Articles | Volume 8, issue 2
https://doi.org/10.5194/gi-8-217-2019
https://doi.org/10.5194/gi-8-217-2019
Research article
 | Highlight paper
 | 
22 Aug 2019
Research article | Highlight paper |  | 22 Aug 2019

A low-cost device for measuring local magnetic anomalies in volcanic terrain

Bertwin M. de Groot and Lennart V. de Groot

Related authors

Improving co-registration of geoscientific imaging datasets with micro-sized marker structures on rock samples
Rosa A. de Boer, Daan H. Wielens, and Lennart V. de Groot
EGUsphere, https://doi.org/10.5194/egusphere-2025-1692,https://doi.org/10.5194/egusphere-2025-1692, 2025
Short summary

Related subject area

Magnetometers
Optimal site selection for Choutuppal geomagnetic observatory, based on geophysical evidences
Divyanshu Dwivedi, Sneh Yadav, Kusumita Arora, Rakesh Murteli, and Alok Taori
EGUsphere, https://doi.org/10.5194/egusphere-2025-1213,https://doi.org/10.5194/egusphere-2025-1213, 2025
Short summary
An analysis of the SAMA’s interference on Pc3 pulsations using data from conjugate stations
Edwin Camacho and Luiz Benyosef
EGUsphere, https://doi.org/10.5194/egusphere-2025-794,https://doi.org/10.5194/egusphere-2025-794, 2025
Short summary
Analysis of orientation errors in triaxial fluxgate sensors and research on their calibration methods
Xiujuan Hu, Shaopeng He, Xudong Zhao, Qin Tian, Alimjan Mamatemin, Pengkun Guo, and Guoping Chang
Geosci. Instrum. Method. Data Syst., 13, 301–308, https://doi.org/10.5194/gi-13-301-2024,https://doi.org/10.5194/gi-13-301-2024, 2024
Short summary
Macapá, a Brazilian equatorial magnetometer station: installation, data availability, and methods for temperature correction
Cristiano Mendel Martins, Katia Jasbinschek Pinheiro, Achim Ohlert, Jürgen Matzka, Marcos Vinicius da Silva, and Reynerth Pereira da Costa
Geosci. Instrum. Method. Data Syst., 13, 289–299, https://doi.org/10.5194/gi-13-289-2024,https://doi.org/10.5194/gi-13-289-2024, 2024
Short summary
Enabling in situ validation of mitigation algorithms for magnetic interference via a laboratory-generated dataset
Matthew G. Finley, Allison M. Flores, Katherine J. Morris, Robert M. Broadfoot, Sam Hisel, Jason Homann, Chris Piker, Ananya Sen Gupta, and David M. Miles
Geosci. Instrum. Method. Data Syst., 13, 263–275, https://doi.org/10.5194/gi-13-263-2024,https://doi.org/10.5194/gi-13-263-2024, 2024
Short summary

Cited articles

Baag, C., Helsley, C. E., Xu, S., and Lienert, B. R.: Deflection of paleomagnetic directions due to magnetization of the underlying terrain, J. Geophys. Res.-Sol. Ea., 100, 10013–10027, 1995. a
Biggin, A. J., Perrin, M., and Dekkers, M. J.: A reliable absolute palaeointensity determination obtained from a non-ideal recorder, Earth Planet. Sc. Lett., 257, 545–563, 2007. a
Castro, J. and Brown, L.: Shallow paleomagnetic directions from historic lava flows, Hawaii, Geophys. Res. Lett., 14, 1203–1206, 1987. a
Coe, R. S., Jarboe, N. A., Le Goff, M., and Petersen, N.: Demise of the rapid-field-change hypothesis at Steens Mountain: The crucial role of continuous thermal demagnetization, Earth Planet. Sc. Lett., 400, 302–312, 2014. a
de Groot, L. V., Biggin, A. J., Dekkers, M. J., Langereis, C. G., and Herrero-Bervera, E.: Rapid regional perturbations to the recent global geomagnetic decay revealed by a new Hawaiian record, Nat. Commun., 4, 2727, https://doi.org/10.1038/ncomms3727, 2013a. a
Download
Short summary
Our knowledge of the Earth's magnetic field arises from magnetic signals stored in lavas. In rugged volcanic terrain, however, the magnetization of the underlying flows may influence the magnetic field as recorded by newly formed flows on top. To measure these local magnetic anomalies, we developed a low-cost field magnetometer with superior accuracy and user-friendliness. The first measurements on Mt. Etna show local magnetic variations that are much larger than expected.
Share