Articles | Volume 9, issue 2
Geosci. Instrum. Method. Data Syst., 9, 471–481, 2020
https://doi.org/10.5194/gi-9-471-2020
Geosci. Instrum. Method. Data Syst., 9, 471–481, 2020
https://doi.org/10.5194/gi-9-471-2020

Research article 16 Dec 2020

Research article | 16 Dec 2020

Mathematical foundation of Capon's method for planetary magnetic field analysis

Simon Toepfer et al.

Related authors

Wavevector spectral signature of decay instability in space plasmas
Horia Comişel, Yasuhito Narita, and Uwe Motschmann
Ann. Geophys., 39, 165–170, https://doi.org/10.5194/angeo-39-165-2021,https://doi.org/10.5194/angeo-39-165-2021, 2021
Short summary
Error estimate for fluxgate magnetometer in-flight calibration on a spinning spacecraft
Yasuhito Narita, Ferdinand Plaschke, Werner Magnes, David Fischer, and Daniel Schmid
Geosci. Instrum. Method. Data Syst., 10, 13–24, https://doi.org/10.5194/gi-10-13-2021,https://doi.org/10.5194/gi-10-13-2021, 2021
Short summary
Magnetosheath plasma flow model around Mercury
Daniel Schmid, Ferdinand Plaschke, Yasuhito Narita, Martin Volwerk, Rumi Nakamura, and Wolfgang Baumjohann
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2021-1,https://doi.org/10.5194/angeo-2021-1, 2021
Preprint under review for ANGEO
Short summary
Magnetometer in-flight offset accuracy for the BepiColombo spacecraft
Daniel Schmid, Ferdinand Plaschke, Yasuhito Narita, Daniel Heyner, Johannes Z. D. Mieth, Brian J. Anderson, Martin Volwerk, Ayako Matsuoka, and Wolfgang Baumjohann
Ann. Geophys., 38, 823–832, https://doi.org/10.5194/angeo-38-823-2020,https://doi.org/10.5194/angeo-38-823-2020, 2020
Short summary
Multi-channel coupling of decay instability in three-dimensional low-beta plasma
Horia Comişel, Yasuhito Narita, and Uwe Motschmann
Ann. Geophys., 37, 835–842, https://doi.org/10.5194/angeo-37-835-2019,https://doi.org/10.5194/angeo-37-835-2019, 2019
Short summary

Related subject area

Signal processing
The baseline wander correction based on the improved ensemble empirical mode decomposition (EEMD) algorithm for grounded electrical source airborne transient electromagnetic signals
Yuan Li, Song Gao, Saimin Zhang, Hu He, Pengfei Xian, and Chunmei Yuan
Geosci. Instrum. Method. Data Syst., 9, 443–450, https://doi.org/10.5194/gi-9-443-2020,https://doi.org/10.5194/gi-9-443-2020, 2020
Short summary
On the validation of K-index values at Italian geomagnetic observatories
Mauro Regi, Paolo Bagiacchi, Domenico Di Mauro, Stefania Lepidi, and Lili Cafarella
Geosci. Instrum. Method. Data Syst., 9, 105–115, https://doi.org/10.5194/gi-9-105-2020,https://doi.org/10.5194/gi-9-105-2020, 2020
Short summary
A remote-control datalogger for large-scale resistivity surveys and robust processing of its signals using a software lock-in approach
Frank Oppermann and Thomas Günther
Geosci. Instrum. Method. Data Syst., 7, 55–66, https://doi.org/10.5194/gi-7-55-2018,https://doi.org/10.5194/gi-7-55-2018, 2018
Short summary
Dynamic data transmission technology for expendable current profiler based on low-voltage differential signaling
Shuhan Li, Qisheng Zhang, Xiao Zhao, Shenghui Liu, Zhenzhong Yuan, and Xinyue Zhang
Geosci. Instrum. Method. Data Syst., 6, 263–267, https://doi.org/10.5194/gi-6-263-2017,https://doi.org/10.5194/gi-6-263-2017, 2017
Short summary
Continuous wavelet transform and Euler deconvolution method and their application to magnetic field data of Jharia coalfield, India
Arvind Singh and Upendra Kumar Singh
Geosci. Instrum. Method. Data Syst., 6, 53–69, https://doi.org/10.5194/gi-6-53-2017,https://doi.org/10.5194/gi-6-53-2017, 2017
Short summary

Cited articles

Anderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., Solomon, S. C., McNutt Jr., R. L., Raines, J. M., and Zurbuchen, T. H.: The global magnetic field of Mercury from MESSENGER orbital observations, Science, 333, 1859–1862, https://doi.org/10.1126/science.1211001, 2011. a
Anderson, B. J., Johnson, C., L., Korth, H., Winslow, R. M., Borovsky, J. E., Purucker, M. E., Slavin, J. A., Solomon, S. C., Zuber, M. T., and McNutt Jr., R. L.: Low-degree structure in Mercury's planetary magnetic field, J. Geophys. Res., 117, E00L12, https://doi.org/10.1029/2012JE004159, 2012. a
Benkhoff, J., van Casteren, J., Hayakawa, H., Fujimoto, M., Laakso, H., Novara, M., Ferri, P., Middleton, H. R., and Ziethe, R.: BepiColombo – Comprehensive exploration of Mercury: Mission overview and science goals, Planet. Space Sci., 85, 2–20, https://doi.org/10.1016/j.pss.2009.09.020, 2010. a
Capon, J.: High resolution frequency-wavenumber spectrum analysis, Proc. IEEE, 57, 1408–1418, https://doi.org/10.1109/PROC.1969.7278, 1969. a, b
Carlson, B. D.: Covariance matrix estimation errors and diagonal loading in adaptive arrays, IEEE Trans. Aerosp. Electron. Syst., 24, 397–401, https://doi.org/10.1109/7.7181, 1988. a
Download
Short summary
The Capon method serves as a powerful and robust data analysis tool when working on various kinds of ill-posed inverse problems. Besides the analysis of waves, the method can be used in a generalized way to compare actual measurements with theoretical models, such as Mercury's magnetic field analysis. In view to the BepiColombo mission this work establishes a mathematical basis for the application of Capon's method to analyze Mercury's internal magnetic field in a robust and manageable way.