Articles | Volume 5, issue 1
https://doi.org/10.5194/gi-5-151-2016
https://doi.org/10.5194/gi-5-151-2016
Research article
 | 
20 May 2016
Research article |  | 20 May 2016

Practical considerations for enhanced-resolution coil-wrapped distributed temperature sensing

Koen Hilgersom, Tim van Emmerik, Anna Solcerova, Wouter Berghuijs, John Selker, and Nick van de Giesen

Related authors

An axisymmetric non-hydrostatic model for double-diffusive water systems
Koen Hilgersom, Marcel Zijlema, and Nick van de Giesen
Geosci. Model Dev., 11, 521–540, https://doi.org/10.5194/gmd-11-521-2018,https://doi.org/10.5194/gmd-11-521-2018, 2018
Short summary

Related subject area

Sensing
Shipborne Comparison of Infrared and Passive Microwave Radiometers for Sea Surface Temperature Observations
Guisella Gacitúa, Jacob L. Høyer, Sten Schmidl Søbjærg, Hoyeon Shi, Sotirios Skarpalezos, Ioanna Karagali, Emy Alerskans, and Craig Donlon
EGUsphere, https://doi.org/10.5194/egusphere-2024-542,https://doi.org/10.5194/egusphere-2024-542, 2024
Short summary
3D-printed Ag–AgCl electrodes for laboratory measurements of self-potential
Thomas S. L. Rowan, Vilelmini A. Karantoni, Adrian P. Butler, and Matthew D. Jackson
Geosci. Instrum. Method. Data Syst., 12, 259–270, https://doi.org/10.5194/gi-12-259-2023,https://doi.org/10.5194/gi-12-259-2023, 2023
Short summary
Response time correction of slow-response sensor data by deconvolution of the growth-law equation
Knut Ola Dølven, Juha Vierinen, Roberto Grilli, Jack Triest, and Bénédicte Ferré
Geosci. Instrum. Method. Data Syst., 11, 293–306, https://doi.org/10.5194/gi-11-293-2022,https://doi.org/10.5194/gi-11-293-2022, 2022
Short summary
Magnetic interference mapping of four types of unmanned aircraft systems intended for aeromagnetic surveying
Loughlin E. Tuck, Claire Samson, Jeremy Laliberté, and Michael Cunningham
Geosci. Instrum. Method. Data Syst., 10, 101–112, https://doi.org/10.5194/gi-10-101-2021,https://doi.org/10.5194/gi-10-101-2021, 2021
Short summary
Using near-surface atmospheric measurements as a proxy for quantifying field-scale soil gas flux
Andrew Barkwith, Stan E. Beaubien, Thomas Barlow, Karen Kirk, Thomas R. Lister, Maria C. Tartarello, and Helen Taylor-Curran
Geosci. Instrum. Method. Data Syst., 9, 483–490, https://doi.org/10.5194/gi-9-483-2020,https://doi.org/10.5194/gi-9-483-2020, 2020
Short summary

Cited articles

Arnon, A., Selker, J., and Lensky, N.: Correcting artifacts in transition to a wound optic fiber: Example from high-resolution temperature profiling in the Dead Sea, Water Resour. Res., 50, 5329–5333, https://doi.org/10.1002/2013WR014910, 2014.
Briggs, M. A., Lautz, L. K., McKenzie, J. M., Gordon, R. P., and Hare, D. K.: Using high-resolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux, Water Resour. Res., 48, W02527, https://doi.org/10.1029/2011WR011227, 2012.
Ciocca, F., Lunati, I., Van de Giesen, N., and Parlange, M. B.: Heated optical fiber for distributed soil-moisture measurements: A lysimeter experiment, Vadose Zone J., 11, 9851, https://doi.org/10.2136/vzj2011.0199, 2012.
Corning ClearCurve Multimode Optical Fiber Product Information: https://www.corning.com/media/worldwide/coc/documents/Fiber/PI1468_07-14_English.pdf, last access: 2 November 2015.
De Jong, S. A. P., Slingerland, J. D., and van de Giesen, N. C.: Fiber optic distributed temperature sensing for the determination of air temperature, Atmos. Meas. Tech., 8, 335–339, https://doi.org/10.5194/amt-8-335-2015, 2015.
Download
Short summary
Fibre optic distributed temperature sensing allows one to measure temperature patterns along a fibre optic cable with resolutions down to 25 cm. In geosciences, we sometimes wrap the cable to a coil to measure temperature at even smaller scales. We show that coils with narrow bends affect the measured temperatures. This also holds for the object to which the coil is attached, when heated by solar radiation. We therefore recommend the necessity to carefully design such distributed temperature probes.