Articles | Volume 6, issue 2
https://doi.org/10.5194/gi-6-537-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.Application of unsupervised pattern recognition approaches for exploration of rare earth elements in Se-Chahun iron ore, central Iran
Related subject area
Pattern recognition
Analysis and reduction of the geomagnetic gradient influence on aeromagnetic compensation in a towed bird
Geological stratigraphy and spatial distribution of microfractures over the Costa Rica convergent margin, Central America – a wavelet-fractal analysis
Application of particle swarm optimization for gravity inversion of 2.5-D sedimentary basins using variable density contrast
Geosci. Instrum. Method. Data Syst., 10, 257–264,
2021Geosci. Instrum. Method. Data Syst., 7, 179–187,
2018Geosci. Instrum. Method. Data Syst., 6, 193–198,
2017Cited articles
Abedi, M., Norouzi, G. H., and Torabi, S. A.: Clustering of mineral prospectivity area as an unsupervised classification approach to explore copper deposit, Arab. J. Geosci., 10, 3601–3613, 2012.
Bonyadi, Z., Davidson, G. J. Mehrabi, B., Meffre, S., and Ghazban, F.: Significance of apatite REE depletion and monazite inclusions in the brecciated Se–Chahun iron oxide apatite deposit, Bafq district, Iran: insights from para-genesis and geochemistry, Chem. Geol., 281, 253–269, 2011.
Du, K. L. and Swamy, M. N. S.: Neural Networks in a Softcomputing Framework, Springer-Verlag, London, 194, 2006.
Ellefsen, K. J. and Smith, D. B.: Manual hierarchical clustering of regional geochemical data using a Bayesian finite mixture model, Appl. Geochem., 75, 200–210, https://doi.org/10.1016/j.apgeochem.2016.05.016, 2016.
Engelbrecht, A., P.: Computational Intelligence, Wiley, Chichester, 63–73, 2002.