Articles | Volume 11, issue 2
https://doi.org/10.5194/gi-11-389-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-11-389-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Upgrade of LSA-SAF Meteosat Second Generation daily surface albedo (MDAL) retrieval algorithm incorporating aerosol correction and other improvements
CNRM, Météo-France, CNRS, Université de Toulouse, Toulouse, France
CNRM, Météo-France, CNRS, Université de Toulouse, Toulouse, France
Isabel F. Trigo
Instituto Português do Mar e da Atmosfera (IPMA), Lisbon, Portugal
Sandra Gomes
Instituto Português do Mar e da Atmosfera (IPMA), Lisbon, Portugal
Sandra C. Freitas
Instituto Português do Mar e da Atmosfera (IPMA), Lisbon, Portugal
Deimos Engenharia, Lisbon, Portugal
Related authors
Adèle Georgeot, Xavier Ceamanos, Jean-Luc Attié, Daniel Juncu, Josef Gasteiger, and Mathieu Compiègne
EGUsphere, https://doi.org/10.5194/egusphere-2025-1353, https://doi.org/10.5194/egusphere-2025-1353, 2025
Short summary
Short summary
This work investigates the aerosol remote sensing capabilities offered by the new Meteosat Third Generation-Imager geostationary satellite. First, aerosol load retrieval performance is demonstrated based on realistic synthetic data. Second, the potential for aerosol type characterization is proven, with the estimation of fine mode fraction. This work opens pathways for the future study of diurnal aerosol variations from space thanks to the high temporal resolution of geostationary satellites.
Gloria Klein, Xavier Ceamanos, Jérôme Vidot, Didier Ramon, and Mustapha Moulana
EGUsphere, https://doi.org/10.5194/egusphere-2025-3263, https://doi.org/10.5194/egusphere-2025-3263, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This work investigates the impact of the Earth's sphericity on geostationary satellite observations, particularly in the context of the operational estimation of aerosol and land surface properties from the Meteosat Third Generation-Imager's Flexible Combined Imager. We demonstrate that the plane-parallel approximation widely used in fast radiative transfer codes can introduce significant biases in certain situations, mainly depending on the observing geometry and wavelength.
Adèle Georgeot, Xavier Ceamanos, Jean-Luc Attié, Daniel Juncu, Josef Gasteiger, and Mathieu Compiègne
EGUsphere, https://doi.org/10.5194/egusphere-2025-1353, https://doi.org/10.5194/egusphere-2025-1353, 2025
Short summary
Short summary
This work investigates the aerosol remote sensing capabilities offered by the new Meteosat Third Generation-Imager geostationary satellite. First, aerosol load retrieval performance is demonstrated based on realistic synthetic data. Second, the potential for aerosol type characterization is proven, with the estimation of fine mode fraction. This work opens pathways for the future study of diurnal aerosol variations from space thanks to the high temporal resolution of geostationary satellites.
Dominik Rains, Isabel Trigo, Emanuel Dutra, Sofia Ermida, Darren Ghent, Petra Hulsman, Jose Gómez-Dans, and Diego G. Miralles
Earth Syst. Sci. Data, 16, 567–593, https://doi.org/10.5194/essd-16-567-2024, https://doi.org/10.5194/essd-16-567-2024, 2024
Short summary
Short summary
Land surface temperature and surface net radiation are vital inputs for many land surface and hydrological models. However, current remote sensing datasets of these variables come mostly at coarse resolutions, and the few high-resolution datasets available have large gaps due to cloud cover. Here, we present a continuous daily product for both variables across Europe for 2018–2019 obtained by combining observations from geostationary as well as polar-orbiting satellites.
Xavier Ceamanos, Bruno Six, Suman Moparthy, Dominique Carrer, Adèle Georgeot, Josef Gasteiger, Jérôme Riedi, Jean-Luc Attié, Alexei Lyapustin, and Iosif Katsev
Atmos. Meas. Tech., 16, 2575–2599, https://doi.org/10.5194/amt-16-2575-2023, https://doi.org/10.5194/amt-16-2575-2023, 2023
Short summary
Short summary
A new algorithm to retrieve the diurnal evolution of aerosol optical depth over land and ocean from geostationary meteorological satellites is proposed and successfully evaluated with reference ground-based and satellite data. The high-temporal-resolution aerosol observations that are obtained from the EUMETSAT Meteosat Second Generation mission are unprecedented and open the door to studies that cannot be conducted with the once-a-day observations available from low-Earth-orbit satellites.
Miguel Nogueira, Clément Albergel, Souhail Boussetta, Frederico Johannsen, Isabel F. Trigo, Sofia L. Ermida, João P. A. Martins, and Emanuel Dutra
Geosci. Model Dev., 13, 3975–3993, https://doi.org/10.5194/gmd-13-3975-2020, https://doi.org/10.5194/gmd-13-3975-2020, 2020
Short summary
Short summary
We used earth observations to evaluate and improve the representation of land surface temperature (LST) and vegetation coverage over Iberia in CHTESSEL and SURFEX land surface models. We demonstrate the added value of updating the vegetation types and fractions together with the representation of vegetation coverage seasonality. Results show a large reduction in daily maximum LST systematic error during warm months, with neutral impacts in other seasons.
Cited articles
Arboleda, A., Ghilain, N., and Gellens-Meulenberghs, F.: Continuous monitoring
of evapotranspiration (ET) overview of LSA-SAF evapotranspiration
products, in: Remote Sensing for Agriculture, Ecosystems, and Hydrology XIX,
Vol. 10421, 104210E, International Society for Optics and Photonics,
https://doi.org/10.1117/12.2278249, 2017. a
Becerril-Piña, R., Díaz-Delgado, C., Mastachi-Loza, C. A., and
González-Sosa, E.: Integration of remote sensing techniques for
monitoring desertification in Mexico, Hum. Ecol. Risk Assess., 22, 1323–1340,
https://doi.org/10.1080/10807039.2016.1169914, 2016. a
Carrer, D., Roujean, J.-L., and Meurey, C.: Comparing Operational
MSG/SEVIRI Land Surface Albedo Products From Land SAF With Ground
Measurements and MODIS, IEEE T. Geosci. Remote Sens.,
48, 1714–1728, https://doi.org/10.1109/TGRS.2009.2034530, 2010. a
Carrer, D., Pinault, F., Lellouch, G., Trigo, I. F., Benhadj, I., Camacho, F.,
Ceamanos, X., Moparthy, S., Munoz-Sabater, J., Schüller, L., and
Sánchez-Zapero, J.: Surface Albedo Retrieval from 40-Years of
Earth Observations through the EUMETSAT/LSA SAF and EU/C3S
Programmes: The Versatile Algorithm of PYALUS, Remote Sensing, 13, 372,
https://doi.org/10.3390/rs13030372, 2021. a
Ceamanos, X., Carrer, D., and Roujean, J.-L.: Improved retrieval of direct and diffuse downwelling surface shortwave flux in cloudless atmosphere using dynamic estimates of aerosol content and type: application to the LSA-SAF project, Atmos. Chem. Phys., 14, 8209–8232, https://doi.org/10.5194/acp-14-8209-2014, 2014. a
Ceamanos, X., Six, B., and Riedi, J.: Quasi-Global Maps of Daily
Aerosol Optical Depth From a Ring of Five Geostationary
Meteorological Satellites Using AERUS-GEO, J. Geophys. Res.-Atmos., 126, e2021JD034906, https://doi.org/10.1029/2021JD034906, 2021. a
Cedilnik, J., Carrer, D., Mahfouf, J.-F., and Roujean, J.-L.: Impact assessment
of daily satellite-derived surface albedo in a limited-area NWP model,
J. Appl. Meteorol. Clim., 51, 1835–1854,
https://doi.org/10.1175/JAMC-D-11-0163.1, 2012. a
Cuevas-Agulló, E.: Basic and other measurements of radiation at station Izana (2021-10). Izaña Atmospheric Research Center, Meteorological State Agency of Spain, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.937907, 2021. a, b
Dirmeyer, P. A. and Shukla, J.: Albedo as a modulator of climate response to
tropical deforestation, J. Geophys. Res.-Atmos., 99,
20863–20877, https://doi.org/10.1029/94JD01311, 1994. a
Driemel, A., Augustine, J., Behrens, K., Colle, S., Cox, C., Cuevas-Agulló, E., Denn, F. M., Duprat, T., Fukuda, M., Grobe, H., Haeffelin, M., Hodges, G., Hyett, N., Ijima, O., Kallis, A., Knap, W., Kustov, V., Long, C. N., Longenecker, D., Lupi, A., Maturilli, M., Mimouni, M., Ntsangwane, L., Ogihara, H., Olano, X., Olefs, M., Omori, M., Passamani, L., Pereira, E. B., Schmithüsen, H., Schumacher, S., Sieger, R., Tamlyn, J., Vogt, R., Vuilleumier, L., Xia, X., Ohmura, A., and König-Langlo, G.: Baseline Surface Radiation Network (BSRN): structure and data description (1992–2017), Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, 2018. a
EUMETSAT: MSG Daily Surface Albedo (MDAL), EUMETSAT [data set], https://landsaf.ipma.pt/en/products/albedo/albedo-copy/, last access: 16 November 2022a. a
EUMETSAT: EPS Surface Albedo (ETAL), EUMETSAT [data set], https://landsaf.ipma.pt/en/products/albedo/etal/, last access: 16 November 2022b. a
Friedl, M. and Sulla-Menashe, D.: MCD12Q1 MODIS/Terra+Aqua Land Cover
Type Yearly L3 Global 500m SIN Grid V006, NASA EOSDIS Land
Processes DAAC [data set], https://doi.org/10.5067/MODIS/MCD12Q1.006, 2019. a, b
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N.,
Sibley, A., and Huang, X.: MODIS Collection 5 global land cover: Algorithm
refinements and characterization of new datasets, Remote Sens.
Environ., 114, 168–182, https://doi.org/10.1016/j.rse.2009.08.016, 2010. a
García, M., Sandholt, I., Ceccato, P., Ridler, M., Mougin, E., Kergoat,
L., Morillas, L., Timouk, F., Fensholt, R., and Domingo, F.: Actual
evapotranspiration in drylands derived from in-situ and satellite data:
Assessing biophysical constraints, Remote Sens. Environ., 131,
103–118, https://doi.org/10.1016/j.rse.2012.12.016, 2013. a
García-Haro, F., Camacho-de Coca, F., Meliá, J., and Martínez,
B.: Operational derivation of vegetation products in the framework of the
LSA SAF project, in: Proceedings of 2005 EUMETSAT Meteorological Satellite
Conference, Dubrovnik, Croatia, 19–23, 2005. a
Geiger, B., Carrer, D., Franchisteguy, L., Roujean, J.-L., and Meurey, C.: Land
surface albedo derived on a daily basis from Meteosat Second Generation
observations, IEEE T. Geosci. Remote Sens., 46,
3841–3856, https://doi.org/10.1109/TGRS.2008.2001798, 2008. a, b
Ghilain, N., Arboleda, A., and Gellens-Meulenberghs, F.: Evapotranspiration modelling at large scale using near-real time MSG SEVIRI derived data, Hydrol. Earth Syst. Sci., 15, 771–786, https://doi.org/10.5194/hess-15-771-2011, 2011. a
Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.-M., Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch, V.-H., Razinger, M., Remy, S., Schulz, M., and Suttie, M.: The CAMS reanalysis of atmospheric composition, Atmos. Chem. Phys., 19, 3515–3556, https://doi.org/10.5194/acp-19-3515-2019, 2019. a
Juncu, D., Ceamanos, X., Trigo, I. F., Gomes, S., and Freitas, S. C.: MDAL v2: Experimental MSG daily albedo 01-11-2020 – 31-10-2021, Zenodo [data set], https://doi.org/10.5281/zenodo.6414693, 2022. a
Kharbouche, S., Song, R., and Muller, J.-P.: Ground-Based Observations for
Validation (GBOV) of Copernicus Global Land Products: Algorithm
Theoretical Basis Document – Energy products, Algorithm theoretical
basis document, Copernicus/University College London, https://gbov.acri.fr/public/docs/products/2019-11/GBOV-ATBD-RM1-LP1-LP2_v1.3-Energy.pdf (last access: 16 November 2022), 2019. a, b
Knap, W.: Basic and other measurements of radiation at station Cabauw (2005-02 et seq). Koninklijk Nederlands Meteorologisch Instituut, De Bilt, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.940531, 2022. a, b
Kotchenova, S. Y., Vermote, E. F., Matarrese, R., and Klemm, F. J.:
Validation of a vector version of the 6S radiative transfer code for
atmospheric correction of satellite data. Part I: Path radiance,
Appl. Optics, 45, 6762–6774, https://doi.org/10.1364/AO.45.006762, 2006. a
Lellouch, G., Carrer, D., Vincent, C., Pardé, M., C. Frietas, S., and
Trigo, I. F.: Evaluation of Two Global Land Surface Albedo
Datasets Distributed by the Copernicus Climate Change Service and
the EUMETSAT LSA-SAF, Remote Sensing, 12, 1888, https://doi.org/10.3390/rs12111888, 2020. a, b, c, d
Liang, S.: Narrowband to broadband conversions of land surface albedo I:
Algorithms, Remote Sens. Environ., 76, 213–238,
https://doi.org/10.1016/S0034-4257(00)00205-4, 2001. a
Meirink, J. F., Roebeling, R. A., and Stammes, P.: Inter-calibration of polar imager solar channels using SEVIRI, Atmos. Meas. Tech., 6, 2495–2508, https://doi.org/10.5194/amt-6-2495-2013, 2013. a
Proud, S. R., Fensholt, R., Rasmussen, M. O., and Sandholt, I.: A comparison of
the effectiveness of 6S and SMAC in correcting for atmospheric
interference of Meteosat Second Generation images, J.
Geophys. Res.-Atmos., 115, D17209, https://doi.org/10.1029/2009JD013693, 2010. a
Rahman, H. and Dedieu, G.: SMAC: a simplified method for the atmospheric
correction of satellite measurements in the solar spectrum, Int.
J. Remote Sens., 15, 123–143, https://doi.org/10.1080/01431169408954055,
1994. a, b
Román, M. O., Schaaf, C. B., Woodcock, C. E., Strahler, A. H., Yang, X.,
Braswell, R. H., Curtis, P. S., Davis, K. J., Dragoni, D., Goulden, M. L.,
Gu, L., Hollinger, D. Y., Kolb, T. E., Meyers, T. P., Munger, J. W.,
Privette, J. L., Richardson, A. D., Wilson, T. B., and Wofsy, S. C.: The
MODIS (Collection V005) BRDF/albedo product: Assessment of spatial
representativeness over forested landscapes, Remote Sens. Environ.,
113, 2476–2498, https://doi.org/10.1016/j.rse.2009.07.009, 2009. a
Roujean, J.-L., Leroy, M., and Deschamps, P.-Y.: A bidirectional reflectance
model of the Earth's surface for the correction of remote sensing data,
J. Geophys. Res.-Atmos., 97, 20455–20468,
https://doi.org/10.1029/92JD01411, 1992. a
Schaaf, C. and Wang, Z.: MODIS/Terra+Aqua BRDF/Albedo Black Sky
Albedo Shortwave Daily L3 Global 30ArcSec CMG V061, NASA
EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MCD43D51.061, 2021a. a, b
Schaaf, C. and Wang, Z.: MODIS/Terra+Aqua BRDF/Albedo White Sky
Albedo Shortwave Daily L3 Global 30ArcSec CMG V061, NASA
EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MCD43D61.061, 2021b. a, b
Schaepman-Strub, G., Schaepman, M. E., Painter, T. H., Dangel, S., and
Martonchik, J. V.: Reflectance quantities in optical remote
sensing—Definitions and case studies, Remote Sens. Environ., 103,
27–42, https://doi.org/10.1016/j.rse.2006.03.002, 2006. a
Trigo, I. F., Dacamara, C. C., Viterbo, P., Roujean, J.-L., Olesen,
F., Barroso, C., Camacho-de Coca, F., Carrer, D., Freitas, S. C.,
García-Haro, J., Geiger, B., Gellens-Meulenberghs, F., Ghilain, N., Meliá, J., Pessanha, L., Siljamo, N., and Arboleda, A.: The Satellite Application Facility for
Land Surface Analysis, Int. J. Remote Sens., 32,
2725–2744, https://doi.org/10.1080/01431161003743199, 2011. a, b
Verhoef, W.: Light scattering by leaf layers with application to canopy
reflectance modeling: The SAIL model, Remote Sens. Environ., 16,
125–141, https://doi.org/10.1016/0034-4257(84)90057-9, 1984. a
Vermote, E., Tanre, D., Deuze, J., Herman, M., and Morcette, J.-J.: Second
Simulation of the Satellite Signal in the Solar Spectrum, 6S: an
overview, IEEE T. Geosci. Remote Sens., 35, 675–686,
https://doi.org/10.1109/36.581987, 1997. a
Vogt, R.: Basic and other measurements of radiation at station Gobabeb (2021-10). Meteorology Climatology Remote Sensing, Dep. Umweltwissenschaften, Universität Basel, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.938527, 2021.
a, b
Wang, Z., Schaaf, C., Lattanzio, A., Carrer, D., Grant, I., Román, M., Camacho, F., Yu, Y., Sánchez-Zapero, J., and Nickeson, J.: Global Surface Albedo Product Validation Best Practices Protocol. Version 1.0, in: Good Practices for Satellite-Derived Land Product Validation, p. 45, edited by: Wang, Z., Nickeson, J., and Román, M., Land Product Validation Subgroup (WGCV/CEOS), https://doi.org/10.5067/DOC/CEOSWGCV/LPV/ALBEDO.001, 2019. a
Wu, Z., Lei, S., Bian, Z., Huang, J., and Zhang, Y.: Study of the
desertification index based on the albedo-MSAVI feature space for semi-arid
steppe region, Environ. Earth Sci., 78, 1–13,
https://doi.org/10.1007/s12665-019-8111-9, 2019. a
Short summary
MDAL is a near real-time, satellite-based surface albedo product based on the geostationary Meteosat Second Generation mission. We propose an update to the processing algorithm that generates MDAL and evaluate the results of these changes through comparison with the pre-update, currently operational MDAL product as well as reference data using different satellite-based albedo products and in situ measurements. We find that the update provides a valuable improvement.
MDAL is a near real-time, satellite-based surface albedo product based on the geostationary...