Articles | Volume 8, issue 2
https://doi.org/10.5194/gi-8-217-2019
https://doi.org/10.5194/gi-8-217-2019
Research article
 | Highlight paper
 | 
22 Aug 2019
Research article | Highlight paper |  | 22 Aug 2019

A low-cost device for measuring local magnetic anomalies in volcanic terrain

Bertwin M. de Groot and Lennart V. de Groot

Related subject area

Magnetometers
Quad-Mag board for CubeSat applications
Brady P. Strabel, Leonardo H. Regoli, Mark B. Moldwin, Lauro V. Ojeda, Yining Shi, Jacob D. Thoma, Isaac S. Narrett, Bret Bronner, and Matthew Pellioni
Geosci. Instrum. Method. Data Syst., 11, 375–388, https://doi.org/10.5194/gi-11-375-2022,https://doi.org/10.5194/gi-11-375-2022, 2022
Short summary
In situ calibration of the Swarm-Echo magnetometers
Robert M. Broadfoot, David M. Miles, Warren Holley, and Andrew D. Howarth
Geosci. Instrum. Method. Data Syst., 11, 323–333, https://doi.org/10.5194/gi-11-323-2022,https://doi.org/10.5194/gi-11-323-2022, 2022
Short summary
Tesseract – a high-stability, low-noise fluxgate sensor designed for constellation applications
Kenton Greene, Christian Hansen, B. Barry Narod, Richard Dvorsky, and David M. Miles
Geosci. Instrum. Method. Data Syst., 11, 307–321, https://doi.org/10.5194/gi-11-307-2022,https://doi.org/10.5194/gi-11-307-2022, 2022
Short summary
Single-event effect testing of the PNI RM3100 magnetometer for space applications
Mark B. Moldwin, Edward Wilcox, Eftyhia Zesta, and Todd M. Bonalsky
Geosci. Instrum. Method. Data Syst., 11, 219–222, https://doi.org/10.5194/gi-11-219-2022,https://doi.org/10.5194/gi-11-219-2022, 2022
Short summary
Contributors to fluxgate magnetic noise in permalloy foils including a potential new copper alloy regime
David M. Miles, Richard Dvorsky, Kenton Greene, Christian T. Hansen, B. Barry Narod, and Michael D. Webb
Geosci. Instrum. Method. Data Syst., 11, 111–126, https://doi.org/10.5194/gi-11-111-2022,https://doi.org/10.5194/gi-11-111-2022, 2022
Short summary

Cited articles

Baag, C., Helsley, C. E., Xu, S., and Lienert, B. R.: Deflection of paleomagnetic directions due to magnetization of the underlying terrain, J. Geophys. Res.-Sol. Ea., 100, 10013–10027, 1995. a
Biggin, A. J., Perrin, M., and Dekkers, M. J.: A reliable absolute palaeointensity determination obtained from a non-ideal recorder, Earth Planet. Sc. Lett., 257, 545–563, 2007. a
Castro, J. and Brown, L.: Shallow paleomagnetic directions from historic lava flows, Hawaii, Geophys. Res. Lett., 14, 1203–1206, 1987. a
Coe, R. S., Jarboe, N. A., Le Goff, M., and Petersen, N.: Demise of the rapid-field-change hypothesis at Steens Mountain: The crucial role of continuous thermal demagnetization, Earth Planet. Sc. Lett., 400, 302–312, 2014. a
de Groot, L. V., Biggin, A. J., Dekkers, M. J., Langereis, C. G., and Herrero-Bervera, E.: Rapid regional perturbations to the recent global geomagnetic decay revealed by a new Hawaiian record, Nat. Commun., 4, 2727, https://doi.org/10.1038/ncomms3727, 2013a. a
Download
Short summary
Our knowledge of the Earth's magnetic field arises from magnetic signals stored in lavas. In rugged volcanic terrain, however, the magnetization of the underlying flows may influence the magnetic field as recorded by newly formed flows on top. To measure these local magnetic anomalies, we developed a low-cost field magnetometer with superior accuracy and user-friendliness. The first measurements on Mt. Etna show local magnetic variations that are much larger than expected.