doi.org/10.1016/J.JHYDROL.2012.10.027, 2013.
Samboko, H. T., Abasa, I., Luxemburg, W. M. J., Savenije, H. H. G.,
Makurira, H., Banda, K., and Winsemius, H. C.: Evaluation and improvement of
Remote sensing-based methods for River flow Management, Phys. Chem. Earth, 117, 102839, https://doi.org/10.1016/j.pce.2020.102839,
2019.
Samboko, H. T.: Photogrammetry Images from DJI P4, point clouds scripts and supporting data, 4TU.ResearchData [data set], https://doi.org/10.4121/14865225, 2021.
Samboko, H. T., Schurer, S., Savenije, H. H. G., Makurira, H., Banda, K., and Winsemius, H.: Evaluating low-cost topographic surveys for computations of conveyance, Geosci. Instrum. Method. Data Syst., 11, 1–23, https://doi.org/10.5194/gi-11-1-2022, 2022a.
Samboko, H. T., Savenije, H. H. G., and Winsemius, H.: Python Scripts used in the study: Towards Affordable 3D Physics-Based River Flow Rating: Application Over Luangwa River Basin, 4TU.ResearchData [code], https://doi.org/10.4121/21557148, 2022b.
Skondras, A., Karachaliou, E., Tavantzis, I., Tokas, N., Valari, E.,
Skalidi, I., Bouvet, G. A., and Stylianidis, E.: UAV Mapping and 3D Modeling
as a Tool for Promotion and Management of the Urban Space, Drones,
6, 115, https://doi.org/10.3390/DRONES6050115, 2022.
Smith, M. W., Carrivick, J. L., and Quincey, D. J.: Structure from motion
photogrammetry in physical geography, Prog. Phys. Geog.,
40, 247–275,
https://doi.org/10.1177/0309133315615805, 2015.
The World Bank: The Zambezi River Basin, Technical report, Washington D.C., https://documents1.worldbank.org/curated/en/938311468202138918/pdf/584040V30WP0Wh110State0of0the0Basin.pdf
(last access: 14 August 2022),
2010.
WARMA: Luangwa Catchment,
http://www.warma.org.zm/index.php/%0Acatchments/luangwa-catchment
(last access: 4 September 2019), 2016.
Woodget, A. S., Austrums, R., Maddock, I. P., and Habit, E.: Drones and
digital photogrammetry: from classifications to continuums for monitoring
river habitat and hydromorphology, Wiley Interdiscip. Rev.-Water, 4,
e1222, https://doi.org/10.1002/WAT2.1222, 2017.
Zidan, A.: Review of friction formulae in open channel flow, Int. Water
Technol., 5, https://www.researchgate.net/publication/320456925_REVIEW_OF_FRICTION_FORMULAE_IN_OPEN_CHANNEL_FLOW (last access: 15 August 2023), 2015.
Short summary
The study investigates how low-cost technology can be applied in data-scarce catchments to improve water resource management. More specifically, we investigate how drone technology can be combined with low-cost real-time kinematic positioning (RTK) global navigation satellite system (GNSS) equipment and subsequently applied to a 3D hydraulic model so as to generate more physically based rating curves.
The study investigates how low-cost technology can be applied in data-scarce catchments to...