Near-magnetic-field scaling for verification of spacecraft equipment
M. A. Pudney et al.
Related authors
Related subject area
Electromagnetic
Autonomous-underwater-vehicle-based marine multicomponent self-potential method: observation scheme and navigational correction
A compact ocean bottom electromagnetic receiver and seismometer
A full waveform current recorder for electrical prospecting
A wireless monitoring system for a high-power borehole–ground electromagnetic transmitter
Background noise estimation of the geomagnetic signal
Geosci. Instrum. Method. Data Syst., 10, 35–43,
2021Geosci. Instrum. Method. Data Syst., 9, 213–222,
2020Geosci. Instrum. Method. Data Syst., 8, 139–147,
2019Geosci. Instrum. Method. Data Syst., 8, 13–19,
2019Geosci. Instrum. Method. Data Syst., 7, 189–193,
2018Cited articles
Filippopoulos, G. and Tsanakas, D.: Analytical calculation of the magnetic field produced by electric power lines, IEEE T. Power Deliver., 20, 1474–1482, 2005.
Jackson, J. D.: Classical Electrodynamics, New York, John Wiley and Sons, 1999.
Junge, A. and Marliani, F.: Prediction of DC Magnetic Fields for Magnetic Cleanliness on Spacecraft 2011, IEEE International Symposium on Electromagnetic Compatibility (EMC), Rome, 834–839, 2011.
Müller, D., Marsden, R. G., St. Cyr, O. C., and Gilbert, H. R.: Solar Orbiter. Exploring the Sun-Heliosphere Connection, Sol. Phys., 285, 25–70, 2013.
National Grid: How the field from a power line falls with distance, Retrieved 9 October 2012, http://www.emfs.info/Sources+of+EMFs/Overhead+power+lines/power+line+power+law.htm (last access: 25 July 2013), 2012.