Articles | Volume 9, issue 2
https://doi.org/10.5194/gi-9-385-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-9-385-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dense point cloud acquisition with a low-cost Velodyne VLP-16
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
Marc-Henri Derron
Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
Gregoire Mariethoz
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
Related authors
No articles found.
Fatemeh Zakeri, Gregoire Mariethoz, and Manuela Girotto
EGUsphere, https://doi.org/10.5194/egusphere-2024-1943, https://doi.org/10.5194/egusphere-2024-1943, 2024
Short summary
Short summary
This study introduces a method for estimating High-Resolution Snow Water Equivalent (HR-SWE) using Low-Resolution Climate Data (LR-CD). By applying a data-driven approach, we utilize historical weather patterns from LR-CD to estimate HR-SWE maps. Our approach uses statistical relationships between LR-CD and HR-SWE data to provide HR-SWE estimates for dates when HR-SWE data is unavailable. This method improves water resource management and climate impact assessments in regions with limited data.
Charlotte Wolff, Marc-Henri Derron, Carlo Rivolta, and Michel Jaboyedoff
Geosci. Instrum. Method. Data Syst., 13, 225–248, https://doi.org/10.5194/gi-13-225-2024, https://doi.org/10.5194/gi-13-225-2024, 2024
Short summary
Short summary
The remote-sensing InSAR technique is vital for monitoring slope instabilities but requires understanding. This paper delves into differences between satellite and GB-InSAR. It offers a tool to determine the optimal GB-InSAR installation site, considering various technical, meteorological, and topographical factors. By generating detailed maps and simulating radar image characteristics, the tool eases the setup of monitoring campaigns for effective and accurate ground movement tracking.
Mathieu Vrac, Denis Allard, Grégoire Mariéthoz, Soulivanh Thao, and Lucas Schmutz
Earth Syst. Dynam., 15, 735–762, https://doi.org/10.5194/esd-15-735-2024, https://doi.org/10.5194/esd-15-735-2024, 2024
Short summary
Short summary
We aim to combine multiple global climate models (GCMs) to enhance the robustness of future projections. We introduce a novel approach, called "α pooling", aggregating the cumulative distribution functions (CDFs) of the models into a CDF more aligned with historical data. The new CDFs allow us to perform bias adjustment of all the raw climate simulations at once. Experiments with European temperature and precipitation demonstrate the superiority of this approach over conventional techniques.
Moctar Dembélé, Mathieu Vrac, Natalie Ceperley, Sander J. Zwart, Josh Larsen, Simon J. Dadson, Grégoire Mariéthoz, and Bettina Schaefli
Proc. IAHS, 385, 121–127, https://doi.org/10.5194/piahs-385-121-2024, https://doi.org/10.5194/piahs-385-121-2024, 2024
Short summary
Short summary
This study assesses the impact of climate change on the timing, seasonality and magnitude of mean annual minimum (MAM) flows and annual maximum flows (AMF) in the Volta River basin (VRB). Several climate change projection data are use to simulate river flow under multiple greenhouse gas emission scenarios. Future projections show that AMF could increase with various magnitude but negligible shift in time across the VRB, while MAM could decrease with up to 14 days of delay in occurrence.
Fabio Oriani, Gregoire Mariethoz, and Manuel Chevalier
Earth Syst. Sci. Data, 16, 731–742, https://doi.org/10.5194/essd-16-731-2024, https://doi.org/10.5194/essd-16-731-2024, 2024
Short summary
Short summary
Modern and fossil pollen data contain precious information for reconstructing the climate and environment of the past. However, these data are only achieved for single locations with no continuity in space. We present here a systematic atlas of 194 digital maps containing the spatial estimation of contemporary pollen presence over Europe. This dataset constitutes a free and ready-to-use tool to study climate, biodiversity, and environment in time and space.
Mathieu Gravey and Grégoire Mariethoz
Geosci. Model Dev., 16, 5265–5279, https://doi.org/10.5194/gmd-16-5265-2023, https://doi.org/10.5194/gmd-16-5265-2023, 2023
Short summary
Short summary
Multiple‐point geostatistics are widely used to simulate complex spatial structures based on a training image. The use of these methods relies on the possibility of finding optimal training images and parametrization of the simulation algorithms. Here, we propose finding an optimal set of parameters using only the training image as input. The main advantage of our approach is to remove the risk of overfitting an objective function.
Nadav Peleg, Herminia Torelló-Sentelles, Grégoire Mariéthoz, Lionel Benoit, João P. Leitão, and Francesco Marra
Nat. Hazards Earth Syst. Sci., 23, 1233–1240, https://doi.org/10.5194/nhess-23-1233-2023, https://doi.org/10.5194/nhess-23-1233-2023, 2023
Short summary
Short summary
Floods in urban areas are one of the most common natural hazards. Due to climate change enhancing extreme rainfall and cities becoming larger and denser, the impacts of these events are expected to increase. A fast and reliable flood warning system should thus be implemented in flood-prone cities to warn the public of upcoming floods. The purpose of this brief communication is to discuss the potential implementation of low-cost acoustic rainfall sensors in short-term flood warning systems.
Moctar Dembélé, Mathieu Vrac, Natalie Ceperley, Sander J. Zwart, Josh Larsen, Simon J. Dadson, Grégoire Mariéthoz, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 26, 1481–1506, https://doi.org/10.5194/hess-26-1481-2022, https://doi.org/10.5194/hess-26-1481-2022, 2022
Short summary
Short summary
Climate change impacts on water resources in the Volta River basin are investigated under various global warming scenarios. Results reveal contrasting changes in future hydrological processes and water availability, depending on greenhouse gas emission scenarios, with implications for floods and drought occurrence over the 21st century. These findings provide insights for the elaboration of regional adaptation and mitigation strategies for climate change.
Zhenjiao Jiang, Dirk Mallants, Lei Gao, Tim Munday, Gregoire Mariethoz, and Luk Peeters
Geosci. Model Dev., 14, 3421–3435, https://doi.org/10.5194/gmd-14-3421-2021, https://doi.org/10.5194/gmd-14-3421-2021, 2021
Short summary
Short summary
Fast and reliable tools are required to extract hidden information from big geophysical and remote sensing data. A deep-learning model in 3D image construction from 2D image(s) is here developed for paleovalley mapping from globally available digital elevation data. The outstanding performance for 3D subsurface imaging gives confidence that this generic novel tool will make better use of existing geophysical and remote sensing data for improved management of limited earth resources.
Moctar Dembélé, Bettina Schaefli, Nick van de Giesen, and Grégoire Mariéthoz
Hydrol. Earth Syst. Sci., 24, 5379–5406, https://doi.org/10.5194/hess-24-5379-2020, https://doi.org/10.5194/hess-24-5379-2020, 2020
Short summary
Short summary
This study evaluates 102 combinations of rainfall and temperature datasets from satellite and reanalysis sources as input to a fully distributed hydrological model. The model is recalibrated for each input dataset, and the outputs are evaluated with streamflow, evaporation, soil moisture and terrestrial water storage data. Results show that no single rainfall or temperature dataset consistently ranks first in reproducing the spatio-temporal variability of all hydrological processes.
Mathieu Gravey and Grégoire Mariethoz
Geosci. Model Dev., 13, 2611–2630, https://doi.org/10.5194/gmd-13-2611-2020, https://doi.org/10.5194/gmd-13-2611-2020, 2020
Short summary
Short summary
Stochastic simulations are key tools to generate complex spatial structures uses as input in geoscientific models. In this paper, we present a new open-source tool that enables to simulate complex structures in a straightforward and efficient manner, based on analogues. The method is tested on a variety of use cases to demonstrate the generality of the framework.
Lionel Benoit, Mathieu Vrac, and Gregoire Mariethoz
Hydrol. Earth Syst. Sci., 24, 2841–2854, https://doi.org/10.5194/hess-24-2841-2020, https://doi.org/10.5194/hess-24-2841-2020, 2020
Short summary
Short summary
At subdaily resolution, rain intensity exhibits a strong variability in space and time due to the diversity of processes that produce rain (e.g., frontal storms, mesoscale convective systems and local convection). In this paper we explore a new method to simulate rain type time series conditional to meteorological covariates. Afterwards, we apply stochastic rain type simulation to the downscaling of precipitation of a regional climate model.
James M. Thornton, Gregoire Mariethoz, Tristan J. Brauchli, and Philip Brunner
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-181, https://doi.org/10.5194/tc-2019-181, 2019
Manuscript not accepted for further review
Short summary
Short summary
Meltwater runoff from steep mountainous terrain holds great societal and ecological importance. Predicting snow dynamics in unmonitored areas and/or under changed climate requires computer simulations. Yet variability in alpine snow patterns poses a considerable challenge. Here we combine existing tools with high-resolution observations to both constrain and quantify the uncertainty in historical simulations. Snowpack evolution was satisfactorily reproduced and uncertainty substantially reduced.
Zhenjiao Jiang, Dirk Mallants, Luk Peeters, Lei Gao, Camilla Soerensen, and Gregoire Mariethoz
Hydrol. Earth Syst. Sci., 23, 2561–2580, https://doi.org/10.5194/hess-23-2561-2019, https://doi.org/10.5194/hess-23-2561-2019, 2019
Short summary
Short summary
Paleovalleys often form productive aquifers in the semiarid and arid areas. A methodology based on deep learning is introduced to automatically generate high-resolution 3-D paleovalley maps from low-resolution electrical conductivity data derived from airborne geophysical surveys. It is validated by borehole logs and the surface valley indices that the proposed method in this study provides an effective tool for regional-scale paleovalley mapping and groundwater exploration.
Michel Jaboyedoff, Masahiro Chigira, Noriyuki Arai, Marc-Henri Derron, Benjamin Rudaz, and Ching-Ying Tsou
Earth Surf. Dynam., 7, 439–458, https://doi.org/10.5194/esurf-7-439-2019, https://doi.org/10.5194/esurf-7-439-2019, 2019
Short summary
Short summary
High-resolution digital elevation models (DEMs) can now be acquired using airborne laser scanners. This allows for a detailed analysis of the geometry of landslides. Several large landslides were triggered by Typhoon Talas in Japan in 2011. The comparison of pre- and post-DEMs allowed us to test a method of defining landslide failure surfaces before catastrophic movements. It provides new results about the curvature of the failure surface and the volume expansion of the deposit.
Lionel Benoit, Aurelie Gourdon, Raphaël Vallat, Inigo Irarrazaval, Mathieu Gravey, Benjamin Lehmann, Günther Prasicek, Dominik Gräff, Frederic Herman, and Gregoire Mariethoz
Earth Syst. Sci. Data, 11, 579–588, https://doi.org/10.5194/essd-11-579-2019, https://doi.org/10.5194/essd-11-579-2019, 2019
Short summary
Short summary
This dataset provides a collection of 10 cm resolution orthomosaics and digital elevation models of the Gornergletscher glacial system (Switzerland). Raw data have been acquired every 2 weeks by intensive UAV surveys and cover the summer 2017. A careful photogrammetric processing ensures the geometrical coherence of the whole dataset.
Pierre-Olivier Bruna, Julien Straubhaar, Rahul Prabhakaran, Giovanni Bertotti, Kevin Bisdom, Grégoire Mariethoz, and Marco Meda
Solid Earth, 10, 537–559, https://doi.org/10.5194/se-10-537-2019, https://doi.org/10.5194/se-10-537-2019, 2019
Short summary
Short summary
Natural fractures influence fluid flow in subsurface reservoirs. Our research presents a new methodology to predict the arrangement of these fractures in rocks. Contrary to the commonly used statistical models, our approach integrates more geology into the simulation process. The method is simply based on the drawing of images, can be applied to any type of rocks in various geological contexts, and is suited for fracture network prediction in water, geothermal, or hydrocarbon reservoirs.
Qiyu Chen, Gregoire Mariethoz, Gang Liu, Alessandro Comunian, and Xiaogang Ma
Hydrol. Earth Syst. Sci., 22, 6547–6566, https://doi.org/10.5194/hess-22-6547-2018, https://doi.org/10.5194/hess-22-6547-2018, 2018
Short summary
Short summary
One of the critical issues in MPS simulation is the difficulty in obtaining a credible 3-D training image. We propose an MPS-based 3-D reconstruction method on the basis of 2-D cross sections, making 3-D training images unnecessary. The main advantages of this approach are the high computational efficiency and a relaxation of the stationarity assumption. The results, in comparison with previous MPS methods, show better performance in portraying anisotropy characteristics and in CPU cost.
Lionel Benoit, Mathieu Vrac, and Gregoire Mariethoz
Hydrol. Earth Syst. Sci., 22, 5919–5933, https://doi.org/10.5194/hess-22-5919-2018, https://doi.org/10.5194/hess-22-5919-2018, 2018
Short summary
Short summary
We propose a method for unsupervised classification of the space–time–intensity structure of weather radar images. The resulting classes are interpreted as rain types, i.e. pools of rain fields with homogeneous statistical properties. Rain types can in turn be used to define stationary periods for further stochastic rainfall modelling. The application of rain typing to real data indicates that non-stationarity can be significant within meteorological seasons, and even within a single storm.
Jérémie Voumard, Marc-Henri Derron, and Michel Jaboyedoff
Nat. Hazards Earth Syst. Sci., 18, 2093–2109, https://doi.org/10.5194/nhess-18-2093-2018, https://doi.org/10.5194/nhess-18-2093-2018, 2018
Short summary
Short summary
Natural hazard events affecting the Swiss transportation networks during the 5-year time period 2012–2016 were collected in a database with a significant effort for small events (< 10 m−3) that are generally not radar screened. Of 848 collected events, 95 % are small events for which annual direct cost was estimated at EUR 2.5 million. Analysis of the 172 attributes by event allows us to highlight their spatial, temporal, and damage trends as well as their impacts on road and railway traffic.
Kashif Mahmud, Gregoire Mariethoz, Andy Baker, and Pauline C. Treble
Hydrol. Earth Syst. Sci., 22, 977–988, https://doi.org/10.5194/hess-22-977-2018, https://doi.org/10.5194/hess-22-977-2018, 2018
Short summary
Short summary
This study explores the relationship between drip water and rainfall in a SW Australian karst, where both intra- and interannual hydrological variations are strongly controlled by seasonal variations in recharge. The hydrological behavior of cave drips is examined at daily resolution with respect to mean discharge and the flow variation. We demonstrate that the analysis of the time series produced by cave drip loggers generates useful hydrogeological information that can be applied generally.
Jérémie Voumard, Antonio Abellán, Pierrick Nicolet, Ivanna Penna, Marie-Aurélie Chanut, Marc-Henri Derron, and Michel Jaboyedoff
Nat. Hazards Earth Syst. Sci., 17, 2093–2107, https://doi.org/10.5194/nhess-17-2093-2017, https://doi.org/10.5194/nhess-17-2093-2017, 2017
Short summary
Short summary
We discuss the challenges and limitations of surveying rock slope failures using 3-D reconstruction from images acquired from street view imagery (SVI) and processed with modern photogrammetric workflows. Despite some clear limitations and challenges, we demonstrate that this original approach could help obtain preliminary 3-D models of an area without on-field images. Furthermore, the pre-failure topography can be obtained for sites where it would not be available otherwise.
Antoine Guerin, Antonio Abellán, Battista Matasci, Michel Jaboyedoff, Marc-Henri Derron, and Ludovic Ravanel
Nat. Hazards Earth Syst. Sci., 17, 1207–1220, https://doi.org/10.5194/nhess-17-1207-2017, https://doi.org/10.5194/nhess-17-1207-2017, 2017
Short summary
Short summary
The coupling of terrestrial lidar scans acquired in 2011 and a photogrammetric model created from 30 old Web-retrieved images enabled reconstructing in 3-D the Drus west face before the 2005 rock avalanche and estimating the volume of this event. The volume is calculated as 292 680 m3 (±5.6 %). However, despite functioning well for the Drus (legendary peak), this method would have been difficult to implement on a less-well-known site with fewer images available to be collected and downloaded.
Roya Olyazadeh, Karen Sudmeier-Rieux, Michel Jaboyedoff, Marc-Henri Derron, and Sanjaya Devkota
Nat. Hazards Earth Syst. Sci., 17, 549–561, https://doi.org/10.5194/nhess-17-549-2017, https://doi.org/10.5194/nhess-17-549-2017, 2017
Short summary
Short summary
This work shows the progress and testing of an online–offline web-GIS application based on open-source technologies for landslide hazard and risk. It has satellite images as a base map in the offline mode and data collection in a centralized online database. The advantage of a mobile app coupled with satellite images over mapping in the office is improved identification of landslide type. This study was used for landslides in Nepal, but it can also be useful for other hazards like floods.
Zar Chi Aye, Roya Olyazadeh, Marc-Henri Derron, Michel Jaboyedoff, and Johann Lüthi
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-85, https://doi.org/10.5194/nhess-2017-85, 2017
Revised manuscript not accepted
Short summary
Short summary
In this paper, we present an open-source, web-GIS application (RISKGIS), developed for students learning in risk management of geohazards with real case studies. The aim is for students to better understand and become familiarized with approaches used by experts as well as for teachers to better evaluate and monitor student learning. A series of practical exercises is carried out with students and feedback are collected to identify the possibility and applicability of RISKGIS learning platform.
K. Mahmud, G. Mariethoz, A. Baker, P. C. Treble, M. Markowska, and E. McGuire
Hydrol. Earth Syst. Sci., 20, 359–373, https://doi.org/10.5194/hess-20-359-2016, https://doi.org/10.5194/hess-20-359-2016, 2016
Short summary
Short summary
Caves offer a natural inception point to observe both the long-term groundwater recharge and the preferential movement of water through the unsaturated zone of such limestone. In this study, we develop a method that combines automated drip rate logging systems and remote sensing techniques to quantify the infiltration processes within a cave.
Z. C. Aye, M. Jaboyedoff, M. H. Derron, C. J. van Westen, H. Y. Hussin, R. L. Ciurean, S. Frigerio, and A. Pasuto
Nat. Hazards Earth Syst. Sci., 16, 85–101, https://doi.org/10.5194/nhess-16-85-2016, https://doi.org/10.5194/nhess-16-85-2016, 2016
Short summary
Short summary
This paper presents the development and application of a prototype web-GIS tool for risk analysis, in particular for floods and landslides, based on open-source software and web technologies. The aim is to assist experts (risk managers) in analysing the impacts and consequences of a certain hazard event in a considered region, contributing to open-source and research community in natural hazards and risk assessment. The tool is demonstrated using a regional data set of Fella River basin, Italy.
B. W. Goodfellow, A. P. Stroeven, D. Fabel, O. Fredin, M.-H. Derron, R. Bintanja, and M. W. Caffee
Earth Surf. Dynam., 2, 383–401, https://doi.org/10.5194/esurf-2-383-2014, https://doi.org/10.5194/esurf-2-383-2014, 2014
M. Böhme, M.-H. Derron, and M. Jaboyedoff
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-2-81-2014, https://doi.org/10.5194/nhessd-2-81-2014, 2014
Revised manuscript not accepted
J. Voumard, O. Caspar, M.-H. Derron, and M. Jaboyedoff
Nat. Hazards Earth Syst. Sci., 13, 2763–2777, https://doi.org/10.5194/nhess-13-2763-2013, https://doi.org/10.5194/nhess-13-2763-2013, 2013
C. Michoud, S. Bazin, L. H. Blikra, M.-H. Derron, and M. Jaboyedoff
Nat. Hazards Earth Syst. Sci., 13, 2659–2673, https://doi.org/10.5194/nhess-13-2659-2013, https://doi.org/10.5194/nhess-13-2659-2013, 2013
Related subject area
Lidar
Comparing triple and single Doppler lidar wind measurements with sonic anemometer data based on a new filter strategy for virtual tower measurements
Collaborative development of the Lidar Processing Pipeline (LPP) for retrievals of atmospheric aerosols and clouds
MOLISENS: MObile LIdar SENsor System to exploit the potential of small industrial lidar devices for geoscientific applications
Architecture of solution for panoramic image blurring in GIS project application
Kevin Wolz, Christopher Holst, Frank Beyrich, Eileen Päschke, and Matthias Mauder
Geosci. Instrum. Method. Data Syst., 13, 205–223, https://doi.org/10.5194/gi-13-205-2024, https://doi.org/10.5194/gi-13-205-2024, 2024
Short summary
Short summary
We compared wind measurements using different lidar setups at various heights. The triple Doppler lidar, sonic anemometer, and two single Doppler lidars were tested. Overall, the lidar methods showed good agreement with the sonic anemometer. The triple Doppler lidar performed better than single Doppler lidars, especially at higher altitudes. We also developed a new filtering approach for virtual tower scanning strategies. Single Doppler lidars provide reliable wind data over flat terrain.
Juan Vicente Pallotta, Silvânia Alves de Carvalho, Fabio Juliano da Silva Lopes, Alexandre Cacheffo, Eduardo Landulfo, and Henrique Melo Jorge Barbosa
Geosci. Instrum. Method. Data Syst., 12, 171–185, https://doi.org/10.5194/gi-12-171-2023, https://doi.org/10.5194/gi-12-171-2023, 2023
Short summary
Short summary
Lidar networks coordinate efforts of different groups, providing guidelines to homogenize retrievals from different instruments. We describe an ongoing effort to develop the Lidar Processing Pipeline (LPP) collaboratively, a collection of tools developed in C/C++ to handle all the steps of a typical lidar analysis. Analysis of simulations and real lidar data showcases the LPP’s features. From this exercise, we draw a roadmap to guide future development, accommodating the needs of our community.
Thomas Goelles, Tobias Hammer, Stefan Muckenhuber, Birgit Schlager, Jakob Abermann, Christian Bauer, Víctor J. Expósito Jiménez, Wolfgang Schöner, Markus Schratter, Benjamin Schrei, and Kim Senger
Geosci. Instrum. Method. Data Syst., 11, 247–261, https://doi.org/10.5194/gi-11-247-2022, https://doi.org/10.5194/gi-11-247-2022, 2022
Short summary
Short summary
We propose a newly developed modular MObile LIdar SENsor System (MOLISENS) to enable new applications for small industrial light detection and ranging (lidar) sensors. MOLISENS supports both monitoring of dynamic processes and mobile mapping applications. The mobile mapping application of MOLISENS has been tested under various conditions, and results are shown from two surveys in the Lurgrotte cave system in Austria and a glacier cave in Longyearbreen on Svalbard.
Dejan Vasić, Marina Davidović, Ivan Radosavljević, and Đorđe Obradović
Geosci. Instrum. Method. Data Syst., 10, 287–296, https://doi.org/10.5194/gi-10-287-2021, https://doi.org/10.5194/gi-10-287-2021, 2021
Short summary
Short summary
The objective of this paper is to present a new architecture of a solution for object detecting and blurring. Our algorithm is tested on four data sets of panorama images. The percentage of accuracy, i.e., the successfully detected objects of interest, is higher than 97 % for each data set. The proposed algorithm has a wide application for images of different types, surveyed with various purposes, and also for the detection of different types of objects.
Cited articles
Amiri Parian, J. and Grün, A.:
Integrated laser scanner and intensity image calibration and accuracy assessment,
Int. Arch. Photogramm.,
36, 18–23, 2005.
Besl, P. J. and McKay, N. D.:
Method for registration of 3-D shapes,
P. Soc. Photo-Opt. Ins.
1611, 586–606, 1992.
Bula, J.: jason-bula/velodyne_tls: Dense point cloud Velodyne VLP-16 (Version v1), Zenodo, https://doi.org/10.5281/zenodo.4060145, 2020a.
Bula, J.: Milandre – Scan lidar, Vimeo, available at: https://vimeo.com/380040742, last access: 10 August 2020b.
Bula, J.: Mine de Baulmes VLP-16 velodyne, Vimeo, available at: https://vimeo.com/344063864, last access: 10 August 2020c.
Bula, J.: Scan lidar – Réclère, Vimeo, available at: https://vimeo.com/380239565, last access: 10 August 2020d.
Bula, J.: Rolex Learning Center, Vimeo, https://vimeo.com/user52420841, last access: 10 August 2020e.
Brideau, M.-A., Sturzenegger, M., Stead, D., Jaboyedoff, M., Lawrence, M., Roberts, N. J., Ward, B. C., Millard, T. H., and Clague, J. J.:
Stability analysis of the 2007 Chehalis lake landslide based on long-range terrestrial photogrammetry and airborne LiDAR data,
Landslides,
9, 75–91, https://doi.org/10.1007/s10346-011-0286-4, 2012.
Dewez, T. J. B., Yart, S., Thuon, Y., Pannet, P., and Plat, E.:
Towards cavity-collapse hazard maps with Zeb-Revo handheld laser scanner point clouds,
Photogramm. Rec.,
32, 354–376, https://doi.org/10.1111/phor.12223, 2017.
Glennie, C. and Lichti, D. D.:
Static Calibration and Analysis of the Velodyne HDL-64E S2 for High Accuracy Mobile Scanning,
Remote Sens.-Basel,
2, 1610–1624, https://doi.org/10.3390/rs2061610, 2010.
Glennie, C. L., Kusari, A., and Facchin, A.:
Calibration and stability analysis of the VLP-16 laser scanner,
Int. Arch. Photogramm.,
XL-3/W4, 55–60, https://doi.org/10.5194/isprs-archives-XL-3-W4-55-2016, 2016.
Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M.-H., Loye, A., Metzger, R., and Pedrazzini, A.:
Use of LIDAR in landslide investigations: a review,
Nat. Hazards,
61, 5–28, https://doi.org/10.1007/s11069-010-9634-2, 2012.
James, M. R. and Quinton, J. N.:
Ultra-rapid topographic surveying for complex environments: the hand-held mobile laser scanner (HMLS): Ultra-Rapid Topographic Surveying: The Hmls,
Earth Surf. Proc. Land.,
39, 138–142, https://doi.org/10.1002/esp.3489, 2014.
Kersten, T., Sternberg, H., and Mechelke, K.:
Investigations into the accuracy behaviour of the terrestrial laser scanning system Mensi GS100,
P. Soc. Photo-Opt. Ins.,
VII.1, 122–131, 2005.
Lagarias, J. C., Reeds, J. A., Wright, M. H., and Wright, P. E.:
Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions,
SIAM J. Optimiz.,
9, 112–147, https://doi.org/10.1137/S1052623496303470, 1998.
Laurent, A., Moret, P., Fabre, J. M., Calastrenc, C., and Poirier, N.:
La cartographie multi-scalaire d'un habitat sur un site accidenté : la Silla del Papa (Espagne), NUMEAR, 3, https://doi.org/10.21494/ISTE.OP.2019.0352, 2019.
Lerma, J. L. and García-San-Miguel, D.: Self-calibration of terrestrial laser scanners: selection of the best geometric additional parameters, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., II-5, 219–226, https://doi.org/10.5194/isprsannals-II-5-219-2014, 2014.
Li, R., Liu, J., Zhang, L., and Hang, Y.: LIDAR/MEMS IMU integrated navigation (SLAM) method for a small UAV in indoor environments, in: 2014 DGON Inertial Sensors and Systems (ISS), IEEE, Karlsruhe, Germany, 1–15 September 2014.
Lichti, D. D.:
Error modelling, calibration and analysis of an AM–CW terrestrial laser scanner system,
ISPRS J. Photogramm.,
61, 307–324, https://doi.org/10.1016/j.isprsjprs.2006.10.004, 2007.
Lichti, D., Brustle, S., and Franke, J.:
Self-calibration and analysis of the Surphaser 25HS 3D scanner, in: Proceedings of the Strategic Integration of Surveying Services, FIGWorkingWeek, Hong Kong SAR, China, 13–17 May 2007.
Lim, M., Petley, D. N., Rosser, N. J., Allison, R. J., Long, A. J., and Pybus, D.:
Combined Digital Photogrammetry and Time-of-Flight Laser Scanning for Monitoring Cliff Evolution,
Photogramm. Rec.,
20, 109–129, https://doi.org/10.1111/j.1477-9730.2005.00315.x, 2005.
Michoud, C., Carrea, D., Costa, S., Derron, M.-H., Jaboyedoff, M., Delacourt, C., Maquaire, O., Letortu, P., and Davidson, R.:
Landslide detection and monitoring capability of boat-based mobile laser scanning along Dieppe coastal cliffs, Normandy,
Landslides,
12, 403–418, https://doi.org/10.1007/s10346-014-0542-5, 2015.
Neitzel, F.:
Investigation of Axes Errors of Terrestrial Laser Scanners, Fifth International Symposium Turkish-German Joint Geodetic Days, Berlin, Germany, 29–31 March 2006.
Northend, C. A., Honey, R. C., and Evans, W. E.:
Laser Radar (Lidar) for Meteorological Observations,
Rev. Sci. Instrum.,
37, 393–400, https://doi.org/10.1063/1.1720199, 1966.
Royán, M. J., Abellán, A., Jaboyedoff, M., Vilaplana, J. M., and Calvet, J.: Spatio-temporal analysis of rockfall pre-failure deformation using Terrestrial LiDAR, Landslides, 11, 697–709, https://doi.org/10.1007/s10346-013-0442-0, 2014.
Teza, G., Galgaro, A., Zaltron, N., and Genevois, R.: Terrestrial laser scanner to detect landslide displacement fields: a new approach,
Int. J. Remote Sens.,
28, 3425–3446, https://doi.org/10.1080/01431160601024234, 2007.
Williams, J. G., Rosser, N. J., Hardy, R. J., Brain, M. J., and Afana, A. A.: Optimising 4-D surface change detection: an approach for capturing rockfall magnitude–frequency, Earth Surf. Dynam., 6, 101–119, https://doi.org/10.5194/esurf-6-101-2018, 2018.
Short summary
We developed a method to acquire dense point clouds with a low-cost Velodyne Puck lidar system, without using expensive Global Navigation Satellite System (GNSS) positioning or IMU. We mounted the lidar on a motor to continuously change the scan direction, leading to a significant increase in the point cloud density. The system was compared with a more expensive system based on IMU registration and a SLAM algorithm. The alignment between acquisitions with those two systems is within 2 m.
We developed a method to acquire dense point clouds with a low-cost Velodyne Puck lidar system,...