Articles | Volume 10, issue 1
https://doi.org/10.5194/gi-10-123-2021
https://doi.org/10.5194/gi-10-123-2021
Research article
 | 
28 Jun 2021
Research article |  | 28 Jun 2021

A comparison of gap-filling algorithms for eddy covariance fluxes and their drivers

Atbin Mahabbati, Jason Beringer, Matthias Leopold, Ian McHugh, James Cleverly, Peter Isaac, and Azizallah Izady

Related authors

A coupled ground heat flux–surface energy balance model of evaporation using thermal remote sensing observations
Bimal K. Bhattacharya, Kaniska Mallick, Devansh Desai, Ganapati S. Bhat, Ross Morrison, Jamie R. Clevery, William Woodgate, Jason Beringer, Kerry Cawse-Nicholson, Siyan Ma, Joseph Verfaillie, and Dennis Baldocchi
Biogeosciences, 19, 5521–5551, https://doi.org/10.5194/bg-19-5521-2022,https://doi.org/10.5194/bg-19-5521-2022, 2022
Short summary
Influence of modifications (from AoB2015 to v0.5) in the Vegetation Optimality Model
Remko C. Nijzink, Jason Beringer, Lindsay B. Hutley, and Stanislaus J. Schymanski
Geosci. Model Dev., 15, 883–900, https://doi.org/10.5194/gmd-15-883-2022,https://doi.org/10.5194/gmd-15-883-2022, 2022
Short summary
Does maximization of net carbon profit enable the prediction of vegetation behaviour in savanna sites along a precipitation gradient?
Remko C. Nijzink, Jason Beringer, Lindsay B. Hutley, and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 525–550, https://doi.org/10.5194/hess-26-525-2022,https://doi.org/10.5194/hess-26-525-2022, 2022
Short summary
How representative are FLUXNET measurements of surface fluxes during temperature extremes?
Sophie V. J. van der Horst, Andrew J. Pitman, Martin G. De Kauwe, Anna Ukkola, Gab Abramowitz, and Peter Isaac
Biogeosciences, 16, 1829–1844, https://doi.org/10.5194/bg-16-1829-2019,https://doi.org/10.5194/bg-16-1829-2019, 2019
Short summary
Speculations on the application of foliar 13C discrimination to reveal groundwater dependency of vegetation and provide estimates of root depth and rates of groundwater use
Rizwana Rumman, James Cleverly, Rachael H. Nolan, Tonantzin Tarin, and Derek Eamus
Hydrol. Earth Syst. Sci., 22, 4875–4889, https://doi.org/10.5194/hess-22-4875-2018,https://doi.org/10.5194/hess-22-4875-2018, 2018
Short summary

Related subject area

Estimation
Daedalus Ionospheric Profile Continuation (DIPCont): Monte Carlo studies assessing the quality of in situ measurement extrapolation
Joachim Vogt, Octav Marghitu, Adrian Blagau, Leonie Pick, Nele Stachlys, Stephan Buchert, Theodoros Sarris, Stelios Tourgaidis, Thanasis Balafoutis, Dimitrios Baloukidis, and Panagiotis Pirnaris
Geosci. Instrum. Method. Data Syst., 12, 239–257, https://doi.org/10.5194/gi-12-239-2023,https://doi.org/10.5194/gi-12-239-2023, 2023
Short summary
Total Global Solar Radiation Estimation with Relative Humidity and Air Temperature Extremes in Ireland and Holland
Can Ekici and Ismail Teke
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2017-52,https://doi.org/10.5194/gi-2017-52, 2017
Preprint withdrawn
Short summary

Cited articles

Allison, P. D.: Multiple Imputation for Missing Data: A Cautionary Tale, Sociol. Meth. Res., 28, 301–309, https://doi.org/10.1177/0049124100028003003, 2000. 
Altman, D. G. and Bland, J. M.: Missing data, Br. Med. J., 334, 424, https://doi.org/10.1136/bmj.38977.682025.2C, 2007. 
Aubinet, M., Vesala, T., and Papale, D.: Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer, Dordrecht, the Netherlands, 2012. 
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, U. K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities, B. Am. Meteorol. Soc., 82, 2415–2434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001. 
Download
Short summary
We reviewed eight algorithms to estimate missing values of environmental drivers and three major fluxes in eddy covariance time series. Overall, machine-learning algorithms showed superiority over the rest. Among the top three models (feed-forward neural networks, eXtreme Gradient Boost, and random forest algorithms), the latter showed the most solid performance in different scenarios.