Articles | Volume 4, issue 1
Geosci. Instrum. Method. Data Syst., 4, 23–34, 2015
https://doi.org/10.5194/gi-4-23-2015
Geosci. Instrum. Method. Data Syst., 4, 23–34, 2015
https://doi.org/10.5194/gi-4-23-2015

Research article 11 Feb 2015

Research article | 11 Feb 2015

Image georectification and feature tracking toolbox: ImGRAFT

A. Messerli and A. Grinsted

Related authors

Brief Communication: 2014 velocity and flux for five major Greenland outlet glaciers using ImGRAFT and Landsat-8
A. Messerli, N. B. Karlsson, and A. Grinsted
The Cryosphere Discuss., https://doi.org/10.5194/tcd-8-6235-2014,https://doi.org/10.5194/tcd-8-6235-2014, 2014
Preprint withdrawn
Short summary

Related subject area

Image processing
Automatic detection of calving events from time-lapse imagery at Tunabreen, Svalbard
Dorothée Vallot, Sigit Adinugroho, Robin Strand, Penelope How, Rickard Pettersson, Douglas I. Benn, and Nicholas R. J. Hulton
Geosci. Instrum. Method. Data Syst., 8, 113–127, https://doi.org/10.5194/gi-8-113-2019,https://doi.org/10.5194/gi-8-113-2019, 2019
Short summary
Integration of remote sensing and geographic information systems for geological fault detection on the island of Crete, Greece
Mohamed Elhag and Dalal Alshamsi
Geosci. Instrum. Method. Data Syst., 8, 45–54, https://doi.org/10.5194/gi-8-45-2019,https://doi.org/10.5194/gi-8-45-2019, 2019
Short summary
Consideration of NDVI thematic changes in density analysis and floristic composition of Wadi Yalamlam, Saudi Arabia
Amal Y. Aldhebiani, Mohamed Elhag, Ahmad K. Hegazy, Hanaa K. Galal, and Norah S. Mufareh
Geosci. Instrum. Method. Data Syst., 7, 297–306, https://doi.org/10.5194/gi-7-297-2018,https://doi.org/10.5194/gi-7-297-2018, 2018
Short summary
Precise DEM extraction from Svalbard using 1936 high oblique imagery
Luc Girod, Niels Ivar Nielsen, Frédérique Couderette, Christopher Nuth, and Andreas Kääb
Geosci. Instrum. Method. Data Syst., 7, 277–288, https://doi.org/10.5194/gi-7-277-2018,https://doi.org/10.5194/gi-7-277-2018, 2018
Short summary
A comparative study of auroral morphology distribution between the Northern and Southern Hemisphere based on automatic classification
Qiuju Yang and Ze-Jun Hu
Geosci. Instrum. Method. Data Syst., 7, 113–122, https://doi.org/10.5194/gi-7-113-2018,https://doi.org/10.5194/gi-7-113-2018, 2018
Short summary

Cited articles

Ahn, Y. and Box, J. E.: Instruments and Methods Glacier velocities from time-lapse photos: technique development and first results from the Extreme Ice Survey (EIS) in Greenland, J. Glaciol., 56, 723–734, 2010.
Ahn, Y. and Howat, I. M.: Efficient Automated Glacier Surface Velocity Measurement From Repeat Images Using Multi-Image/Multichip and Null Exclusion Feature Tracking, IEEE T. Geosci. Remote, 49, 2838–2846, 2011.
Aschenwald, J., Leichter, K., Tasser, E., and Tappeiner, U.: Spatio-temporal landscape analysis in mountainous terrain by means of small format photography: a methodological approach, IEEE T. Geosci. Remote, 39, 885–893, 2001.
Benn, D. I. and Evans, D. J. A.: Glaciers and Glaciation, 2nd Edn., Hodder Arnold Publication, Hodder Education, London, 2010.
Bradski, G.: OpenCV Library, Dr. Dobb's J. Softw. Tool., 25, 122–125, 2000.
Download
Short summary
The use of time-lapse cameras is becoming an ever more popular method of observing changes in the natural environment. This study provides an overview of the newly developed Image GeoRectification And Feature Tracking toolbox (ImGRAFT). The paper outlines the main function of the toolbox and describes each of the key processes needed to transform a pair of terrestrial time-lapse images into a velocity field. The tool is presented using a case study of glacier surface motion at Engabreen, Norway.