Articles | Volume 14, issue 1
https://doi.org/10.5194/gi-14-55-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-14-55-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Software program development of a high-precision magnetometer system for human-occupied vehicles
Qimao Zhang
School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100083, China
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
Keyu Zhou
School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100083, China
Ming Deng
CORRESPONDING AUTHOR
School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100083, China
Ling Huang
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
Cheng Li
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
Qisheng Zhang
School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100083, China
Related authors
Qimao Zhang, Shuaiqing Qiao, Qisheng Zhang, and Shiyang Liu
Geosci. Instrum. Method. Data Syst., 10, 91–100, https://doi.org/10.5194/gi-10-91-2021, https://doi.org/10.5194/gi-10-91-2021, 2021
Short summary
Short summary
In order to meet the needs of geophysical exploration, the requirements of intelligent and convenient exploration instruments are realized. From the perspective of software, this research combines today's wireless transmission technology to integrate applications into mobile phones to realize remote control of field operations. It provides a new idea for geophysical exploration.
Chentao Wang, Ming Deng, Zhibin Ren, and Meng Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-256, https://doi.org/10.5194/egusphere-2025-256, 2025
This preprint is open for discussion and under review for Geoscientific Instrumentation, Methods and Data Systems (GI).
Short summary
Short summary
In the field of Marine Controlled-source Electromagnetic (MCSEM), the evident issue of heating caused by the demand for high power was observed during previous marine experiments, where devices and cables were damaged due to overheating. Therefore, the idea was conceived to design a non-contact temperature measurement system tailored specifically for MCSEM, with the capacity to seamlessly adapt to the existing hardware conditions at sea.
Zucan Lin, Qisheng Zhang, Keyu Zhou, Xiyuan Zhang, Xinchang Wang, Hui Zhang, and Feng Liu
Geosci. Instrum. Method. Data Syst., 13, 325–336, https://doi.org/10.5194/gi-13-325-2024, https://doi.org/10.5194/gi-13-325-2024, 2024
Short summary
Short summary
This paper describes the development of a controlled-source ultra-audio frequency electromagnetic receiver based on remote wireless communication technology for use in geophysical prospecting. Our design successfully addresses several shortcomings of such instruments currently available on the market, including their weight, limitations in data acquisition frequency, and difficulty in connecting to the internet for remote monitoring.
Chentao Wang, Ming Deng, Nini Duan, Xiaoxi Ma, and Meng Wang
Geosci. Instrum. Method. Data Syst., 12, 187–200, https://doi.org/10.5194/gi-12-187-2023, https://doi.org/10.5194/gi-12-187-2023, 2023
Short summary
Short summary
This paper proposes a new online data transmission technology for marine controlled-source electromagnetic (MCSEM) transmitters. The technology enables high-precision data acquisition, storage, and ethernet file transmission and offers significant convenience. This technology has the potential to revolutionize the application of MCSEM transmitters in marine explorations and to offer significant convenience.
Feng Guo, Qisheng Zhang, and Shenghui Liu
Geosci. Instrum. Method. Data Syst., 12, 111–120, https://doi.org/10.5194/gi-12-111-2023, https://doi.org/10.5194/gi-12-111-2023, 2023
Short summary
Short summary
We propose a new type of power station unit with wireless data transmission capability, which was not supported by same type of instrument as on the market. Based on this, a novel distributed geophysical data acquisition architecture is also proposed. The proposed instrument loads more stations than the industry-leading LAUL-428 while providing additional wireless data transmission and narrowband Internet of Things remote control.
Keyu Zhou, Qisheng Zhang, Guangyuan Chen, Zucan Lin, Yunliang Liu, and Pengyu Li
Geosci. Instrum. Method. Data Syst., 12, 57–69, https://doi.org/10.5194/gi-12-57-2023, https://doi.org/10.5194/gi-12-57-2023, 2023
Short summary
Short summary
The expendable current profiler (XCP) is a single-use instrument that rapidly measures currents, including the velocity, flow direction, and temperature of seawater. This study improves upon the design of the XCP to reduce the cost of the single-use devices. This has been achieved by adopting signal modulation and demodulation to transmit analog signals on an enamelled wire and digitizing the signal above the surface of the water.
Keyu Zhou, Qisheng Zhang, Yongdong Liu, Zhen Wu, Zucan Lin, Bentian Zhao, Xingyuan Jiang, and Pengyu Li
Geosci. Instrum. Method. Data Syst., 10, 141–151, https://doi.org/10.5194/gi-10-141-2021, https://doi.org/10.5194/gi-10-141-2021, 2021
Short summary
Short summary
This paper describes the development of a new multifunctional four-dimensional high-density electrical instrument based on remote wireless communication technology, for use in shallow geophysical prospecting. We carried out a lot of tests. Our design successfully addresses a number of shortcomings of such instruments currently available on the market, including bulkiness, weight, limitations in data acquisition accuracy, and difficulty of connecting to the Internet for remote monitoring.
Qimao Zhang, Shuaiqing Qiao, Qisheng Zhang, and Shiyang Liu
Geosci. Instrum. Method. Data Syst., 10, 91–100, https://doi.org/10.5194/gi-10-91-2021, https://doi.org/10.5194/gi-10-91-2021, 2021
Short summary
Short summary
In order to meet the needs of geophysical exploration, the requirements of intelligent and convenient exploration instruments are realized. From the perspective of software, this research combines today's wireless transmission technology to integrate applications into mobile phones to realize remote control of field operations. It provides a new idea for geophysical exploration.
Sixuan Song, Ming Deng, Kai Chen, Muer A, and Sheng Jin
Geosci. Instrum. Method. Data Syst., 10, 55–64, https://doi.org/10.5194/gi-10-55-2021, https://doi.org/10.5194/gi-10-55-2021, 2021
Short summary
Short summary
Current borehole receivers only measure a single parameter of the magnetic field component, which does not meet the special requirements of controlled-source electromagnetic (CSEM) methods. This study proposes a borehole electromagnetic receiver that realizes synchronous acquisition of the vertical electric field component and three-axis orthogonal magnetic field components. Results of the experiments show that our system functioned adequately and that high-quality CSEM signals were obtained.
Feng Guo, Qisheng Zhang, Qimao Zhang, Wenhao Li, Yueyun Luo, Yuefeng Niu, and Shuaiqing Qiao
Geosci. Instrum. Method. Data Syst., 9, 255–266, https://doi.org/10.5194/gi-9-255-2020, https://doi.org/10.5194/gi-9-255-2020, 2020
Short summary
Short summary
The CUGB-CS48DAS data acquisition system was primarily designed for seismic purposes. However, we tried to integrate the acquisition circuit for electrical purposes and implemented hardware improvements as well as software updates. Moreover, technology including narrow-band internet of things QC monitoring was also introduced. After a few field tests, the system was proven to be stable and easy to use and has a good application effect in engineering geology, mineral geology, and energy geology.
Kai Chen, Ming Deng, Zhongliang Wu, Xianhu Luo, and Li Zhou
Geosci. Instrum. Method. Data Syst., 9, 213–222, https://doi.org/10.5194/gi-9-213-2020, https://doi.org/10.5194/gi-9-213-2020, 2020
Short summary
Short summary
Based on existing ocean bottom E-field (OBE) receiver specifications, including low noise levels, low power consumption, and low time drift errors, we integrated two induction coils for the magnetic sensor and a three-axis omnidirectional geophone for the seismic sensor to assemble an ultra-short baseline (USBL) transponder as the position sensor, which improved position accuracy and operational efficiency while reducing field data acquisition costs.
Rui Yang, Meng Wang, Gongxiang Wang, Ming Deng, Jianen Jing, and Xiancheng Li
Geosci. Instrum. Method. Data Syst., 9, 69–77, https://doi.org/10.5194/gi-9-69-2020, https://doi.org/10.5194/gi-9-69-2020, 2020
Short summary
Short summary
An electromagnetic transmitter sends an electromagnetic wave to the seabed; the receiver located on the seafloor receives the electromagnetic wave which carries the information of the geosphere.
In this paper, an algorithm is proposed to improve the current quality of marine electromagnetic transmitters. It has an anomaly detection function for the unstable part of the transmitting current. Our results show that the instability of transmitting-current data can cause obvious anomalies.
Qisheng Zhang, Wenhao Li, Feng Guo, Zhenzhong Yuan, Shuaiqing Qiao, and Qimao Zhang
Geosci. Instrum. Method. Data Syst., 8, 241–249, https://doi.org/10.5194/gi-8-241-2019, https://doi.org/10.5194/gi-8-241-2019, 2019
Short summary
Short summary
Complex and harsh exploration environments have put forward higher requirements for traditional geophysical exploration methods and instruments. In this study, a new distributed seismic and electrical hybrid acquisition station is developed and it can achieve high-precision hybrid acquisition of seismic and electrical data. The synchronization precision of the acquisition station is better than 200 ns and the maximum low-power data transmission speed is 16 Mbps along a 55 m cable.
Wenhao Li, Qisheng Zhang, Qimao Zhang, Feng Guo, Shuaiqing Qiao, Shiyang Liu, Yueyun Luo, Yuefeng Niu, and Xing Heng
Geosci. Instrum. Method. Data Syst., 8, 177–186, https://doi.org/10.5194/gi-8-177-2019, https://doi.org/10.5194/gi-8-177-2019, 2019
Short summary
Short summary
The nonuniqueness of geophysical inversions, which is based on a single geophysical method, is a long–standing problem in geophysical exploration. This paper developed a distributed, multi–channel, high–precision data acquisition system. It can achieve high–precision hybrid acquisition of seismic–electrical data and monitor the real–time quality of data acquisition processes using NB–IoT technology. The equivalent input noise is 0.5 μV and the synchronization accuracy is within 200 ns.
Feng Guo, Qisheng Zhang, Qimao Zhang, Wenhao Li, Yueyun Luo, Yuefeng Niu, and Shauiqing Qiao
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2018-48, https://doi.org/10.5194/gi-2018-48, 2019
Revised manuscript not accepted
Short summary
Short summary
The CUGB-CS48DAS data acquisition system was designed for seismic purpose at first. However, we tried to integrate the acquisition circuit and after several hardware improvements and software updates, it can be used now for seismic exploration as well as electrical prospecting.
It has good application effects in engineering geology, mineral geology and energy geology, and is suitable for exploration tasks in coalfields, petroleum, minerals, earthquake monitoring and urban construction, etc.
Shuangshuang Cheng, Ming Deng, Meng Wang, Sheng Jin, Qisheng Zhang, and Kai Chen
Geosci. Instrum. Method. Data Syst., 8, 13–19, https://doi.org/10.5194/gi-8-13-2019, https://doi.org/10.5194/gi-8-13-2019, 2019
Short summary
Short summary
High-power transmitters have been playing a significant role in deep electromagnetic exploration. However, a high-power transmitter needs high-voltage support, which is a potential risk for researchers. According to the actual situation of field exploration, we designed a wireless monitoring system. The system offers two advantages, the first of which is high security; the second advantage is simple operation.
Shuaiqing Qiao, Hongmei Duan, Qisheng Zhang, Qimao Zhang, Shuhan Li, Shenghui Liu, Shiyang Liu, Yongqing Wang, Shichu Yan, Wenhao Li, and Feng Guo
Geosci. Instrum. Method. Data Syst., 7, 253–263, https://doi.org/10.5194/gi-7-253-2018, https://doi.org/10.5194/gi-7-253-2018, 2018
Short summary
Short summary
In this study, a high-precision distributed wireless microseismic acquisition system has been designed for oil and gas exploration. The system design, which was based on the ADS1274 chip manufactured by TI, made full use of the four channels of the chip to collect vibration signals in three directions and one electrical signal, respectively. Furthermore, the acquisition system used GPS and WIFI technologies to achieve distributed wireless acquisition.
Kai Chen, Sheng Jin, and Ming Deng
Geosci. Instrum. Method. Data Syst., 7, 11–19, https://doi.org/10.5194/gi-7-11-2018, https://doi.org/10.5194/gi-7-11-2018, 2018
Short summary
Short summary
To assess the performance of the developed EM receivers, this paper presents a multifunctional waveform generator with three waveforms: 1) a wideband, low-noise electromagnetic field signal to be used for magnetotelluric, audio-magnetotelluric, and long-period magnetotelluric studies; 2) a repeating frequency sweep square waveform for CSAMT and SIP studies; and 3) a “positive-zero–negative-zero” signal that contains primary and secondary fields for time-domain-induced polarization studies.
Xinyue Zhang, Qisheng Zhang, Meng Wang, Qiang Kong, Shengquan Zhang, Ruihao He, Shenghui Liu, Shuhan Li, and Zhenzhong Yuan
Geosci. Instrum. Method. Data Syst., 6, 495–503, https://doi.org/10.5194/gi-6-495-2017, https://doi.org/10.5194/gi-6-495-2017, 2017
Short summary
Short summary
We believe that our study full-waveform voltage and current recording device for MTEM transmitters makes a significant contribution to the literature because this full-waveform recording device can be used to monitor the high-power, full-waveform voltages and currents of MTEM transmitters. It has high precision, finer edge details, low noise, and other advantages. Hence, it can be used for real-time recording and transmission to the receiver for coherent demodulation.
Shuhan Li, Qisheng Zhang, Xiao Zhao, Shenghui Liu, Zhenzhong Yuan, and Xinyue Zhang
Geosci. Instrum. Method. Data Syst., 6, 263–267, https://doi.org/10.5194/gi-6-263-2017, https://doi.org/10.5194/gi-6-263-2017, 2017
Short summary
Short summary
The main contribution of our paper is the proposal of a dynamic data transmission technology of an expendable current profiler, using varnished wires as the data transmission medium. The results of both indoor and marine tests demonstrate high efficiency and accuracy for transmission distances up to 2 km. We believe that this study will be of interest to the readership because our research is of particular interest and use for scientific marine investigation.
Xinyue Zhang, Qisheng Zhang, Xiao Zhao, Qimao Zhang, Shenghui Liu, Shuhan Li, and Zhenzhong Yuan
Geosci. Instrum. Method. Data Syst., 6, 209–215, https://doi.org/10.5194/gi-6-209-2017, https://doi.org/10.5194/gi-6-209-2017, 2017
Short summary
Short summary
In this study, we propose a more accurate method for calculating the current velocity from the nanovolt-scale current-induced electric field as measured using an expendable current profiler (XCP). In order to confirm the accuracy of the proposed data processing method, a sea test was performed, wherein ocean current/electric field data were collected from the sea surface to a depth of 1000 m using an XCP.
Related subject area
System design
Research and application of small-diameter hydraulic fracturing in situ stress measurement system
New ring shear deformation apparatus for three-dimensional multiphase experiments: first results
Design and performance of the Hotrod melt-tip ice-drilling system
Towards agricultural soil carbon monitoring, reporting, and verification through the Field Observatory Network (FiON)
Development of a new centralized data acquisition system for seismic exploration
An autonomous low-power instrument platform for monitoring water and solid discharges in mesoscale rivers
Instrument observation strategy for a new generation of three-axis-stabilized geostationary meteorological satellites from China
Near-real-time environmental monitoring and large-volume data collection over slow communication links
A new device to mount portable energy-dispersive X-ray fluorescence spectrometers (p-ED-XRF) for semi-continuous analyses of split (sediment) cores and solid samples
The KM3NeT project: status and perspectives
Yimin Liu, Mian Zhang, Yixuan Li, and Huan Chen
Geosci. Instrum. Method. Data Syst., 13, 107–116, https://doi.org/10.5194/gi-13-107-2024, https://doi.org/10.5194/gi-13-107-2024, 2024
Short summary
Short summary
We developed a serialized small-diameter hydraulic fracturing in situ stress measurement system, which enables series measurement of small-sized boreholes for in situ stress and has the advantage of a simple and lightweight structure, short testing time, high success rate, and low requirements for rock integrity and pressurization equipment. This system has important practical value and economic significance for accurately determining the in situ stress state of deep development areas.
Shae McLafferty, Haley Bix, Kyle Bogatz, and Jacqueline E. Reber
Geosci. Instrum. Method. Data Syst., 12, 141–154, https://doi.org/10.5194/gi-12-141-2023, https://doi.org/10.5194/gi-12-141-2023, 2023
Short summary
Short summary
Multiple geologic hazards, such as landslides and earthquakes, arise when solids and fluids coexist and deform together. We designed an experimental apparatus that allows us to observe such deformation in 3D. The first results show how fluids and solids deform and break at the same time, allowing us to study the impact of both materials on deformation distribution and speed. Making these processes visible has the potential to improve risk assessments associated with geological hazards.
William Colgan, Christopher Shields, Pavel Talalay, Xiaopeng Fan, Austin P. Lines, Joshua Elliott, Harihar Rajaram, Kenneth Mankoff, Morten Jensen, Mira Backes, Yunchen Liu, Xianzhe Wei, Nanna B. Karlsson, Henrik Spanggård, and Allan Ø. Pedersen
Geosci. Instrum. Method. Data Syst., 12, 121–140, https://doi.org/10.5194/gi-12-121-2023, https://doi.org/10.5194/gi-12-121-2023, 2023
Short summary
Short summary
We describe a new drill for glaciers and ice sheets. Instead of drilling down into the ice, via mechanical action, our drill melts into the ice. Our goal is simply to pull a cable of temperature sensors on a one-way trip down to the ice–bed interface. Here, we describe the design and testing of our drill. Under laboratory conditions, our melt-tip drill has an efficiency of ∼ 35 % with a theoretical maximum penetration rate of ∼ 12 m h−1. Under field conditions, our efficiency is just ∼ 15 %.
Olli Nevalainen, Olli Niemitalo, Istem Fer, Antti Juntunen, Tuomas Mattila, Olli Koskela, Joni Kukkamäki, Layla Höckerstedt, Laura Mäkelä, Pieta Jarva, Laura Heimsch, Henriikka Vekuri, Liisa Kulmala, Åsa Stam, Otto Kuusela, Stephanie Gerin, Toni Viskari, Julius Vira, Jari Hyväluoma, Juha-Pekka Tuovinen, Annalea Lohila, Tuomas Laurila, Jussi Heinonsalo, Tuula Aalto, Iivari Kunttu, and Jari Liski
Geosci. Instrum. Method. Data Syst., 11, 93–109, https://doi.org/10.5194/gi-11-93-2022, https://doi.org/10.5194/gi-11-93-2022, 2022
Short summary
Short summary
Better monitoring of soil carbon sequestration is needed to understand the best carbon farming practices in different soils and climate conditions. We, the Field Observatory Network (FiON), have therefore established a methodology for monitoring and forecasting agricultural carbon sequestration by combining offline and near-real-time field measurements, weather data, satellite imagery, and modeling. To disseminate our work, we built a website called the Field Observatory (fieldobservatory.org).
Feng Guo, Qisheng Zhang, Qimao Zhang, Wenhao Li, Yueyun Luo, Yuefeng Niu, and Shuaiqing Qiao
Geosci. Instrum. Method. Data Syst., 9, 255–266, https://doi.org/10.5194/gi-9-255-2020, https://doi.org/10.5194/gi-9-255-2020, 2020
Short summary
Short summary
The CUGB-CS48DAS data acquisition system was primarily designed for seismic purposes. However, we tried to integrate the acquisition circuit for electrical purposes and implemented hardware improvements as well as software updates. Moreover, technology including narrow-band internet of things QC monitoring was also introduced. After a few field tests, the system was proven to be stable and easy to use and has a good application effect in engineering geology, mineral geology, and energy geology.
Guillaume Nord, Yoann Michielin, Romain Biron, Michel Esteves, Guilhem Freche, Thomas Geay, Alexandre Hauet, Cédric Legoût, and Bernard Mercier
Geosci. Instrum. Method. Data Syst., 9, 41–67, https://doi.org/10.5194/gi-9-41-2020, https://doi.org/10.5194/gi-9-41-2020, 2020
Short summary
Short summary
We present the development of the RIPLE platform that is designed for the monitoring at high temporal frequency (~ 10 min) of water discharge, solid fluxes (bedload and suspended load) and properties of fine particles (settling velocity) in mesoscale rivers. Many instruments are integrated into this single centralized device, which is autonomous in energy and connected to the 2G/3G network. A user-friendly interface has been developed enabling us to visualize the data collected by the platform.
Jian Shang, Lei Yang, Pan Huang, Huizhi Yang, Chengbao Liu, Jing Wang, Lei Zhao, Shengxiong Zhou, Xiaodong Chen, and Zhiqing Zhang
Geosci. Instrum. Method. Data Syst., 8, 161–175, https://doi.org/10.5194/gi-8-161-2019, https://doi.org/10.5194/gi-8-161-2019, 2019
Short summary
Short summary
Towards the complex observation requirements of Fengyun-4 (FY-4) satellites, a new generation of geostationary meteorological satellites from China, instrument observation strategies are proposed on which the instruments' in-orbit daily observations must be based. The strategies have been successfully used in FY-4A in-orbit tests for more than a year. Both the simulation results and in-orbit application results are given to demonstrate the validity of the strategies.
Misha B. Krassovski, Glen E. Lyon, Jeffery S. Riggs, and Paul J. Hanson
Geosci. Instrum. Method. Data Syst., 7, 289–295, https://doi.org/10.5194/gi-7-289-2018, https://doi.org/10.5194/gi-7-289-2018, 2018
Short summary
Short summary
Climate change studies are growing and related experiments are getting bigger and more complex. They are often conducted in remote areas where communications are limited. In cases like that the data can be transferred via a satellite connection, but these types of connections are slow. We found that by using the little known possibilities of LoggerNet software (the most popular data logger software in environmental science) it is possible to transfer quite a large amount of data.
Philipp Hoelzmann, Torsten Klein, Frank Kutz, and Brigitta Schütt
Geosci. Instrum. Method. Data Syst., 6, 93–101, https://doi.org/10.5194/gi-6-93-2017, https://doi.org/10.5194/gi-6-93-2017, 2017
Short summary
Short summary
This paper introduces a hands-on, low-cost device (German industrial property right no. 20 2014 106 048.0) that uses common adapters to mount p-ED-XRF devices so that these can provide bulk-sedimentary chemistry data from non-destructive measurements at the surface of a split sediment core or from other solid samples. The strength of combining p-ED-XRF analyses with this new sample chamber is demonstrated by exemplary sediment cores from an archaeological research project.
A. Margiotta
Geosci. Instrum. Method. Data Syst., 2, 35–40, https://doi.org/10.5194/gi-2-35-2013, https://doi.org/10.5194/gi-2-35-2013, 2013
Cited articles
AlBadi, S., Jacobson, E., and Filina, I.: Locating an old well in eastern Nebraska with a low-cost drone-based magnetic surveying system, The Leading Edge, 12, 824–827, 2023.
Bennett, J. S., Vyhnalek, B. E., Greenall, H., Bridge, E. M., Fernando, G., Forstner, S., Harris, G. I., Miranda, F. A., and Bowen, W. P.: Precision Magnetometers for Aerospace Applications: A Review, Sensors, 21, 5568, https://doi.org/10.3390/s21165568, 2021.
Da, T., Hei, G., Wu, Y., Chen, M., and Zhao, Y.: FPGA-based cesium optical pump magnetometer data recording system design, in: Journal of Physics: Conference Series. 2815, 012038, IOP Publishing, https://doi.org/10.1088/1742-6596/2815/1/012038, 2024.
Dong, H., Xue, L., Luo, W., Ge, J., Liu, H., Yuan, Z., Zhang, H., and Zhu, J.: A high-accuracy and non-intermittent frequency measurement method for Larmor signal of optically pumped cesium magnetometer, J. Instrum., 16, P06001, https://doi.org/10.1088/1748-0221/16/06/P06001, 2021.
Dou, Z., Cheng, D., and Zhou, Z.: The frequency measurement method for cesium optically pumped magnetic gradiometer based on FPGA, Chin. J. Sensors Actuators, 31, 170–174, 2018.
Eppelbaum, L. V.: Quantitative interpretation of magnetic anomalies from thick bed, horizontal plate, and intermediate models under complex physical-geological environments in archaeological prospection, Archaeol.l Prospect., 23, 255–268, 2015.
Eppelbaum, L. V. and Mishne, A. R.: Unmanned Airborne Magnetic and VLF investigations: Effective Geophysical Methodology of the Near Future, Positioning, 2, No. 3, 112–133, 2011.
Feng, Y., Zhang, Q., Zheng, Y., Qu, X., Wu, F., and Fang, G.: An improved aeromagnetic compensation method robust to geomagnetic gradient, Appl. Sci., 12, 1490, https://doi.org/10.3390/app12031490, 2022.
Greene, K., Bounds, S. R., Broadfoot, R. M., Feltman, C., Hisel, S. J., Kraus, R. M., Lasko, A., Washington, A., and Miles, D. M.: First in situ measurements of the prototype Tesseract fluxgate magnetometer on the ACES-II-Low sounding rocket, Geosci. Instrum. Method. Data Syst., 13, 249–262, https://doi.org/10.5194/gi-13-249-2024, 2024.
Hezel, M. C.: Improving aeromagnetic calibration using artificial neural networks, Air Force Institute of Technology, https://doi.org/10.1007/BF01414949, 2020.
Hu, S., Dong, H., Ge, J., and Luo, W.: A high-speed, continuous and no-intermittent frequency measurement algorithm for cesium optically pumped magnetometer, in: 2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS), 1–5, IEEE, https://doi.org/10.1109/EIIS.2017.8298585, 2017.
Krylov, V. V.: Biological Effects Related to Geomagnetic Activity and Possible Mechanisms, Bioelectromagnetics, 38, 497–510, 2017.
Lebedev, V., Hartwig, S., and Middelmann, T.: Fast and robust optically pumped cesium magnetometer, Adv. Opt. Technol., 9, 275–286, 2020.
Liu, L., Lu, Y., Zhuang, X., Zhang, Q., and Fang, G.: Noise analysis in pre-amplifier circuits associated to highly sensitive optically-pumped magnetometers for geomagnetic applications, Appl. Sci., 10, 7172, https://doi.org/10.3390/app10207172, 2020.
Liu, L. S., Zhang, L., Lu, Y.T., Zhang, Q. Y., and Fang, G. Y.: Research on noise characteristics of the photoelectric detection circuit of optically pumped cesium magnetometer, Chin. J. Sci. Instrum., 39, 203–210, 2018.
Narita, Y., Plaschke, F., Magnes, W., Fischer, D., and Schmid, D.: Error estimate for fluxgate magnetometer in-flight calibration on a spinning spacecraft, Geosci. Instrum. Method. Data Syst., 10, 13–24, https://doi.org/10.5194/gi-10-13-2021, 2021.
Peng, X., Zhou, Y., Li, L., Xu, Z., Zhou, M., and Xu, X.: High precision measurement of light polarization using a Cs atomic magnetometer configuration, J. Phys. B: At. Mol. Opt. Phys., 54, 105401, https://doi.org/10.1088/1361-6455/abfd03, 2021.
Schmidt, V., Coolen, J., Fritsch, T., and Klingen, S.: Towards drone-based magnetometer measurements for archaeological prospection in challenging terrain, Drone Syst. Appl., 12, 1–15, 2024.
Schultze, V., Scholtes, T., IJsselsteijn, R., and Meyer, H. G.: Improving the sensitivity of optically pumped magnetometers by hyperfine repumping, J. Opt. Soc. Am. B, 32, 730–736, 2015.
Stele, A., Kaub, L., Linck, R., Schikorra, M., and Fassbinder, J. W.: Drone-based magnetometer prospection for archaeology, J. Archaeolog. Sci., 158, 105818, https://doi.org/10.1016/j.jas.2023.105818, 2023.
Tang, D., and Sun, Z., and Sui, G.: Preface Geological environment in the South China Sea, J. Oceanol. Limnol., 41, 403–408, 2023.
Xue, L., Dong, H., Luo, W., Ge, J., and Liu, H.: Design of the self-oscillating loop of the optically pumped cesium magnetometer, in: Journal of Physics: Conference Series, 1754, 012156, IOP Publishing, 5696–5705, https://doi.org/10.1007/978-981-19-6613-2_549, 2021.
Zhou, K., Zhang, Q., and Zhang, Q.: Hardware Design and Implementation of a High-Precision Optically Pumped Cesium Magnetometer System Based on the Human-Occupied Vehicle Platform, Appl. Sci., 14, 2076–3417, 2024.
Short summary
We developed a software system for a high-precision magnetometer platform, specifically designed for human-occupied vehicles (HOVs). The system integrates magnetometers to deliver accurate magnetic field detection, with advanced features such as automatic probe switching and magnetic compensation. The system's performance was validated through rigorous laboratory tests and marine experiments on the Shenhai Yongshi platform.
We developed a software system for a high-precision magnetometer platform, specifically designed...