Articles | Volume 12, issue 2
https://doi.org/10.5194/gi-12-215-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-12-215-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New proglacial meteorology and river stage observations from Inglefield Land and Pituffik, NW Greenland
Sarah E. Esenther
CORRESPONDING AUTHOR
Department of Earth, Environmental, and Planetary Sciences (DEEPS), Brown University, Providence, RI 02912, USA
Institute at Brown for Environment and Society (IBES), Brown
University, Providence, RI 02912, USA
Laurence C. Smith
Department of Earth, Environmental, and Planetary Sciences (DEEPS), Brown University, Providence, RI 02912, USA
Institute at Brown for Environment and Society (IBES), Brown
University, Providence, RI 02912, USA
Adam LeWinter
U.S. Army Corps of Engineers, Cold Regions Research and Engineering
Laboratory, Hanover, NH 03755, USA
Lincoln H. Pitcher
Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado (CU) Boulder, Boulder, CO 80309, USA
Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
Brandon T. Overstreet
Department of Geology and Geophysics, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA
Aaron Kehl
U.S. Army Corps of Engineers, Cold Regions Research and Engineering
Laboratory, Hanover, NH 03755, USA
Cuyler Onclin
independent researcher: Saskatoon, SK S7J2S1, Canada
Seth Goldstein
Institute at Brown for Environment and Society (IBES), Brown
University, Providence, RI 02912, USA
Jonathan C. Ryan
Department of Geography, University of Oregon, Eugene, OR 97401,
USA
Related authors
No articles found.
Rohi Muthyala, Åsa K. Rennermalm, Sasha Z. Leidman, Matthew G. Cooper, Sarah W. Cooley, Laurence C. Smith, and Dirk van As
The Cryosphere, 16, 2245–2263, https://doi.org/10.5194/tc-16-2245-2022, https://doi.org/10.5194/tc-16-2245-2022, 2022
Short summary
Short summary
In situ measurements of meltwater discharge through supraglacial stream networks are rare. The unprecedentedly long record of discharge captures diurnal and seasonal variability. Two major findings are (1) a change in the timing of peak discharge through the melt season that could impact meltwater delivery in the subglacial system and (2) though the primary driver of stream discharge is shortwave radiation, longwave radiation and turbulent heat fluxes play a major role during high-melt episodes.
Edward H. Bair, Jeff Dozier, Charles Stern, Adam LeWinter, Karl Rittger, Alexandria Savagian, Timbo Stillinger, and Robert E. Davis
The Cryosphere, 16, 1765–1778, https://doi.org/10.5194/tc-16-1765-2022, https://doi.org/10.5194/tc-16-1765-2022, 2022
Short summary
Short summary
Understanding how snow and ice reflect solar radiation (albedo) is important for global climate. Using high-resolution topography, darkening from surface roughness (apparent albedo) is separated from darkening by the composition of the snow (intrinsic albedo). Intrinsic albedo is usually greater than apparent albedo, especially during melt. Such high-resolution topography is often not available; thus the use of a shade component when modeling mixtures is advised.
Colin J. Gleason, Kang Yang, Dongmei Feng, Laurence C. Smith, Kai Liu, Lincoln H. Pitcher, Vena W. Chu, Matthew G. Cooper, Brandon T. Overstreet, Asa K. Rennermalm, and Jonathan C. Ryan
The Cryosphere, 15, 2315–2331, https://doi.org/10.5194/tc-15-2315-2021, https://doi.org/10.5194/tc-15-2315-2021, 2021
Short summary
Short summary
We apply first-principle hydrology models designed for global river routing to route flows hourly through 10 000 individual supraglacial channels in Greenland. Our results uniquely show the role of process controls (network density, hillslope flow, channel friction) on routed meltwater. We also confirm earlier suggestions that large channels do not dewater overnight despite the shutdown of runoff and surface mass balance runoff being mistimed and overproducing runoff, as validated in situ.
Matthew G. Cooper, Laurence C. Smith, Asa K. Rennermalm, Marco Tedesco, Rohi Muthyala, Sasha Z. Leidman, Samiah E. Moustafa, and Jessica V. Fayne
The Cryosphere, 15, 1931–1953, https://doi.org/10.5194/tc-15-1931-2021, https://doi.org/10.5194/tc-15-1931-2021, 2021
Short summary
Short summary
We measured sunlight transmitted into glacier ice to improve models of glacier ice melt and satellite measurements of glacier ice surfaces. We found that very small concentrations of impurities inside the ice increase absorption of sunlight, but the amount was small enough to enable an estimate of ice absorptivity. We confirmed earlier results that the absorption minimum is near 390 nm. We also found that a layer of highly reflective granular "white ice" near the surface reduces transmittance.
Claire E. Simpson, Christopher D. Arp, Yongwei Sheng, Mark L. Carroll, Benjamin M. Jones, and Laurence C. Smith
Earth Syst. Sci. Data, 13, 1135–1150, https://doi.org/10.5194/essd-13-1135-2021, https://doi.org/10.5194/essd-13-1135-2021, 2021
Short summary
Short summary
Sonar depth point measurements collected at 17 lakes on the Arctic Coastal Plain of Alaska are used to train and validate models to map lake bathymetry. These models predict depth from remotely sensed lake color and are able to explain 58.5–97.6 % of depth variability. To calculate water volumes, we integrate this modeled bathymetry with lake surface area. Knowledge of Alaskan lake bathymetries and volumes is crucial to better understanding water storage, energy balance, and ecological habitat.
Kang Yang, Aleah Sommers, Lauren C. Andrews, Laurence C. Smith, Xin Lu, Xavier Fettweis, and Manchun Li
The Cryosphere, 14, 3349–3365, https://doi.org/10.5194/tc-14-3349-2020, https://doi.org/10.5194/tc-14-3349-2020, 2020
Short summary
Short summary
This study compares hourly supraglacial moulin discharge simulations from three surface meltwater routing models. Results show that these models are superior to simply using regional climate model runoff without routing, but different routing models, different-spatial-resolution DEMs, and parameterized seasonal evolution of supraglacial stream and river networks induce significant variability in diurnal moulin discharges and corresponding subglacial effective pressures.
Matthew G. Cooper, Laurence C. Smith, Asa K. Rennermalm, Clément Miège, Lincoln H. Pitcher, Jonathan C. Ryan, Kang Yang, and Sarah W. Cooley
The Cryosphere, 12, 955–970, https://doi.org/10.5194/tc-12-955-2018, https://doi.org/10.5194/tc-12-955-2018, 2018
Short summary
Short summary
We present measurements of ice density that show the melting bare-ice surface of the Greenland ice sheet study site is porous and saturated with meltwater. The data suggest up to 18 cm of meltwater is temporarily stored within porous, low-density ice. The findings imply meltwater drainage off the ice sheet surface is delayed and that the surface mass balance of the ice sheet during summer cannot be estimated solely from ice surface elevation change measurements.
Dirk van As, Andreas Bech Mikkelsen, Morten Holtegaard Nielsen, Jason E. Box, Lillemor Claesson Liljedahl, Katrin Lindbäck, Lincoln Pitcher, and Bent Hasholt
The Cryosphere, 11, 1371–1386, https://doi.org/10.5194/tc-11-1371-2017, https://doi.org/10.5194/tc-11-1371-2017, 2017
Short summary
Short summary
The Greenland ice sheet melts faster in a warmer climate. The ice sheet is flatter at high elevation, therefore atmospheric warming increases the melt area exponentially. For current climate conditions, we find that the ice sheet shape amplifies the total meltwater generation by roughly 60 %. Meltwater is not stored underneath the ice sheet, as previously found, but it does take multiple days for it to pass through the seasonally developing subglacial drainage channels, moderating discharge.
C. J. Gleason, L. C. Smith, D. C. Finnegan, A. L. LeWinter, L. H Pitcher, and V. W. Chu
Hydrol. Earth Syst. Sci., 19, 2963–2969, https://doi.org/10.5194/hess-19-2963-2015, https://doi.org/10.5194/hess-19-2963-2015, 2015
Short summary
Short summary
Here, we give a semi-automated processing workflow to extract hydraulic parameters from over 10,000 time-lapse images of the remote Isortoq River in Greenland. This workflow allows efficient and accurate (mean accuracy 79.6%) classification of images following an automated similarity filtering process. We also give an effective width hydrograph (a proxy for discharge) for the Isortoq using this workflow, showing the potential of this workflow for enhancing understanding of remote rivers.
Related subject area
Field campaign
Passive seismic experiment “AniMaLS” in the Polish Sudetes (NE Variscides)
Easy to build low-power GPS drifters with local storage and a cellular modem made from off-the-shelf components
Monitoring aseismic creep trends in the İsmetpaşa and Destek segments throughout the North Anatolian Fault (NAF) with a large-scale GPS network
A soil moisture monitoring network to characterize karstic recharge and evapotranspiration at five representative sites across the globe
Nordic Snow Radar Experiment
Spatial and temporal variation of bulk snow properties in northern boreal and tundra environments based on extensive field measurements
Sodankylä manual snow survey program
Arctic Snow Microstructure Experiment for the development of snow emission modelling
Thermal-plume fibre optic tracking (T-POT) test for flow velocity measurement in groundwater boreholes
Inner structure of the Puy de Dôme volcano: cross-comparison of geophysical models (ERT, gravimetry, muon imaging)
Observing desert dust devils with a pressure logger
Monika Bociarska, Julia Rewers, Dariusz Wójcik, Weronika Materkowska, Piotr Środa, and the AniMaLS Working Group
Geosci. Instrum. Method. Data Syst., 10, 183–202, https://doi.org/10.5194/gi-10-183-2021, https://doi.org/10.5194/gi-10-183-2021, 2021
Short summary
Short summary
This paper describes a seismic dataset acquired by network of broadband sensors in Poland and technical issues related to data acquisition. We describe a new azimuth-transfer device for precise sensor orientation and apply methods for data-based orientation checking. We analyse the seismic noise level and discuss effect of geology at sites on character of seismic data and noise. We show data examples and describe methods of seismic data interpretation for studies of lithospheric structure.
Rolf Hut, Thanda Thatoe Nwe Win, and Thom Bogaard
Geosci. Instrum. Method. Data Syst., 9, 435–442, https://doi.org/10.5194/gi-9-435-2020, https://doi.org/10.5194/gi-9-435-2020, 2020
Short summary
Short summary
GPS drifters that float down rivers are important tools in studying rivers, but they can be expensive. Recently, both GPS receivers and cellular modems have become available at lower prices to tinkering scientists due to the rise of open hardware and the Arduino. We provide detailed instructions on how to build a low-power GPS drifter with local storage and a cellular model that we tested in a fieldwork in Myanmar. These instructions allow fellow geoscientists to recreate the device.
Hasan Hakan Yavaşoğlu, Mehmet Nurullah Alkan, Serdar Bilgi, and Öykü Alkan
Geosci. Instrum. Method. Data Syst., 9, 25–40, https://doi.org/10.5194/gi-9-25-2020, https://doi.org/10.5194/gi-9-25-2020, 2020
Short summary
Short summary
This study has been carried out within the scope of a project supported by the Istanbul Technical, Afyon Kocatepe and Hitit universities. The data were obtained from annual GPS campaigns. With this study, the actual velocity field of the region was revealed and the deformations of the region were determined. In particular, the creep, which is a rare phenomenon in tectonics, was studied in order to understand its mechanism and whether it is present in the region or not.
Romane Berthelin, Michael Rinderer, Bartolomé Andreo, Andy Baker, Daniela Kilian, Gabriele Leonhardt, Annette Lotz, Kurt Lichtenwoehrer, Matías Mudarra, Ingrid Y. Padilla, Fernando Pantoja Agreda, Rafael Rosolem, Abel Vale, and Andreas Hartmann
Geosci. Instrum. Method. Data Syst., 9, 11–23, https://doi.org/10.5194/gi-9-11-2020, https://doi.org/10.5194/gi-9-11-2020, 2020
Short summary
Short summary
We present the setup of a soil moisture monitoring network, which is implemented at five karstic sites with different climates across the globe. More than 400 soil moisture probes operating at a high spatio-temporal resolution will improve the understanding of groundwater recharge and evapotranspiration processes in karstic areas.
Juha Lemmetyinen, Anna Kontu, Jouni Pulliainen, Juho Vehviläinen, Kimmo Rautiainen, Andreas Wiesmann, Christian Mätzler, Charles Werner, Helmut Rott, Thomas Nagler, Martin Schneebeli, Martin Proksch, Dirk Schüttemeyer, Michael Kern, and Malcolm W. J. Davidson
Geosci. Instrum. Method. Data Syst., 5, 403–415, https://doi.org/10.5194/gi-5-403-2016, https://doi.org/10.5194/gi-5-403-2016, 2016
Henna-Reetta Hannula, Juha Lemmetyinen, Anna Kontu, Chris Derksen, and Jouni Pulliainen
Geosci. Instrum. Method. Data Syst., 5, 347–363, https://doi.org/10.5194/gi-5-347-2016, https://doi.org/10.5194/gi-5-347-2016, 2016
Short summary
Short summary
The paper described an extensive in situ data set of bulk snow depth, snow water equivalent, and snow density collected as a support of SnowSAR-2 airborne campaign in northern Finland. The spatial and temporal variability of these snow properties was analyzed in different land cover types. The success of the chosen measurement protocol to provide an accurate reference for the simultaneous SAR data products was analyzed in the context of spatial scale, sample size, and uncertainty.
Leena Leppänen, Anna Kontu, Henna-Reetta Hannula, Heidi Sjöblom, and Jouni Pulliainen
Geosci. Instrum. Method. Data Syst., 5, 163–179, https://doi.org/10.5194/gi-5-163-2016, https://doi.org/10.5194/gi-5-163-2016, 2016
Short summary
Short summary
The manual snow survey program of Finnish Meteorological Institute consists of numerous observations of natural seasonal snowpack in Sodankylä, in northern Finland. Systematic snow measurements began in 1911 with snow depth and snow water equivalent. In 2006 the manual snow survey program expanded to cover snow macro- and microstructure from snow pits. Extensive time series of manual snow measurements are important for the monitoring of temporal and spatial changes in seasonal snowpack.
William Maslanka, Leena Leppänen, Anna Kontu, Mel Sandells, Juha Lemmetyinen, Martin Schneebeli, Martin Proksch, Margret Matzl, Henna-Reetta Hannula, and Robert Gurney
Geosci. Instrum. Method. Data Syst., 5, 85–94, https://doi.org/10.5194/gi-5-85-2016, https://doi.org/10.5194/gi-5-85-2016, 2016
Short summary
Short summary
The paper presents the initial findings of the Arctic Snow Microstructure Experiment in Sodankylä, Finland. The experiment observed the microwave emission of extracted snow slabs on absorbing and reflecting bases. Snow parameters were recorded to simulate the emission upon those bases using two different emission models. The smallest simulation errors were associated with the absorbing base at vertical polarization. The observations will be used for the development of snow emission modelling.
T. Read, V. F. Bense, R. Hochreutener, O. Bour, T. Le Borgne, N. Lavenant, and J. S. Selker
Geosci. Instrum. Method. Data Syst., 4, 197–202, https://doi.org/10.5194/gi-4-197-2015, https://doi.org/10.5194/gi-4-197-2015, 2015
Short summary
Short summary
The monitoring and measurement of water flow in groundwater wells allows us to understand how aquifers transmit water. In this paper we develop a simple method, which we call T-POT, that allows flows to be estimated by tracking the movement of a small parcel of warmed water. The parcel is tracked using fibre optic temperature sensing - a technology that allows detailed measurements of temperature, and therefore flow using the T-POT method, to be made in the well.
A. Portal, P. Labazuy, J.-F. Lénat, S. Béné, P. Boivin, E. Busato, C. Cârloganu, C. Combaret, P. Dupieux, F. Fehr, P. Gay, I. Laktineh, D. Miallier, L. Mirabito, V. Niess, and B. Vulpescu
Geosci. Instrum. Method. Data Syst., 2, 47–54, https://doi.org/10.5194/gi-2-47-2013, https://doi.org/10.5194/gi-2-47-2013, 2013
R. D. Lorenz
Geosci. Instrum. Method. Data Syst., 1, 209–220, https://doi.org/10.5194/gi-1-209-2012, https://doi.org/10.5194/gi-1-209-2012, 2012
Cited articles
Accubar: Accubar Barometric Pressure Sensor 5600-0120: Sutron Corporation,
https://www.sutron.com/product/accubarbarometric-pressure-sensor-5600-0120/,
last access: 1 November 2022.
Air Temperature: Air Temperature Sensor 5600-0020: Sutron Corporation,
https://www.sutron.com/product/air-temperature-sensor-5600-0020/, last
access: 1 November 2022.
Alther, G. R., Ruedisili, L. C., Stauber, H., and Kollbrunner, C. F.:
Glacial melt water in Greenland: a renewable resource for the future, Int.
J. Energ. Res., 5, 183–190, https://doi.org/10.1002/er.4440050207, 1981.
AT/RH: High Accuracy Sensor: Sutron Corporation, https://www.sutron.com/product/atrh-high-accuracy-sensor/, last access:
1 November 2022.
Bandini, F., Frías, M. C., Liu, J., Simkus, K., Karagkiolidou, S., and
Bauer-Gottwein, P.: Challenges with Regard to Unmanned Aerial Systems (UASs)
Measurement of River Surface Velocity Using Doppler Radar, Remote Sens.,
14, 1277, https://doi.org/10.3390/rs14051277, 2022.
Compact Constant Flow Bubbler: Sutron Corporation, https://www.sutron.com/product/new-compact-constant-flow-cf-bubbler/,
last access: 1 November 2022.
Cooper, M. G., Smith, L. C., Rennermalm, A. K., Miège, C., Pitcher, L.
H., Ryan, J. C., Yang, K., and Cooley, S. W.: Meltwater storage in
low-density near-surface bare ice in the Greenland ice sheet ablation zone,
The Cryosphere, 12, 955–970, https://doi.org/10.5194/tc-12-955-2018, 2018.
Doyle, S. H., Hubbard, A., van de Wal, R. S. W., Box, J. E., van As, D.,
Scharrer, K., Meierbachtol, T. W., Smeets, P. C. J. P., Harper, J. T.,
Johansson, E., Mottram, R. H., Mikkelsen, A. B., Wilhelms, F., Patton, H.,
Christoffersen, P., and Hubbard, B.: Amplified melt and flow of the
Greenland ice sheet driven by late-summer cyclonic rainfall, Nat. Geosci.,
8, 647–653, https://doi.org/10.1038/ngeo2482, 2015.
Esenther, S., Smith, L. C., LeWinter, A., Pitcher, L. H, Overstreet, B. T.,
Kehl, A., Onclin, C., Goldstein, S., and Ryan, J. C.: New Proglacial
Meteorology and River Stage Observations from Inglefield Land and Thule, NW Greenland, Zenodo [code], https://doi.org/10.5281/zenodo.8246936, 2023.
Gagliardini, O. and Werder, M. A.: Influence of increasing surface melt
over decadal timescales on land-terminating Greenland-type outlet glaciers,
J. Glaciol., 64, 700–710, https://doi.org/10.1017/jog.2018.59, 2018.
Goldstein, S. N., Ryan, J. C., How, P. R., Esenther, S. E., Pitcher, L. H.,
LeWinter, A. L., Overstreet, B. T., Kyzivat, E. D., Fayne, J. V., and Smith,
L. C.: Proglacial river stage derived from georectified time-lapse camera
images, Inglefield Land, Northwest Greenland, Front. Earth Sci., 11, 960363, https://doi.org//10.3389/feart.2023.960363, 2023.
GPM: GPM IMERG Final Precipitation L3 1 day V06 (GPM_3IMERGDF), GES DISC, https://catalog.data.gov/dataset/gpm-imerg-final-precipitation-l3-1-day-0-1-degree-x-0-1-degree (last access: 21 September 2023), 2019.
Hofer, S., Lang, C., Amory, C., Kittel, C., Delhasse, A., Tedstone, A., and
Fettweis, X.: Greater Greenland Ice Sheet contribution to global sea level
rise in CMIP6, Nat. Commun., 11, 6289,
https://doi.org/10.1038/s41467-020-20011-8, 2020.
Instanes, A., Kokorev, V., Janowicz, R., Bruland, O., Sand, K., and Prowse,
T.: Changes to freshwater systems affecting Arctic infrastructure and natural resources, J. Geophys. Res.-Biogeo., 120, 567–585,
https://doi.org/10.1002/2015JG003125, 2015.
King, M. D., Howat, I. M., Candela, S. G., Noh, M. J., Jeong, S., Noël,
B. P. Y., van den Broeke, M. R., Wouters, B., and Negrete, A.: Dynamic ice
loss from the Greenland Ice Sheet driven by sustained glacier retreat,
Commun. Earth Environ., 1, 1–7, https://doi.org/10.1038/s43247-020-0001-2,
2020.
Kipp and Zonen: Kipp and Zonen CMP3 Pyranometer, https://www.otthydromet.com/en/p-kippzonen-cmp3-pyranometer/0338920, last
access: 16 January 2023.
Li, Y., Yang, K., Gao, S., Smith, L. C., Fettweis, X., and Li, M.: Surface
meltwater runoff routing through a coupled supraglacial-proglacial drainage
system, Inglefield Land, northwest Greenland, Int. J. Appl. Earth Obs., 106, 102647, https://doi.org/10.1016/j.jag.2021.102647, 2022.
Mankoff, K. D., Noël, B., Fettweis, X., Ahlstrøm, A. P., Colgan, W.,
Kondo, K., Langley, K., Sugiyama, S., van As, D., and Fausto, R. S.:
Greenland liquid water discharge from 1958 through 2019, Earth Syst.
Sci. Data, 12, 2811–2841, https://doi.org/10.5194/essd-12-2811-2020,
2020.
Mernild, S. H., Hasholt, B., and Liston, G. E.: Climatic control on river
discharge simulations, Zackenberg River drainage basin, northeast Greenland,
Hydrol. Process., 22, 1932–1948, https://doi.org/10.1002/hyp.6777,
2008.
Mernild, S. H., Liston, G. E., Hiemstra, C. A., Christensen, J. H., Stendel,
M., and Hasholt, B.: Surface Mass Balance and Runoff Modeling Using HIRHAM4
RCM at Kangerlussuaq (Søndre Strømfjord), West Greenland, 1950–2080,
J. Clim., 24, 609–623, 2011.
Mernild, S. H., Liston, G. E., van As, D., Hasholt, B., and Yde, J. C.:
High-resolution ice sheet surface mass-balance and spatiotemporal runoff
simulations: Kangerlussuaq, west Greenland, Arct. Antarct. Alp.
Res., 50, S100008, https://doi.org/10.1080/15230430.2017.1415856, 2018.
MODIS: MODIS/Terra Snow Cover Daily L3 Global 500 m SIN Grid, Version 6, National Snow and Ice Data Center, https://nsidc.org/data/mod10a1/versions/6, last access: 16 January 2023.
Mottram, R., Simonsen, S. B., Svendsen, S. H., Barletta, V. R., Sørensen,
L. S., Nagler, T., Wuite, J., Groh, A., Horwath, M., Rosier, J., Solgaard,
A., Hvidberg, C. S., and Forsberg, R.: An Integrated View of Greenland Ice
Sheet Mass Changes Based on Models and Satellite Observations, Remote Sens., 11, 1407, https://doi.org/10.3390/rs11121407, 2019.
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R.,
Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-six years of
Greenland Ice Sheet mass balance from 1972 to 2018, P. Natl. Acad. Sci. USA, 116, 9239–9244, https://doi.org/10.1073/pnas.1904242116,
2019.
Multi-Megapixel: Multi-Megapixel Hybrid IP Camera: StarDot Technologies, http://www.stardot.com/products/netcam-sc-camera (last access: 1 November
2022), 2019.
Muntjewerf, L., Petrini, M., Vizcaino, M., Ernani da Silva, C., Sellevold,
R., Scherrenberg, M. D. W., Thayer-Calder, K., Bradley, S. L., Lenaerts, J.
T. M., Lipscomb, W. H., and Lofverstrom, M.: Greenland Ice Sheet
Contribution to 21st Century Sea Level Rise as Simulated by the Coupled
CESM2.1-CISM2.1, Geophys. Res. Lett., 47, e2019GL086836, https://doi.org/10.1029/2019GL086836, 2020.
Noël, B., van Kampenhout, L., Lenaerts, J. T. M., van de Berg, W. J.,
and van den Broeke, M. R.: A 21st Century Warming Threshold for Sustained
Greenland Ice Sheet Mass Loss, Geophys. Res. Lett., 48,
e2020GL090471, https://doi.org/10.1029/2020GL090471, 2021.
Paul, J., Buytaert, W., and Sah, N.: A Technical Evaluation of Lidar-Based
Measurement of River Water Levels, Water Resour. Res., 56, e2019WR026810, https://doi.org/10.1029/2019WR026810, 2020.
Ploeg, K., Seemann, F., Wild, A.-K., and Zhang, Q.: Glacio-Nival Regime
Creates Complex Relationships between Discharge and Climatic Trends of
Zackenberg River, Greenland (1996–2019), Climate, 9, 59,
https://doi.org/10.3390/cli9040059, 2021.
PROMICE: Interactive map of automatic weather stations, The Danish
Energy Agency DANCEA programme and GEUS, PROMICE [data set], https://promice.org/weather-stations/ (last access: 1 November 2022), 2023.
RIEGL: VZ-400i 3D Laser Scanning System, Riegl, USA, http://products.rieglusa.com/product/terrestrial-scanners/vz-400i-3d-laser-scanning-system# (last access: 14 September 2023), 2023.
Smith, L. C., Chu, V. W., Yang, K., Gleason, C. J., Pitcher, L. H.,
Rennermalm, A. K., Legleiter, C. J., Behar, A. E., Overstreet, B. T.,
Moustafa, S. E., Tedesco, M., Forster, R. R., LeWinter, A. L., Finnegan, D.
C., Sheng, Y., and Balog, J.: Efficient meltwater drainage through
supraglacial streams and rivers on the southwest Greenland ice sheet,
P. Natl. Acad. Sci. USA, 112, 1001–1006, https://doi.org/10.1073/pnas.1413024112, 2015.
Smith, L. C., Yang, K., Pitcher, L. H., Overstreet, B. T., Chu, V. W.,
Rennermalm, Å. K., Ryan, J. C., Cooper, M. G., Gleason, C. J., Tedesco,
M., Jeyaratnam, J., van As, D., van den Broeke, M. R., van de Berg, W. J.,
Noël, B., Langen, P. L., Cullather, R. I., Zhao, B., Willis, M. J.,
Hubbard, A., Box, J. E., Jenner, B. A., and Behar, A. E.: Direct
measurements of meltwater runoff on the Greenland ice sheet surface, P. Natl. Acad. Sci. USA, 114, E10622–E10631, https://doi.org/10.1073/pnas.1707743114, 2017.
Smith, L. C., Andrews, L. C., Pitcher, L. H., Overstreet, B. T., Rennermalm,
Å. K., Cooper, M. G., Cooley, S. W., Ryan, J. C., Miège, C.,
Kershner, C., and Simpson, C. E.: Supraglacial River Forcing of Subglacial
Water Storage and Diurnal Ice Sheet Motion, Geophys. Res. Lett.,
48, e2020GL091418, https://doi.org/10.1029/2020GL091418, 2021.
Trusel, L. D., Das, S. B., Osman, M. B., Evans, M. J., Smith, B. E.,
Fettweis, X., McConnell, J. R., Noël, B. P. Y., and van den Broeke, M.
R.: Nonlinear rise in Greenland runoff in response to post-industrial Arctic
warming, Nature, 564, 104–108, https://doi.org/10.1038/s41586-018-0752-4,
2018.
van Dalum, C. T., van de Berg, W. J., and van den Broeke, M. R.: Impact of updated radiative transfer scheme in snow and ice in RACMO2.3p3 on the surface mass and energy budget of the Greenland ice sheet, The Cryosphere, 15, 1823–1844, https://doi.org/10.5194/tc-15-1823-2021, 2021.
Wind Speed and Direction Sensor: Sutron Corporation, https://www.sutron.com/product/wind-speed-direction-sensor/, last access: 1 November 2022.
Yang, K. and Smith, L. C.: Internally drained catchments dominate supraglacial hydrology of the southwest Greenland Ice Sheet, J. Geophys. Res.-Earth, 121, 1891–1910, https://doi.org/10.1002/2016JF003927, 2016.
Yang, K., Smith, L. C., Sole, A., Livingstone, S. J., Cheng, X., Chen, Z.,
and Manchun, L.: Supraglacial rivers on the northwest Greenland Ice Sheet,
Devon Ice Cap, and Barnes Ice Cap mapped using Sentinel-2 imagery, Int. J. Appl. Earth Obs., 78, 1–13, https://doi.org/10.1016/j.jag.2019.01.008, 2019.
Yang, K., Smith, L. C., Cooper, M. G., Pitcher, L. H., van As, D., Lu, Y., and Li,
M.: Seasonal evolution of supraglacial lakes and rivers on the southwest
Greenland Ice Sheet, J. Glaciol., 67, 592–602,
https://doi.org/10.1017/jog.2021.10, 2021.
Short summary
Meltwater runoff estimates from the Greenland ice sheet contain uncertainty. To better understand ice sheet hydrology, we installed a weather station and river stage sensors along three proglacial rivers in a cold-bedded area of NW Greenland without firn, crevasse, or moulin influence. The first 3 years (2019–2021) of observations have given us a first look at the seasonal and annual weather and hydrological patterns of this understudied region.
Meltwater runoff estimates from the Greenland ice sheet contain uncertainty. To better...