Articles | Volume 11, issue 1
https://doi.org/10.5194/gi-11-37-2022
https://doi.org/10.5194/gi-11-37-2022
Review article
 | 
27 Jan 2022
Review article |  | 27 Jan 2022

Measuring electrical properties of the lower troposphere using enhanced meteorological radiosondes

R. Giles Harrison

Related authors

The Role of Point Discharge in the Development of Atmospheric Electricity
Blair P. S. McGinness, R. Giles Harrison, Karen L. Aplin, and Martin W. Airey
Hist. Geo Space. Sci. Discuss., https://doi.org/10.5194/hgss-2025-4,https://doi.org/10.5194/hgss-2025-4, 2025
Preprint under review for HGSS
Short summary
Atmospheric electricity observations at Eskdalemuir Geophysical Observatory
R. Giles Harrison and John C. Riddick
Hist. Geo Space. Sci., 15, 5–16, https://doi.org/10.5194/hgss-15-5-2024,https://doi.org/10.5194/hgss-15-5-2024, 2024
Short summary
Atmospheric electricity observations by Reinhold Reiter around Garmisch-Partenkirchen
R. Giles Harrison and Kristian Schlegel
Hist. Geo Space. Sci., 14, 71–75, https://doi.org/10.5194/hgss-14-71-2023,https://doi.org/10.5194/hgss-14-71-2023, 2023
Short summary
Atmospheric electricity observations at Lerwick Geophysical Observatory
R. Giles Harrison and John C. Riddick
Hist. Geo Space. Sci., 13, 133–146, https://doi.org/10.5194/hgss-13-133-2022,https://doi.org/10.5194/hgss-13-133-2022, 2022
Short summary
Using a network of temperature lidars to identify temperature biases in the upper stratosphere in ECMWF reanalyses
Graeme Marlton, Andrew Charlton-Perez, Giles Harrison, Inna Polichtchouk, Alain Hauchecorne, Philippe Keckhut, Robin Wing, Thierry Leblanc, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 21, 6079–6092, https://doi.org/10.5194/acp-21-6079-2021,https://doi.org/10.5194/acp-21-6079-2021, 2021
Short summary

Cited articles

Airey, M. W., Harrison, R. G., Nicoll, K. A., Williams, P. D., and Marlton, G. J.: A miniature oscillating microbalance for sampling ice and volcanic ash from a small airborne platform, Rev. Sci. Instrum., 88, 086108 https://doi.org/10.1063/1.4998971, 2017. 
Allee, P. A. and Phillips, B. B.: Measurements of cloud-droplet charge, electric field, and polar conductivities in supercooled clouds, J. Meteorol., 16, 405–410, https://doi.org/10.1175/1520-0469(1959)016<0405:MOCDCE>2.0.CO;2, 1959. 
Anderson, A. D.: Free-air turbulence, J. Atmos. Sci., 14, 477–494, https://doi.org/10.1175/1520-0469(1957)014<0477:FAT>2.0.CO;2, 1957. 
Ambaum, M. H. P., Auerswald, T., and Eaves, R.: Enhanced attraction between drops carrying fluctuating charge distributions, P. Roy. Soc Lond. A Mat., 478, 2257, https://doi.org/10.1098/rspa.2021.0714, 2022. 
Aplin, K. L.: Atmospheric electricity at Durham: the scientific contributions and legacy of J. A. (“Skip”) Chalmers (1904–1967), Hist. Geo Space. Sci., 9, 25–35, https://doi.org/10.5194/hgss-9-25-2018, 2018. 
Download
Short summary
Weather balloons are released every day around the world to obtain the latest atmospheric data for weather forecasting. Expanding the range of sensors they carry can make additional quantities available, such as for atmospheric turbulence, cloud electricity, energetic particles from space and, in emergency situations, volcanic ash or radioactivity. An adaptable system has been developed to provide these and other measurements, without interfering with the core weather data.
Share