Articles | Volume 8, issue 2
https://doi.org/10.5194/gi-8-217-2019
https://doi.org/10.5194/gi-8-217-2019
Research article
 | Highlight paper
 | 
22 Aug 2019
Research article | Highlight paper |  | 22 Aug 2019

A low-cost device for measuring local magnetic anomalies in volcanic terrain

Bertwin M. de Groot and Lennart V. de Groot

Related subject area

Magnetometers
Enabling in situ validation of mitigation algorithms for magnetic interference via a laboratory-generated dataset
Matthew G. Finley, Allison M. Flores, Katherine J. Morris, Robert M. Broadfoot, Sam Hisel, Jason Homann, Chris Piker, Ananya Sen Gupta, and David M. Miles
Geosci. Instrum. Method. Data Syst., 13, 263–275, https://doi.org/10.5194/gi-13-263-2024,https://doi.org/10.5194/gi-13-263-2024, 2024
Short summary
First in situ measurements of the prototype Tesseract fluxgate magnetometer on the ACES-II-Low sounding rocket
Kenton Greene, Scott R. Bounds, Robert M. Broadfoot, Connor Feltman, Samuel J. Hisel, Ryan M. Kraus, Amanda Lasko, Antonio Washington, and David M. Miles
Geosci. Instrum. Method. Data Syst., 13, 249–262, https://doi.org/10.5194/gi-13-249-2024,https://doi.org/10.5194/gi-13-249-2024, 2024
Short summary
Accuracy of the scalar magnetometer aboard ESA's JUICE mission
Christoph Amtmann, Andreas Pollinger, Michaela Ellmeier, Michele Dougherty, Patrick Brown, Roland Lammegger, Alexander Betzler, Martín Agú, Christian Hagen, Irmgard Jernej, Josef Wilfinger, Richard Baughen, Alex Strickland, and Werner Magnes
Geosci. Instrum. Method. Data Syst., 13, 177–191, https://doi.org/10.5194/gi-13-177-2024,https://doi.org/10.5194/gi-13-177-2024, 2024
Short summary
Analysis of Orientation Errors in Triaxial Fluxgate Sensors and Research on Their Calibration Methods
Xiujuan Hu, Shaopeng He, Qin Tian, Alimjan Mamatemin, Pengkun Guo, and Guoping Chang
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2024-5,https://doi.org/10.5194/gi-2024-5, 2024
Revised manuscript accepted for GI
Short summary
Copper permalloys for fluxgate magnetometer sensors
B. Barry Narod and David M. Miles
Geosci. Instrum. Method. Data Syst., 13, 131–161, https://doi.org/10.5194/gi-13-131-2024,https://doi.org/10.5194/gi-13-131-2024, 2024
Short summary

Cited articles

Baag, C., Helsley, C. E., Xu, S., and Lienert, B. R.: Deflection of paleomagnetic directions due to magnetization of the underlying terrain, J. Geophys. Res.-Sol. Ea., 100, 10013–10027, 1995. a
Biggin, A. J., Perrin, M., and Dekkers, M. J.: A reliable absolute palaeointensity determination obtained from a non-ideal recorder, Earth Planet. Sc. Lett., 257, 545–563, 2007. a
Castro, J. and Brown, L.: Shallow paleomagnetic directions from historic lava flows, Hawaii, Geophys. Res. Lett., 14, 1203–1206, 1987. a
Coe, R. S., Jarboe, N. A., Le Goff, M., and Petersen, N.: Demise of the rapid-field-change hypothesis at Steens Mountain: The crucial role of continuous thermal demagnetization, Earth Planet. Sc. Lett., 400, 302–312, 2014. a
de Groot, L. V., Biggin, A. J., Dekkers, M. J., Langereis, C. G., and Herrero-Bervera, E.: Rapid regional perturbations to the recent global geomagnetic decay revealed by a new Hawaiian record, Nat. Commun., 4, 2727, https://doi.org/10.1038/ncomms3727, 2013a. a
Download
Short summary
Our knowledge of the Earth's magnetic field arises from magnetic signals stored in lavas. In rugged volcanic terrain, however, the magnetization of the underlying flows may influence the magnetic field as recorded by newly formed flows on top. To measure these local magnetic anomalies, we developed a low-cost field magnetometer with superior accuracy and user-friendliness. The first measurements on Mt. Etna show local magnetic variations that are much larger than expected.