Articles | Volume 11, issue 1
https://doi.org/10.5194/gi-11-37-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-11-37-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measuring electrical properties of the lower troposphere using enhanced meteorological radiosondes
R. Giles Harrison
CORRESPONDING AUTHOR
Department of Meteorology, University of Reading, Reading, RG6 6BB, UK
Invited contribution by R. Giles Harrison, recipient of the EGU Christiaan Huygens Medal 2021.
Related authors
R. Giles Harrison and John C. Riddick
Hist. Geo Space. Sci., 15, 5–16, https://doi.org/10.5194/hgss-15-5-2024, https://doi.org/10.5194/hgss-15-5-2024, 2024
Short summary
Short summary
Eskdalemuir Observatory opened in 1908, sited remotely for magnetically quiet conditions. Continuous atmospheric potential gradient (PG) recordings began in 1911, using a Kelvin water dropper electrograph. Notable scientists who worked with atmospheric electricity at Eskdalemuir include Lewis Fry Richardson and Gordon Dobson. The PG measurements continued until 1981. The methodologies employed are described to help interpret the monthly data now digitally available.
R. Giles Harrison and Kristian Schlegel
Hist. Geo Space. Sci., 14, 71–75, https://doi.org/10.5194/hgss-14-71-2023, https://doi.org/10.5194/hgss-14-71-2023, 2023
Short summary
Short summary
Environmental measurements were undertaken by Reinhold Reiter (1920–1998) around Garmisch-Partenkirchen in the Bavarian Alps for 4 decades. This included measurement sites on the Zugspitze and Wank mountains as well as the use of an instrumented cable car between the Eibsee and the Zugspitze summit. The Mount Wank site operated between 1 August 1972 and 31 December 1983, and the hourly data values – including atmospheric electricity quantities – for this site have been recovered.
R. Giles Harrison and John C. Riddick
Hist. Geo Space. Sci., 13, 133–146, https://doi.org/10.5194/hgss-13-133-2022, https://doi.org/10.5194/hgss-13-133-2022, 2022
Short summary
Short summary
Lerwick Observatory in Shetland has recently celebrated its centenary. Measurements of atmospheric electricity were made at the site between 1925 and 1984. The instruments and equipment used for this are discussed and the value of the measurements obtained assessed. A major aspect of the atmospheric electricity work was explaining the dramatic changes which followed the nuclear weapons test period. Although less well known, there are strong parallels with the discovery of the ozone hole.
Graeme Marlton, Andrew Charlton-Perez, Giles Harrison, Inna Polichtchouk, Alain Hauchecorne, Philippe Keckhut, Robin Wing, Thierry Leblanc, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 21, 6079–6092, https://doi.org/10.5194/acp-21-6079-2021, https://doi.org/10.5194/acp-21-6079-2021, 2021
Short summary
Short summary
A network of Rayleigh lidars have been used to infer the upper-stratosphere temperature bias in ECMWF ERA-5 and ERA-Interim reanalyses during 1990–2017. Results show that ERA-Interim exhibits a cold bias of −3 to −4 K between 10 and 1 hPa. Comparisons with ERA-5 found a smaller bias of 1 K which varies between cold and warm between 10 and 3 hPa, indicating a good thermal representation of the atmosphere to 3 hPa. These biases must be accounted for in stratospheric studies using these reanalyses.
R. Giles Harrison
Hist. Geo Space. Sci., 11, 207–213, https://doi.org/10.5194/hgss-11-207-2020, https://doi.org/10.5194/hgss-11-207-2020, 2020
Short summary
Short summary
The early 20th century voyages of the Carnegie – a floating geophysical observatory – revealed the daily rhythm of atmospheric electricity. Combined with ideas from Nobel Prize winner C. T. R. Wilson, the
Carnegie curvehelped answer a fundamental question, from the time of Benjamin Franklin, about the origin of Earth's negative charge. The Carnegie curve still provides an importance reference variation, and the original data, explored further here, have new relevance to geophysical change.
Graeme Marlton, Andrew Charlton-Perez, Giles Harrison, Inna Polichtchouk, Alain Hauchecorne, Philippe Keckhut, and Robin Wing
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-254, https://doi.org/10.5194/acp-2020-254, 2020
Preprint withdrawn
Short summary
Short summary
A network of Rayleigh lidars have been used to infer the middle atmosphere temperature bias in ECMWF ERA-5 and ERA-interim reanalyses during 1990–2017. Results show that ERA-interim exhibits a cold bias of −3 to −4 K between 10 and 1 hPa. Comparisons with ERA-5 found a smaller bias of 1 K which varies between cold and warm between 10 and 3 hPa, indicating a good thermal representation of the atmosphere to 3 hPa. These biases must be accounted for in stratospheric studies using these reanalyses.
Darielle Dexheimer, Martin Airey, Erika Roesler, Casey Longbottom, Keri Nicoll, Stefan Kneifel, Fan Mei, R. Giles Harrison, Graeme Marlton, and Paul D. Williams
Atmos. Meas. Tech., 12, 6845–6864, https://doi.org/10.5194/amt-12-6845-2019, https://doi.org/10.5194/amt-12-6845-2019, 2019
Short summary
Short summary
A tethered-balloon system deployed supercooled liquid water content sondes and fiber optic distributed temperature sensing to collect in situ atmospheric measurements within mixed-phase Arctic clouds. These data were validated against collocated surface-based and remote sensing datasets. From these measurements and sensor evaluations, tethered-balloon flights are shown to offer an effective method of collecting data to inform numerical models and calibrate remote sensing instrumentation.
M. Lockwood, H. Nevanlinna, M. Vokhmyanin, D. Ponyavin, S. Sokolov, L. Barnard, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Scott
Ann. Geophys., 32, 367–381, https://doi.org/10.5194/angeo-32-367-2014, https://doi.org/10.5194/angeo-32-367-2014, 2014
M. Lockwood, H. Nevanlinna, L. Barnard, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Scott
Ann. Geophys., 32, 383–399, https://doi.org/10.5194/angeo-32-383-2014, https://doi.org/10.5194/angeo-32-383-2014, 2014
J.-B. Renard, S. N. Tripathi, M. Michael, A. Rawal, G. Berthet, M. Fullekrug, R. G. Harrison, C. Robert, M. Tagger, and B. Gaubicher
Atmos. Chem. Phys., 13, 11187–11194, https://doi.org/10.5194/acp-13-11187-2013, https://doi.org/10.5194/acp-13-11187-2013, 2013
M. Lockwood, L. Barnard, H. Nevanlinna, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Davis
Ann. Geophys., 31, 1957–1977, https://doi.org/10.5194/angeo-31-1957-2013, https://doi.org/10.5194/angeo-31-1957-2013, 2013
M. Lockwood, L. Barnard, H. Nevanlinna, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Davis
Ann. Geophys., 31, 1979–1992, https://doi.org/10.5194/angeo-31-1979-2013, https://doi.org/10.5194/angeo-31-1979-2013, 2013
R. Giles Harrison and John C. Riddick
Hist. Geo Space. Sci., 15, 5–16, https://doi.org/10.5194/hgss-15-5-2024, https://doi.org/10.5194/hgss-15-5-2024, 2024
Short summary
Short summary
Eskdalemuir Observatory opened in 1908, sited remotely for magnetically quiet conditions. Continuous atmospheric potential gradient (PG) recordings began in 1911, using a Kelvin water dropper electrograph. Notable scientists who worked with atmospheric electricity at Eskdalemuir include Lewis Fry Richardson and Gordon Dobson. The PG measurements continued until 1981. The methodologies employed are described to help interpret the monthly data now digitally available.
R. Giles Harrison and Kristian Schlegel
Hist. Geo Space. Sci., 14, 71–75, https://doi.org/10.5194/hgss-14-71-2023, https://doi.org/10.5194/hgss-14-71-2023, 2023
Short summary
Short summary
Environmental measurements were undertaken by Reinhold Reiter (1920–1998) around Garmisch-Partenkirchen in the Bavarian Alps for 4 decades. This included measurement sites on the Zugspitze and Wank mountains as well as the use of an instrumented cable car between the Eibsee and the Zugspitze summit. The Mount Wank site operated between 1 August 1972 and 31 December 1983, and the hourly data values – including atmospheric electricity quantities – for this site have been recovered.
R. Giles Harrison and John C. Riddick
Hist. Geo Space. Sci., 13, 133–146, https://doi.org/10.5194/hgss-13-133-2022, https://doi.org/10.5194/hgss-13-133-2022, 2022
Short summary
Short summary
Lerwick Observatory in Shetland has recently celebrated its centenary. Measurements of atmospheric electricity were made at the site between 1925 and 1984. The instruments and equipment used for this are discussed and the value of the measurements obtained assessed. A major aspect of the atmospheric electricity work was explaining the dramatic changes which followed the nuclear weapons test period. Although less well known, there are strong parallels with the discovery of the ozone hole.
Graeme Marlton, Andrew Charlton-Perez, Giles Harrison, Inna Polichtchouk, Alain Hauchecorne, Philippe Keckhut, Robin Wing, Thierry Leblanc, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 21, 6079–6092, https://doi.org/10.5194/acp-21-6079-2021, https://doi.org/10.5194/acp-21-6079-2021, 2021
Short summary
Short summary
A network of Rayleigh lidars have been used to infer the upper-stratosphere temperature bias in ECMWF ERA-5 and ERA-Interim reanalyses during 1990–2017. Results show that ERA-Interim exhibits a cold bias of −3 to −4 K between 10 and 1 hPa. Comparisons with ERA-5 found a smaller bias of 1 K which varies between cold and warm between 10 and 3 hPa, indicating a good thermal representation of the atmosphere to 3 hPa. These biases must be accounted for in stratospheric studies using these reanalyses.
R. Giles Harrison
Hist. Geo Space. Sci., 11, 207–213, https://doi.org/10.5194/hgss-11-207-2020, https://doi.org/10.5194/hgss-11-207-2020, 2020
Short summary
Short summary
The early 20th century voyages of the Carnegie – a floating geophysical observatory – revealed the daily rhythm of atmospheric electricity. Combined with ideas from Nobel Prize winner C. T. R. Wilson, the
Carnegie curvehelped answer a fundamental question, from the time of Benjamin Franklin, about the origin of Earth's negative charge. The Carnegie curve still provides an importance reference variation, and the original data, explored further here, have new relevance to geophysical change.
Graeme Marlton, Andrew Charlton-Perez, Giles Harrison, Inna Polichtchouk, Alain Hauchecorne, Philippe Keckhut, and Robin Wing
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-254, https://doi.org/10.5194/acp-2020-254, 2020
Preprint withdrawn
Short summary
Short summary
A network of Rayleigh lidars have been used to infer the middle atmosphere temperature bias in ECMWF ERA-5 and ERA-interim reanalyses during 1990–2017. Results show that ERA-interim exhibits a cold bias of −3 to −4 K between 10 and 1 hPa. Comparisons with ERA-5 found a smaller bias of 1 K which varies between cold and warm between 10 and 3 hPa, indicating a good thermal representation of the atmosphere to 3 hPa. These biases must be accounted for in stratospheric studies using these reanalyses.
Darielle Dexheimer, Martin Airey, Erika Roesler, Casey Longbottom, Keri Nicoll, Stefan Kneifel, Fan Mei, R. Giles Harrison, Graeme Marlton, and Paul D. Williams
Atmos. Meas. Tech., 12, 6845–6864, https://doi.org/10.5194/amt-12-6845-2019, https://doi.org/10.5194/amt-12-6845-2019, 2019
Short summary
Short summary
A tethered-balloon system deployed supercooled liquid water content sondes and fiber optic distributed temperature sensing to collect in situ atmospheric measurements within mixed-phase Arctic clouds. These data were validated against collocated surface-based and remote sensing datasets. From these measurements and sensor evaluations, tethered-balloon flights are shown to offer an effective method of collecting data to inform numerical models and calibrate remote sensing instrumentation.
M. Lockwood, H. Nevanlinna, M. Vokhmyanin, D. Ponyavin, S. Sokolov, L. Barnard, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Scott
Ann. Geophys., 32, 367–381, https://doi.org/10.5194/angeo-32-367-2014, https://doi.org/10.5194/angeo-32-367-2014, 2014
M. Lockwood, H. Nevanlinna, L. Barnard, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Scott
Ann. Geophys., 32, 383–399, https://doi.org/10.5194/angeo-32-383-2014, https://doi.org/10.5194/angeo-32-383-2014, 2014
J.-B. Renard, S. N. Tripathi, M. Michael, A. Rawal, G. Berthet, M. Fullekrug, R. G. Harrison, C. Robert, M. Tagger, and B. Gaubicher
Atmos. Chem. Phys., 13, 11187–11194, https://doi.org/10.5194/acp-13-11187-2013, https://doi.org/10.5194/acp-13-11187-2013, 2013
M. Lockwood, L. Barnard, H. Nevanlinna, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Davis
Ann. Geophys., 31, 1957–1977, https://doi.org/10.5194/angeo-31-1957-2013, https://doi.org/10.5194/angeo-31-1957-2013, 2013
M. Lockwood, L. Barnard, H. Nevanlinna, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Davis
Ann. Geophys., 31, 1979–1992, https://doi.org/10.5194/angeo-31-1979-2013, https://doi.org/10.5194/angeo-31-1979-2013, 2013
Related subject area
Airborne instruments
Towards affordable 3D physics-based river flow rating: application over the Luangwa River basin
Drone-towed controlled-source electromagnetic (CSEM) system for near-surface geophysical prospecting: on instrument noise, temperature drift, transmission frequency, and survey set-up
Evaluating low-cost topographic surveys for computations of conveyance
Experiments on magnetic interference for a portable airborne magnetometry system using a hybrid unmanned aerial vehicle (UAV)
A Tethered Air Blimp (TAB) for observing the microclimate over a complex terrain
Magnetic airborne survey – geophysical flight
Hubert T. Samboko, Sten Schurer, Hubert H. G. Savenije, Hodson Makurira, Kawawa Banda, and Hessel Winsemius
Geosci. Instrum. Method. Data Syst., 12, 155–169, https://doi.org/10.5194/gi-12-155-2023, https://doi.org/10.5194/gi-12-155-2023, 2023
Short summary
Short summary
The study investigates how low-cost technology can be applied in data-scarce catchments to improve water resource management. More specifically, we investigate how drone technology can be combined with low-cost real-time kinematic positioning (RTK) global navigation satellite system (GNSS) equipment and subsequently applied to a 3D hydraulic model so as to generate more physically based rating curves.
Tobias Bjerg Vilhelmsen and Arne Døssing
Geosci. Instrum. Method. Data Syst., 11, 435–450, https://doi.org/10.5194/gi-11-435-2022, https://doi.org/10.5194/gi-11-435-2022, 2022
Short summary
Short summary
Electromagnetic sensors in a drone set-up allow a lot of movability and downscale the cost and risk typically associated with an airborne system. This paper discusses the pros and cons of our newly developed drone-towed sensor system, where we use the controlled-source electromagnetic sensor GEM-2. We conduct six different tests dealing with altitude dependency, temperature drift, transmission frequencies, T and P mode, and drone noise. Additionally, we show a data set collected with the system.
Hubert T. Samboko, Sten Schurer, Hubert H. G. Savenije, Hodson Makurira, Kawawa Banda, and Hessel Winsemius
Geosci. Instrum. Method. Data Syst., 11, 1–23, https://doi.org/10.5194/gi-11-1-2022, https://doi.org/10.5194/gi-11-1-2022, 2022
Short summary
Short summary
The study was conducted along the Luangwa River in Zambia. It combines low-cost instruments such as UAVs and GPS kits to collect data for the purposes of water management. A novel technique which seamlessly merges the dry and wet bathymetry before application in a hydraulic model was applied. Successful implementation resulted in water authorities with small budgets being able to monitor flows safely and efficiently without significant compromise on accuracy.
Jirigalatu, Vamsi Krishna, Eduardo Lima Simões da Silva, and Arne Døssing
Geosci. Instrum. Method. Data Syst., 10, 25–34, https://doi.org/10.5194/gi-10-25-2021, https://doi.org/10.5194/gi-10-25-2021, 2021
Short summary
Short summary
UAV-borne magnetometry has gradually become an important tool for geophysical studies. However, developing such a UAV-borne aeromagnetometry system is challenging owing to strong magnetic interference introduced by onboard electric and electronic components. One static and two dynamic experiments were conducted to understand the platform's magnetic interference. The results reveal that the strongest magnetic interference is from some current-carrying cables.
Manoj K. Nambiar, Ryan A. E. Byerlay, Amir Nazem, M. Rafsan Nahian, Mohsen Moradi, and Amir A. Aliabadi
Geosci. Instrum. Method. Data Syst., 9, 193–211, https://doi.org/10.5194/gi-9-193-2020, https://doi.org/10.5194/gi-9-193-2020, 2020
Short summary
Short summary
A novel airborne sensing platform is developed for meteorological measurements including variables such as components of wind velocity vector, temperature, pressure, and relative humidity. The system is called the Tethered Air Blimp (TAB). This system is deployed at a complex mining facility in northern Canada to measure dynamics of the atmosphere in various diurnal times, latitudes, longitudes, and altitudes. It measures convective, neutral, and stable boundary layers up to 150 m.
Erick de Barros Camara and Suze Nei Pereira Guimarães
Geosci. Instrum. Method. Data Syst., 5, 181–192, https://doi.org/10.5194/gi-5-181-2016, https://doi.org/10.5194/gi-5-181-2016, 2016
Short summary
Short summary
This paper provides a technical review process in the area of airborne
acquisition of geophysical data, with emphasis for magnetometry. In summary,
it addresses the calibration processes of geophysical equipment as well as the
aircraft to minimize possible errors in measurements. The corrections used
in data processing and filtering are demonstrated with the same results as well as the evolution of these techniques in Brazil and worldwide.
Cited articles
Airey, M. W., Harrison, R. G., Nicoll, K. A., Williams, P. D., and Marlton, G. J.:
A miniature oscillating microbalance for sampling ice and volcanic ash from a small airborne platform,
Rev. Sci. Instrum.,
88, 086108 https://doi.org/10.1063/1.4998971, 2017.
Allee, P. A. and Phillips, B. B.:
Measurements of cloud-droplet charge, electric field, and polar conductivities in supercooled clouds,
J. Meteorol.,
16, 405–410, https://doi.org/10.1175/1520-0469(1959)016<0405:MOCDCE>2.0.CO;2, 1959.
Anderson, A. D.:
Free-air turbulence,
J. Atmos. Sci.,
14, 477–494, https://doi.org/10.1175/1520-0469(1957)014<0477:FAT>2.0.CO;2, 1957.
Ambaum, M. H. P., Auerswald, T., and Eaves, R.: Enhanced attraction between drops carrying fluctuating charge distributions, P. Roy. Soc Lond. A Mat., 478, 2257, https://doi.org/10.1098/rspa.2021.0714, 2022.
Aplin, K. L.: Atmospheric electricity at Durham: the scientific contributions and legacy of J. A. (“Skip”) Chalmers (1904–1967), Hist. Geo Space. Sci., 9, 25–35, https://doi.org/10.5194/hgss-9-25-2018, 2018.
Aplin, K. L. and Harrison, R. G.:
A computer-controlled Gerdien atmospheric ion counter,
Rev. Sci. Instrum.,
71, 3037–3041, https://doi.org/10.1063/1.1305511, 2000.
Aplin, K. L. and Harrison, R. G.:
A self-calibrating programmable mobility spectrometer for atmospheric ion measurements,
Rev. Sci. Instrum.,
72, 3467–3469, https://doi.org/10.1063/1.1382634, 2001.
Aplin, K. L. and Harrison, R. G.:
Compact cosmic ray detector for unattended atmospheric ionization monitoring,
Rev. Sci. Instrum.,
81, 124501, https://doi.org/10.1063/1.3514986, 2010.
Aplin, K. L. and Harrison, R. G.: Lord Kelvin's atmospheric electricity measurements, Hist. Geo Space. Sci., 4, 83–95, https://doi.org/10.5194/hgss-4-83-2013, 2013.
Bennett, A. J. and Harrison, R. G.:
Surface measurement system for the atmospheric electrical vertical conduction current density, with displacement current density correction,
J. Atmos. Sol.-Terr. Phy.,
70, 1373–1381, https://doi.org/10.1016/j.jastp.2008.04.014, 2008.
Berger, G. and Ait Amar, S.:
The noteworthy involvement of Jacques de Romas in the experiments on the electric nature of lightning,
J. Electrostat.,
67, 531–535 https://doi.org/10.1016/j.elstat.2009.01.033, 2009.
Brewer, A. W. and Milford, J. R.:
The Oxford-Kew Ozone Sonde,
P. Roy. Soc Lond. A Mat.,
256, 470, https://doi.org/10.1098/rspa.1960.0120, 1960.
Canton, J.:
A Letter to the Right Honourable the Earl of Macclesfield, President of the Royal Society, concerning Some New Electrical Experiments,
Philos. T. R. Soc. Lond.,
48, 780–785, https://doi.org/10.1098/rstl.1753.0093, 1753.
Carslaw, K. S., Harrison, R. G., and Kirkby, J.:
Cosmic rays, clouds and climate,
Science,
298, 1732–1737, https://doi.org/10.1126/science.1076964, 2002.
Chubb, J. N.:
Two designs of “Field Mill” type fieldmeters not requiring earthing of rotating chopper,
IEEE T. Ind. Appl.,
26, 1178–1181, https://doi.org/10.1109/28.62405, 1990.
Chubb, J. N.:
Experience with electrostatic fieldmeter instruments with no earthing of the rotating chopper,
Inst. Phys. Conf. Ser.,
163, 443–446, 1999.
Clement, C. F. and Harrison, R. G.:
The charging of radioactive aerosols,
J. Aerosol Sci.,
23, 481–504, https://doi.org/10.1016/0021-8502(92)90019-R, 1992.
Dexheimer, D., Airey, M., Roesler, E., Longbottom, C., Nicoll, K., Kneifel, S., Mei, F., Harrison, R. G., Marlton, G., and Williams, P. D.: Evaluation of ARM tethered-balloon system instrumentation for supercooled liquid water and distributed temperature sensing in mixed-phase Arctic clouds, Atmos. Meas. Tech., 12, 6845–6864, https://doi.org/10.5194/amt-12-6845-2019, 2019.
Dickinson, R. E.:
Solar variability and the lower atmosphere,
B. Am. Meteorol. Soc.,
65, 1240–1248, https://doi.org/10.1175/1520-0477(1975)056<1240:SVATLA>2.0.CO;2, 1975.
Fastrup, B., Pedersen, E., Lillestol, E., et al.:
Addendum to the CLOUD proposal, arXiv [preprint], arXiv:physics/0104068, 23 April 2001.
Gensdarmes, F., Boulard, D., and Renoux A.:
Electrical charging of radioactive aerosols-comparison of the Clement-Harrison models with new experiments,
J. Aerosol Sci.,
32, 1437–1458, https://doi.org/10.1016/0021-8502(92)90019-R, 2001.
Gerdien, H.:
Ein neuer Apparat zur Messung der elektrischen Leitfähigkeit der Luft,
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen,
1905, 240–251, 1905.
Gilbert, W.:
De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure, Book 2, Chap. 2 [translated by: Fleury Mottelay, P., John Wiley, 1895], 1600.
Glaisher, J.:
Account of Meteorological and Physical Observations in Balloon Ascents,
Report of the British Association for the Advancement of Science (1862), 376–503, 1862.
Gringel, W. and Muehleisen, R.:
Saharan dust concentration on the troposphere for the North Atlantic derived from measurements of air conductivity,
Beiträge zur Physik der Atmosphäre,
51, 121–128, 1978.
Harnwell, G. P. and Van Voorhis, S. N.:
An electrostatic generating voltmeter,
Rev. Sci. Instrum.,
4, 540–542, https://doi.org/10.1063/1.1748995, 1933.
Harrison, R. G.:
A portable picoammeter for atmospheric electrical use,
Inst. Phys. Conf. Ser.,
143, 223–226, 1995a.
Harrison, R. G.:
A null method for electric field measurement,
Inst. Phys. Conf. Ser.,
143, 319–322, 1995b.
Harrison, R. G.:
An atmospheric electrical voltmeter follower,
Rev. Sci. Instrum.,
67, 2636–2638, https://doi.org/10.1063/1.1147180, 1996.
Harrison, R. G.:
A noise-rejecting current amplifier for surface atmospheric ion flux measurements,
Rev. Sci. Instrum.,
68, 3563–3565, https://doi.org/10.1063/1.1148323, 1997.
Harrison, R. G.:
A balloon-carried electrometer for high-resolution atmospheric electric field measurements in clouds,
Rev. Sci. Instrum.,
72, 2738–2741, https://doi.org/10.1063/1.1369639, 2001.
Harrison, R. G.:
A wide-range electrometer voltmeter for atmospheric measurements in thunderstorms and disturbed meteorological conditions,
Rev. Sci. Instrum.,
73, 482–483, https://doi.org/10.1063/1.1435840, 2002.
Harrison, R. G.: Detection of charged aerosol layers in the troposphere, Proc. 15th Annual Conference, The Aerosol Society, 14–15 April 2004, Manchester, 92–95, 2004.
Harrison, R. G.:
Inexpensive multichannel digital data acquisition system for a meteorological radiosonde,
Rev. Sci. Instrum.,
76, 026103, https://doi.org/10.1063/1.1841971, 2005a.
Harrison, R. G.:
Meteorological radiosonde interface for atmospheric ion production rate measurements,
Rev. Sci. Instrum.,
76, 126111, https://doi.org/10.1063/1.2149005, 2005b.
Harrison, R. G.:
Meteorological measurements and instrumentation,
Wiley, https://doi.org/10.1002/9781118745793, 2014.
Harrison, R. G.:
Eyjafjallajökull,
Minor Matters, Morris Minor Owners Club,
42, p. 15, 2021.
Harrison, R. G. and Aplin, K. L.:
Femtoampere current reference stable over atmospheric temperatures,
Rev. Sci. Instrum.,
71, 3231–3232, https://doi.org/10.1063/1.1304859, 2000a.
Harrison, R. G. and Aplin, K. L.:
A multimode electrometer for atmospheric ion measurements,
Rev. Sci. Instrum.,
71, 4683–4685, https://doi.org/10.1063/1.1327303, 2000b.
Harrison, R. G. and Aplin, K. L.:
Nineteenth century Parisian smoke variations inferred from Eiffel Tower atmospheric electrical observations,
Atmos. Environ.,
37, 5319–5324, https://doi.org/10.1016/j.atmosenv.2003.09.042, 2003.
Harrison, R. G. and ApSimon, H. M.:
Krypton-85 pollution and atmospheric electricity,
Atmos. Environ.,
28, 637–648, https://doi.org/10.1016/1352-2310(94)90041-8, 1994.
Harrison, R. G. and Carslaw, K. S.:
Ion–aerosol–cloud processes in the lower atmosphere,
Rev. Geophys.,
41, 1012, https://doi.org/10.1029/2002RG000114, 2003.
Harrison, R. G. and Hogan, R. J.:
In-situ atmospheric turbulence measurement using the terrestrial magnetic field – a compass for a radiosonde,
J. Atmos. Ocean. Tech.,
23, 517–523, https://doi.org/10.1175/JTECH1860.1, 2006.
Harrison, R. G. and Marlton, G. J.:
Fair weather electric field meter for atmospheric science platforms,
J. Electrostat.,
107, 103489, https://doi.org/10.1016/j.elstat.2020.103489, 2020.
Harrison, R. G. and Nicoll, K. A.:
Active optical detection of cloud from a balloon platform,
Rev. Sci. Instrum.,
85, 066104 https://doi.org/10.1063/1.4882318, 2014.
Harrison, R. G. and Nicoll, K. A.:
Fair weather criteria for atmospheric electricity measurements,
J. Atmos. Sol.-Terr. Phy.,
179, 239–250, https://doi.org/10.1016/j.jastp.2018.07.008, 2018.
Harrison, R. G., Rogers, G. W., and Hogan, R. J.:
A three-dimensional magnetometer for motion sensing of a balloon-carried atmospheric measurement package,
Rev. Sci. Instrum.,
78, 124501, https://doi.org/10.1063/1.2815349, 2007a.
Harrison, R. G., Bingham, R., Aplin, K., Kellett, B., Carslaw, K., and Haigh, J.:
Clouds in atmospheric physics,
Astron. Geophys.,
48, 2.07–2.07, https://doi.org/10.1111/j.1468-4004.2007.48207.x, 2007b.
Harrison, R. G., Heath, A. M., Hogan, R. J., and Rogers, G. W.:
Comparison of balloon-carried atmospheric motion sensors with Doppler lidar turbulence measurements,
Rev. Sci. Instrum.,
80, 026108, https://doi.org/10.1063/1.3086432, 2009.
Harrison, R. G., Nicoll, K. A., Ulanowski, Z., and Mather, T. A.:
Self-charging of the Eyjafjallajökull volcanic ash plume, Environ. Res. Lett., 5, 024004, https://doi.org/10.1088/1748-9326/5/2/024004, 2010.
Harrison, R. G., Nicoll, K. A., and Lomas, A. G.:
Programmable data acquisition system for research measurements from meteorological radiosondes,
Rev. Sci. Instrum.,
83, 036106, https://doi.org/10.1063/1.3697717, 2012.
Harrison, R. G., Nicoll, K. A., and Lomas, A. G.:
Geiger tube coincidence counter for lower atmosphere radiosonde measurements,
Rev. Sci. Instrum.,
84, 076103, https://doi.org/10.1063/1.4815832, 2013.
Harrison, R. G., Nicoll, K. A., and Ambaum, M. H. P.:
On the microphysical effects of observed cloud edge charging,
Q. J. Roy. Meteor. Soc.,
141, 2690–2699, https://doi.org/10.1002/qj.2554, 2015.
Harrison, R. G., Barth, E., Esposito, F., Merrison, J., Montmessin, F., Aplin, K. L., Borlina, C., Berthelier, J. J., Déprez, G., Farrell, W. M., Houghton, I. M. P., Renno, N. O., Nicoll, K. A., Tripathi, S. N., and Zimmerman, M.:
Applications of electrified dust and dust devil electrodynamics to Martian atmospheric electricity,
Space Sci. Rev.,
203, 299–345, https://doi.org/10.1007/s11214-016-0241-8, 2016a.
Harrison, R. G., Marlton, G. J., Williams, P. D., and Nicoll, K. A.:
Coordinated weather balloon solar radiation measurements during a solar eclipse,
Philos. T. R. Soc. A,
374, 20150221, https://doi.org/10.1098/rsta.2015.0221, 2016b.
Harrison, R. G., Nicoll, K. A., Aplin, K. L.:
Evaluating stratiform cloud base charge remotely,
Geophys. Res. Lett.,
44, 6407–6412, https://doi.org/10.1002/2017GL073128, 2017a.
Harrison, R. G., Marlton, G. J., Nicoll, K. A., Airey, M. W., and Williams, P. D.:
A self-calibrating wide range electrometer for in-cloud measurements,
Rev. Sci. Instrum.,
88, 126109 https://doi.org/10.1063/1.5011177, 2017b.
Harrison, R. G., Nicoll, K. A., Marlton, G. J., Ryder, C. L., and Bennett, A. J.:
Saharan dust plume charging observed over the UK,
Environ. Res. Lett.,
13, 054018, https://doi.org/10.1088/1748-9326/aabcd9, 2018.
Harrison, R. G., Marlton, G. J., Aplin, K. L., and Nicoll, K. A.:
Shear-induced electrical changes in the base of thin layer-cloud,
Q. J. Roy. Meteor. Soc.,
145, 3667–3679, https://doi.org/10.1002/qj.3648, 2019.
Harrison, R. G., Nicoll, K. A., Mareev, E., Slyunyaev, N., and Rycroft, M. J.:
Extensive layer clouds in the global electric circuit: their effects on vertical charge distribution and storage,
P. Roy. Soc Lond. A Mat.,
476, 20190758, https://doi.org/10.1098/rspa.2019.0758, 2020.
Hess, V. F.:
Uber Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten,
Phys. Z.,
13, 1084, 1912.
Hill, G. E. and Woffinden, D. S.:
A balloon borne instrument for the measurement of vertical profiles of supercooled liquid water concentration,
J. Appl Meteorol.,
19, 1285–1292, https://doi.org/10.1175/1520-0450(1980)019<1285:ABIFTM>2.0.CO;2, 1980.
Howard, L.:
Seven Lectures on Meteorology, 2nd Edn.,
Harvey and Dalton, 1843.
Huygens, C.:
Letter to E. W. von Tschirnhaus, 10th March no. 2452, in: Christiaan Huygens, Oeuvres complètes. Tome IX. Correspondance 1685–1690 Martinus Nijhoff, Den Haag 1901, edited by: Bosscha Jr., J., available at: https://www.dbnl.org/titels/titel.php?id=huyg003oeuv09 (last access: 19 January 2022), 1687.
Huygens, C.:
The Celestial Worlds Discover'd, Or, Conjectures Concerning the Inhabitants, Plants and Productions of the Worlds in the Planets, 2nd Edn., James Knapton, London, p. 10, 1722.
Idrac, P. and Bureau, R.:
Expériences sur la propagation des ondes radiotélégraphiques en altitude,
Comptes Rendues,
184, 691–692, 1927.
Jones, O. C., Maddever, R. S., and Sanders, J. H.:
Radiosonde measurement of vertical electrical field and polar conductivity,
J. Sci. Instrum.,
36, 24–28, 1959.
Koenigsfeld, L.:
Observations on the relations between atmospheric potential gradient on the ground and in altitude, and artificial radioactivity,
in: Recent advances in atmospheric electricity,
edited by: Smith, L. G.,
Pergamon Press, 101–109, 1958.
Lorenz, R. D.:
Comment on “In-situ atmospheric turbulence measurement using the terrestrial magnetic field – a compass for a radiosonde”,
J. Atmos. Ocean. Tech.,
24, 1519–1520, https://doi.org/10.1175/JTECH2059.1, 2007.
Lorenz, R. D., Zarnecki, J. C., Towner, M. C., Leese, M. R., Ball, A. J., Hathi, B., Hagermann, A., and Ghafoor, N. A. L.:
Descent motions of the Huygens probe as measured by the Surface Science Package (SSP): Turbulent evidence for a cloud layer,
Planet. Space Sci.,
55, 1936–1948, https://doi.org/10.1016/j.pss.2007.04.007, 2007.
Lueder, H.:
Elektrische Registrierung von heranziehenden Gewittern und die Feinstruktur des luftelekrischen Gewitterfeldes,
Meteorol. Z.,
60, 340–351, 1943.
Mapleson, W. W. and Whitlock, W. S.:
Apparatus for the accurate and continuous measurement of the earth's electric field,
J. Atmos. Terr. Phys.,
7, 61–72, https://doi.org/10.1016/0021-9169(55)90107-0, 1955.
Marlton, G. J., Harrison, R. G., and Nicoll, K. A.:
Atmospheric point discharge current measurements using a temperature-compensated logarithmic current amplifier,
Rev. Sci. Instrum.,
84, 066103, https://doi.org/10.1063/1.4810849, 2013.
Marlton, G. J., Harrison, R. G., Nicoll, K. A., and Williams, P. D.:
A balloon-borne accelerometer technique for measuring atmospheric turbulence,
Rev. Sci. Instrum.,
86, 016109, https://doi.org/10.1063/1.4905529, 2015.
Marsh, N. D. and Svensmark, H.:
Low cloud properties influenced by cosmic rays,
Phys. Rev. Lett.,
85, 5004–5007, https://doi.org/10.1103/PhysRevLett.85.5004, 2000.
Ney, E. P.:
Cosmic radiation and the weather,
Nature,
183, 451–452, 1959.
Nicoll, K. A.:
Measurements of atmospheric electricity aloft,
Surv. Geophys.,
33, 991–1057, https://doi.org/10.1007/s10712-012-9188-9, 2012.
Nicoll, K.:
A self-calibrating electrometer for atmospheric charge measurements from a balloon platform,
Rev. Sci. Instrum.,
84, 096107, https://doi.org/10.1063/1.4821500, 2013.
Nicoll, K. A. and Harrison, R. G.:
A double-Gerdien instrument for simultaneous bipolar air conductivity measurements on balloon platforms,
Rev. Sci. Instrum.,
79, 084502, https://doi.org/10.1063/1.2964927, 2008.
Nicoll, K. A. and Harrison, R. G.:
A lightweight balloon-carried cloud charge sensor,
Rev. Sci. Instrum.,
80, 014501 https://doi.org/10.1063/1.3065090, 2009.
Nicoll, K. A. and Harrison, R. G.:
Balloon-borne disposable radiometer,
Rev. Sci. Instrum.,
83, 025111, https://doi.org/10.1063/1.3685252, 2012.
Nicoll, K. A. and Harrison, R. G.:
Detection of lower tropospheric responses to solar energetic particles at mid-latitudes,
Phys. Rev. Lett.,
112, 225001, https://doi.org/10.1103/PhysRevLett.112.225001, 2014.
Nicoll, K. A. and Harrison, R. G.:
Stratiform cloud electrification: comparison of theory with multiple in-cloud measurements,
Q. J. Roy. Meteor. Soc.,
142, 2679–2691, https://doi.org/10.1002/qj.2858, 2016.
Nicoll, K. A., Harrison, R. G., and Ulanowski, Z.:
Observations of Saharan dust layer electrification,
Environ. Res. Lett.,
6, 014001, https://doi.org/10.1088/1748-9326/6/1/014001, 2011.
Nicoll, K. A., Harrison, R. G., Silva, H. G., Salgado, R., Melgao, M., and Bortoli. D.:
Electrical sensing of the dynamical structure of the planetary boundary layer,
Atmos. Res.,
202, 81–95, https://doi.org/10.1016/j.atmosres.2017.11.009, 2018.
Olson, D. E.:
Evidence for auroral effects on atmospheric electricity,
Pure Appl. Geophys.,
84, 118–138 https://doi.org/10.1007/BF00875461, 1971.
Pearce, F.:
Sunny side up,
New Sci.,
11 July 1998, available at: https://www.newscientist.com/article/mg15921425-400-sunny-side-up/, last access: 29 November 2021.
Pickering, W. H.:
An improved cosmic-ray radio sonde,
Rev. Sci. Instrum.,
14, 171–173, https://doi.org/10.1063/1.1770152, 1943.
Pierce, J. R.:
Cosmic rays, aerosols, clouds, and climate: Recent findings from the CLOUD experiment,
J. Geophys. Res.-Atmos.,
122, 8051–8055, https://doi.org/10.1002/2017JD027475, 2017.
Regener, E. and Pfotzer, G.:
Intensity of the cosmic ultra-radiation in the stratosphere with the tube-counter,
Nature,
134, 325, https://doi.org/10.1038/134325b0, 1935.
Rosen, J. M. and Kjome, N. T.:
Backscattersonde: a new instrument for atmospheric aerosol research,
Appl. Optics,
30, 1552–1561, https://doi.org/10.1364/AO.30.001552, 1991.
Simpson, G. C.:
Atmospheric electricity during the last 50 years – Part 2 Wilson's theory of the normal electric field,
Weather,
May 1949, 135–140, 1949.
Simpson, G. C. and Scrase, F. J.:
The distribution of electricity in thunderclouds,
P. Roy. Soc Lond. A Mat.,
161, 309–352, https://doi.org/10.1098/rspa.1937.0148, 1937.
Stozhkov, Y. I., Svirzhevsky, N. S., Bazilevskay, G. A., Kvashnin, A. N., Makhmutov, V. S., and Svirzhevskaya, A. K.:
Long-term (50 years) measurements of cosmic ray fluxes in the atmosphere,
Adv. Space Res.,
44, 1124–1137, 2009.
Strutt, J. W.:
The influence of electricity on colliding water drops,
P. R. Soc. London,
28, 406–409, https://doi.org/10.1098/rspl.1878.0146, 1879.
Svensmark, H. and Friis-Christensen, E.:
Variations of cosmic ray flux and global cloud coverage – a missing link in solar-climate relationships,
J. Atmos. Sol.-Terr. Phy.,
59, 1225–1232, https://doi.org/10.1016/S1364-6826(97)00001-1, 1997.
Takahashi, T.:
Measurement of electric charge in thundercloud by radiosonde,
J. Meteorol. Soc. Jpn.,
43, 206–217, https://doi.org/10.2151/JMSJ1965.43.4_206, 1965.
Thomson, W.:
On the mutual attraction or repulsion between two electrified spherical conductors, (in: Reprint of papers on electrostatics and magnetism, Macmillan, London, UK, 1884), 86–97, 1853.
Tinsley, B. A. and Deen, G. W.:
Apparent tropospheric response to MeV-GeV particle variations: a connection via electrofreezing of supercooled water in high-level clouds?,
J. Geophys. Res.,
96, 22283–22296, https://doi.org/10.1029/91JD02473, 1991.
Tripathi, S. N. and Harrison, R. G.:
Scavenging of electrified radioactive aerosol,
Atmos. Environ.,
35, 5817–5821, https://doi.org/10.1016/S1352-2310(01)00299-0, 2001.
Twomey, S.:
The electrification of individual cloud droplets,
Tellus,
8, 445–452, https://doi.org/10.3402/tellusa.v8i4.9038, 1956.
Väisälä, V.:
Bestrebungen und Vorschläge zur Entwicklung der Radiometeorgraphischen Methoden,
Societas Scientarium Fennica (Helsingfors), Commentationes Physico-Mathematicae,
6, 2, 1932.
Vaisala:
RS41 datasheet,
available at: https://www.vaisala.com/sites/default/files/documents/WEA-MET-RS41-Datasheet-B211321EN.pdf, last access: 29 November 2021.
Venkiteshwaran, S., Gupta, B., and Huddar, B.: Measurement of the electrical potential gradient in the atmosphere by radiosonde, Mausam, 5, 253–256, https://doi.org/10.54302/mausam.v5i3.4874, 1954.
Wenstrom, W. H.:
Radiometeorography as applied to unmanned balloons,
Mon. Weather Rev.,
62, 221–226, https://doi.org/10.1175/1520-0493(1934)62<221:RAATUB>2.0.CO;2, 1934.
Wilson, C. T. R.:
On the measurement of the atmospheric electric potential gradient and the earth-air current,
P. Roy. Soc Lond. A Mat.,
80, 537–547, https://doi.org/10.1098/rspa.1908.0048, 1908.
Wilson, C. T. R.:
Investigations on lightning discharges and on the electric field of thunderstorms,
Philos. T. R. Soc. A,
221, 73–155, https://doi.org/10.1098/rsta.1921.0003, 1921.
Wilson, C. T. R.:
Some thundercloud problems,
J. Frankl. Inst.,
208, 1–12, https://doi.org/10.1016/S0016-0032(29)90935-2, 1929.
Short summary
Weather balloons are released every day around the world to obtain the latest atmospheric data for weather forecasting. Expanding the range of sensors they carry can make additional quantities available, such as for atmospheric turbulence, cloud electricity, energetic particles from space and, in emergency situations, volcanic ash or radioactivity. An adaptable system has been developed to provide these and other measurements, without interfering with the core weather data.
Weather balloons are released every day around the world to obtain the latest atmospheric data...