Articles | Volume 12, issue 2
https://doi.org/10.5194/gi-12-231-2023
https://doi.org/10.5194/gi-12-231-2023
Research article
 | 
30 Nov 2023
Research article |  | 30 Nov 2023

A VLF/LF facility network for preseismic electromagnetic investigations

Patrick H. M. Galopeau, Ashanthi S. Maxworth, Mohammed Y. Boudjada, Hans U. Eichelberger, Mustapha Meftah, Pier F. Biagi, and Konrad Schwingenschuh

Related authors

Case study of radio emission beam associated to very low frequency signal recorded onboard CSES satellite
Mohammed Y. Boudjada, Hans U. Eichelberger, Emad Al-Haddad, Werner Magnes, Patrick H. M. Galopeau, Xuemin Zhang, Andreas Pollinger, and Helmut Lammer
Adv. Radio Sci., 20, 77–84, https://doi.org/10.5194/ars-20-77-2023,https://doi.org/10.5194/ars-20-77-2023, 2023
Short summary
Observations of Solar Type III radio bursts by Cassini/RPWS experiment
Mohammed Y. Boudjada, Ahmed Abou el-Fadl, Patrick H. M. Galopeau, Eimad Al-Haddad, and Helmut Lammer
Adv. Radio Sci., 18, 83–87, https://doi.org/10.5194/ars-18-83-2020,https://doi.org/10.5194/ars-18-83-2020, 2020
Short summary
Low-altitude frequency-banded equatorial emissions observed below the electron cyclotron frequency
Mohammed Y. Boudjada, Patrick H. M. Galopeau, Sami Sawas, Valery Denisenko, Konrad Schwingenschuh, Helmut Lammer, Hans U. Eichelberger, Werner Magnes, and Bruno Besser
Ann. Geophys., 38, 765–774, https://doi.org/10.5194/angeo-38-765-2020,https://doi.org/10.5194/angeo-38-765-2020, 2020
Short summary
Visibility of Type III burst source location as inferred from stereoscopic space observations
M. Y. Boudjada, P. H. M. Galopeau, M. Maksimovic, and H. O. Rucker
Adv. Radio Sci., 12, 167–170, https://doi.org/10.5194/ars-12-167-2014,https://doi.org/10.5194/ars-12-167-2014, 2014
Remote sensing of the Io torus plasma ribbon using natural radio occultation of the Jovian radio emissions
M. Y. Boudjada, P. H. M. Galopeau, S. Sawas, and H. Lammer
Ann. Geophys., 32, 1119–1128, https://doi.org/10.5194/angeo-32-1119-2014,https://doi.org/10.5194/angeo-32-1119-2014, 2014

Related subject area

Electromagnetic
Developing a low-cost frequency-domain electromagnetic induction instrument
Gavin Wilson, Jacob Conrad, John Anderson, Andrei Swidinsky, and Jeffrey Shragge
Geosci. Instrum. Method. Data Syst., 11, 279–291, https://doi.org/10.5194/gi-11-279-2022,https://doi.org/10.5194/gi-11-279-2022, 2022
Short summary
Autonomous-underwater-vehicle-based marine multicomponent self-potential method: observation scheme and navigational correction
Zhongmin Zhu, Jinsong Shen, Chunhui Tao, Xianming Deng, Tao Wu, Zuofu Nie, Wenyi Wang, and Zhaoyang Su
Geosci. Instrum. Method. Data Syst., 10, 35–43, https://doi.org/10.5194/gi-10-35-2021,https://doi.org/10.5194/gi-10-35-2021, 2021
Short summary
A compact ocean bottom electromagnetic receiver and seismometer
Kai Chen, Ming Deng, Zhongliang Wu, Xianhu Luo, and Li Zhou
Geosci. Instrum. Method. Data Syst., 9, 213–222, https://doi.org/10.5194/gi-9-213-2020,https://doi.org/10.5194/gi-9-213-2020, 2020
Short summary
A full waveform current recorder for electrical prospecting
Kai Chen and Sheng Jin
Geosci. Instrum. Method. Data Syst., 8, 139–147, https://doi.org/10.5194/gi-8-139-2019,https://doi.org/10.5194/gi-8-139-2019, 2019
Short summary
A wireless monitoring system for a high-power borehole–ground electromagnetic transmitter
Shuangshuang Cheng, Ming Deng, Meng Wang, Sheng Jin, Qisheng Zhang, and Kai Chen
Geosci. Instrum. Method. Data Syst., 8, 13–19, https://doi.org/10.5194/gi-8-13-2019,https://doi.org/10.5194/gi-8-13-2019, 2019
Short summary

Cited articles

Biagi, P. F., Colella, R., Schiavulli, L., Ermini, A., Boudjada, M., Eichelberger, H., Schwingenschuh, K., Katzis, K., Contadakis, M. E., Skeberis, C., Moldovan, I. A., and Bezzeghoud, M.: The INFREP Network: Present Situation and Recent Results, Open Journal of Earthquake Research, 8, 101–115, https://doi.org/10.4236/ojer.2019.82007, 2019. a, b, c
Bird, P.: An updated digital model of plate boundaries, Geochem. Geophys. Geosy., 4, 1027, https://doi.org/10.1029/2001GC000252, 2003. a
Boudjada, M. Y., Biagi, P. F., Al-Haddad, E., Galopeau, P. H. M., Besser, B., Wolbang, D., Prattes, G., Eichelberger, H., Stangle, G., Parrot, M., and Schwingenschuh, K.: Reception conditions of low frequency (LF) transmitter signals onboard DEMETER micro-satellite, Phys. Chem. Earth, 102, 70–79, https://doi.org/10.1016/j.pce.2016.07.006, 2017. a
Boudjada, M. Y., Eichelberger, H. U., Zhang, X., Magnes, W., Denisenko, V., Pollinger, A., Galopeau, P. H. M., Schwingenschuh, K., and Besser, B.: Analysis of ground-based very low frequency signal recorded onboard CSES satellite, in: 2021 Kleinheubach Conference, Miltenberg, Germany, 28–30 September 2021, 1–3, https://doi.org/10.23919/IEEECONF54431.2021.9598373, 2021. a
Bowman, D. D., Ouillon, G., Sammis, C. G., Sornette, A., and Sornette, D.: An observational test of the critical earthquake concept, J. Geophys. Res., 103, 24359–24372, https://doi.org/10.1029/98JB00792, 1998. a
Download
Short summary
We present the implementation of a VLF/LF network to search for earthquake electromagnetic precursors. The proposed system will deliver a steady stream of real-time amplitude and phase measurements as well as a daily recording VLF/LF data set. The first implementation of the system was done in Graz, Austria. The second one will be in Guyancourt (France), with a third one in Réunion (France) and a fourth one in Moratuwa (Sri Lanka).