Articles | Volume 9, issue 2
https://doi.org/10.5194/gi-9-375-2020
https://doi.org/10.5194/gi-9-375-2020
Research article
 | 
07 Oct 2020
Research article |  | 07 Oct 2020

A global geographic grid system for visualizing bathymetry

Colin Ware, Larry Mayer, Paul Johnson, Martin Jakobsson, and Vicki Ferrini

Related authors

Observations of strong turbulence and mixing impacting water exchange between two basins in the Baltic Sea
Julia Muchowski, Martin Jakobsson, Lars Umlauf, Lars Arneborg, Bo Gustafsson, Peter Holtermann, Christoph Humborg, and Christian Stranne
Ocean Sci., 19, 1809–1825, https://doi.org/10.5194/os-19-1809-2023,https://doi.org/10.5194/os-19-1809-2023, 2023
Short summary
Hydraulic suppression of basal glacier melt in sill fjords
Johan Nilsson, Eef van Dongen, Martin Jakobsson, Matt O'Regan, and Christian Stranne
The Cryosphere, 17, 2455–2476, https://doi.org/10.5194/tc-17-2455-2023,https://doi.org/10.5194/tc-17-2455-2023, 2023
Short summary
Amino acid racemization in Neogloboquadrina pachyderma and Cibicidoides wuellerstorfi from the Arctic Ocean and its implications for age models
Gabriel West, Darrell S. Kaufman, Martin Jakobsson, and Matt O'Regan
Geochronology, 5, 285–299, https://doi.org/10.5194/gchron-5-285-2023,https://doi.org/10.5194/gchron-5-285-2023, 2023
Short summary
On the circulation, water mass distribution, and nutrient concentrations of the western Chukchi Sea
Jaclyn Clement Kinney, Karen M. Assmann, Wieslaw Maslowski, Göran Björk, Martin Jakobsson, Sara Jutterström, Younjoo J. Lee, Robert Osinski, Igor Semiletov, Adam Ulfsbo, Irene Wåhlström, and Leif G. Anderson
Ocean Sci., 18, 29–49, https://doi.org/10.5194/os-18-29-2022,https://doi.org/10.5194/os-18-29-2022, 2022
Short summary
Holocene sea-ice dynamics in Petermann Fjord in relation to ice tongue stability and Nares Strait ice arch formation
Henrieka Detlef, Brendan Reilly, Anne Jennings, Mads Mørk Jensen, Matt O'Regan, Marianne Glasius, Jesper Olsen, Martin Jakobsson, and Christof Pearce
The Cryosphere, 15, 4357–4380, https://doi.org/10.5194/tc-15-4357-2021,https://doi.org/10.5194/tc-15-4357-2021, 2021
Short summary

Cited articles

Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J. L., Fabre, D., Factor, J., Ingalls, S., Kim, S. H., and Ladner, R.: Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS, Mar. Geod., 32, 355–371, 2009. 
GEBCO Compilation Group: GEBCO 2020 Grid, edited by: The Nippon Foundation-GEBCO-Seabed 2030 project, https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9, 2020. 
Li, Z.: Digital Terrain Modeling: Principles and Methodology, 1st Edn., CRC Press, Boca Raton, 323 pp., 2004. 
Mayer, L., Jakobsson, M., Allen, G., Dorschel, B., Falconer, R., Ferrini, V., Lamarche, G., Snaith, H., and Weatherall, P.: The Nippon Foundation – GEBCO seabed 2030 project: The quest to see the world's oceans completely mapped by 2030, Geosciences, 8, 10–27, 2018. 
McPhail, C. K.: Reconstructing Eratosthenes' Map of the World: A Study in Source Analysis (Doctoral dissertation, University of Otago), 190 pp., 2011.  
Download
Short summary
Geographic coordinates (latitude and longitude) are widely used in geospatial applications, and terrains are often defined by regular grids in geographic coordinates. However, because of convergence of lines of longitude near the poles there is oversampling in the latitude (zonal) direction. Also, there is no standard way of defining a hierarchy of grids to consistently deal with data having different spatial resolutions. The proposed global geographic grid system solves both problems.