Articles | Volume 9, issue 1
https://doi.org/10.5194/gi-9-153-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-9-153-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Daedalus: a low-flying spacecraft for in situ exploration of the lower thermosphere–ionosphere
Theodoros E. Sarris
CORRESPONDING AUTHOR
Department of Electrical and Computer Engineering, Democritus
University of Thrace, Xanthi, 67132, Greece
Elsayed R. Talaat
National Oceanic and Atmospheric Administration, Silver Spring, MD
20910, USA
Minna Palmroth
Department of Physics, University of Helsinki, Helsinki, 00014, Finland
Finnish Meteorological Institute, Space and Earth Observation Center, Helsinki, Finland
Iannis Dandouras
Institut de Recherche en Astrophysique et Planétologie (IRAP), Université de Toulouse/CNRS/UPS/CNES, Toulouse, 31028, France
Errico Armandillo
Space Engineering Consultant, Eventech Ltd, Dzerbenes street 14, Riga, 1006, Latvia
Guram Kervalishvili
German Research Centre for Geosciences, 14473 Potsdam, Germany
Stephan Buchert
Swedish Institute of Space Physics, Uppsala, 75121, Sweden
Stylianos Tourgaidis
Department of Electrical and Computer Engineering, Democritus
University of Thrace, Xanthi, 67132, Greece
Space Programmes Unit, Athena Research & Innovation Centre, Amarousio Athens, 15125, Greece
David M. Malaspina
Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80026, USA
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA
Allison N. Jaynes
Department of Physics & Astronomy, University of Iowa, Iowa City, IA 52242-1479, USA
Nikolaos Paschalidis
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
John Sample
Department of Physics, Montana State University, Bozeman, MTCE1 59717-2220, USA
Jasper Halekas
Department of Physics & Astronomy, University of Iowa, Iowa City, IA 52242-1479, USA
Eelco Doornbos
Royal Netherlands Meteorological Institute – KNMI, P.O. Box 201,
3730 AE De Bilt, the Netherlands
Vaios Lappas
Space Programmes Unit, Athena Research & Innovation Centre, Amarousio Athens, 15125, Greece
Therese Moretto Jørgensen
Department of Physics and Technology, University of Bergen, Bergen, 5520, Norway
Claudia Stolle
German Research Centre for Geosciences, 14473 Potsdam, Germany
Mark Clilverd
British Antarctic Survey, Cambridge, CB30ERT, UK
High Altitude Observatory, NCAR, Boulder, CO 80307-3000, USA
Ingmar Sandberg
Space Applications & Research Consultancy (SPARC), Athens,
10677, Greece
Panagiotis Pirnaris
Department of Electrical and Computer Engineering, Democritus
University of Thrace, Xanthi, 67132, Greece
Anita Aikio
University of Oulu, Ionospheric Physics Unit, Oulu, 90014, Finland
Related authors
Joachim Vogt, Octav Marghitu, Adrian Blagau, Leonie Pick, Nele Stachlys, Stephan Buchert, Theodoros Sarris, Stelios Tourgaidis, Thanasis Balafoutis, Dimitrios Baloukidis, and Panagiotis Pirnaris
Geosci. Instrum. Method. Data Syst., 12, 239–257, https://doi.org/10.5194/gi-12-239-2023, https://doi.org/10.5194/gi-12-239-2023, 2023
Short summary
Short summary
Motivated by recent community interest in a satellite mission to the atmospheric lower thermosphere and ionosphere (LTI) region (100–200 km altitude), the DIPCont project is concerned with the reconstruction quality of vertical profiles of key LTI variables using dual- and single-spacecraft observations. The report introduces the probabilistic DIPCont modeling framework, demonstrates its usage by means of a set of self-consistent parametric non-isothermal models, and discusses first results.
Panagiotis Pirnaris and Theodoros Sarris
Ann. Geophys., 41, 339–354, https://doi.org/10.5194/angeo-41-339-2023, https://doi.org/10.5194/angeo-41-339-2023, 2023
Short summary
Short summary
The relation between electron, ion and neutral temperatures in the lower thermosphere–ionosphere (LTI) is key to understanding the energy balance and transfer between species. However, their simultaneous measurement is rare in the LTI. Based on data from the AE-C, AE-D, AE-E and DE-2 satellites of the 1970s and 1980s, a large number of events where neutrals are hotter than ions are identified and statistically analyzed. Potential mechanisms that could trigger these events are proposed.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Theodore E. Sarris and Xinlin Li
Ann. Geophys., 35, 629–638, https://doi.org/10.5194/angeo-35-629-2017, https://doi.org/10.5194/angeo-35-629-2017, 2017
Short summary
Short summary
In this paper we describe a novel way to approximate the decomposition of magnetospheric ultra low-frequency (ULF) wave power in key azimuthal wavenumbers m, which is a parameter describing the number of azimuthal wavelengths that fit within a particle drift orbit. This is a critical parameter that is required in estimates of the rates of radial diffusion, and we show for the first time that there is a local time and geomagnetic activity dependence in the distribution of power in wavenumbers m.
Theodore E. Sarris and Xinlin Li
Ann. Geophys., 34, 565–571, https://doi.org/10.5194/angeo-34-565-2016, https://doi.org/10.5194/angeo-34-565-2016, 2016
K. Konstantinidis and T. Sarris
Geosci. Model Dev., 8, 2967–2975, https://doi.org/10.5194/gmd-8-2967-2015, https://doi.org/10.5194/gmd-8-2967-2015, 2015
Short summary
Short summary
The 2nd & 3rd adiabatic invariants (in particular their proxies I & L*) are commonly used to characterize charged particle motion in a magnetic field. However care should be taken when calculating them, as the assumption of their conservation is not valid everywhere in the Earth’s magnetosphere. In this paper we compare calculations of I and L* using LANLstar, SPENVIS, IRBEM and a 3D particle tracer, and we map the areas in the Earth’s magnetosphere where I & L* can be assumed to be conserved.
P. T. Verronen, M. E. Andersson, A. Kero, C.-F. Enell, J. M. Wissing, E. R. Talaat, K. Kauristie, M. Palmroth, T. E. Sarris, and E. Armandillo
Ann. Geophys., 33, 381–394, https://doi.org/10.5194/angeo-33-381-2015, https://doi.org/10.5194/angeo-33-381-2015, 2015
Short summary
Short summary
Electron concentrations observed by EISCAT radars can be reasonable well represented using AIMOS v1.2 satellite-data-based ionization model and SIC D-region ion chemistry model. SIC-EISCAT difference varies from event to event, probably because the statistical nature of AIMOS ionization is not capturing all the spatio-temporal fine structure of electron precipitation. Below 90km, AIMOS overestimates electron ionization because of proton contamination of the satellite electron detectors.
Leo Kotipalo, Markus Battarbee, Yann Pfau-Kempf, and Minna Palmroth
Geosci. Model Dev., 17, 6401–6413, https://doi.org/10.5194/gmd-17-6401-2024, https://doi.org/10.5194/gmd-17-6401-2024, 2024
Short summary
Short summary
This paper examines a method called adaptive mesh refinement in optimization of the space plasma simulation model Vlasiator. The method locally adjusts resolution in regions which are most relevant to modelling, based on the properties of the plasma. The runs testing this method show that adaptive refinement manages to highlight the desired regions with manageable performance overhead. Performance in larger-scale production runs and mitigation of overhead are avenues of further research.
Urs Ganse, Yann Pfau-Kempf, Hongyang Zhou, Liisa Juusola, Abiyot Workayehu, Fasil Kebede, Konstantinos Papadakis, Maxime Grandin, Markku Alho, Markus Battarbee, Maxime Dubart, Leo Kotipalo, Arnaud Lalagüe, Jonas Suni, Konstantinos Horaites, and Minna Palmroth
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-101, https://doi.org/10.5194/gmd-2024-101, 2024
Revised manuscript under review for GMD
Short summary
Short summary
Vlasiator is a kinetic space-plasma model that simulates the behaviour of plasma, solar wind and magnetic fields in near-Earth space. So far, these simulations had been run without any interaction wtih the ionosphere, the uppermost layer of Earth's atmosphere. In this manuscript, we present the new methods that add an ionospheric electrodynamics model to Vlasiator, coupling it with the existing methods and presenting new simulation results of how space Plasma and Earth's ionosphere interact.
Tuomas Häkkilä, Maxime Grandin, Markus Battarbee, Monika E. Szeląg, Markku Alho, Leo Kotipalo, Niilo Kalakoski, Pekka T. Verronen, and Minna Palmroth
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-7, https://doi.org/10.5194/angeo-2024-7, 2024
Preprint under review for ANGEO
Short summary
Short summary
We study the atmospheric impact of auroral electron precipitation, by the novel combination of both magnetospheric and atmospheric modelling. We first simulate fluxes of auroral electrons, and then use these fluxes to model their atmospheric impact. We find an increase of up to 200 % in thermospheric odd nitrogen, and a corresponding decrease in stratospheric ozone of around 0.7 %. The produced auroral electron precipitation is realistic, and shows the potential for future studies.
Markku Alho, Giulia Cozzani, Ivan Zaitsev, Fasil Tesema Kebede, Urs Ganse, Markus Battarbee, Maarja Bussov, Maxime Dubart, Sanni Hoilijoki, Leo Kotipalo, Konstantinos Papadakis, Yann Pfau-Kempf, Jonas Suni, Vertti Tarvus, Abiyot Workayehu, Hongyang Zhou, and Minna Palmroth
Ann. Geophys., 42, 145–161, https://doi.org/10.5194/angeo-42-145-2024, https://doi.org/10.5194/angeo-42-145-2024, 2024
Short summary
Short summary
Magnetic reconnection is one of the main processes for energy conversion and plasma transport in space plasma physics, associated with plasma entry into the magnetosphere of Earth and Earth’s substorm cycle. Global modelling of these plasma processes enables us to understand the magnetospheric system in detail. However, finding sites of active reconnection from large simulation datasets can be challenging, and this paper develops tools to find magnetic topologies related to reconnection.
Marc Hansen, Daniela Banyś, Mark Clilverd, David Wenzel, and M. Mainul Hoque
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2023-38, https://doi.org/10.5194/angeo-2023-38, 2024
Revised manuscript under review for ANGEO
Short summary
Short summary
The VLF amplitude does not show a symmetrical behavior over the year, which would be expected from its dependency on the solar position. The VLF amplitude rather shows a distinctive sharp decrease around October, which is hence called the “October effect”. This study is the first to systematically investigate this October effect, which shows a clear latitudinal dependency.
Jonas Suni, Minna Palmroth, Lucile Turc, Markus Battarbee, Giulia Cozzani, Maxime Dubart, Urs Ganse, Harriet George, Evgeny Gordeev, Konstantinos Papadakis, Yann Pfau-Kempf, Vertti Tarvus, Fasil Tesema, and Hongyang Zhou
Ann. Geophys., 41, 551–568, https://doi.org/10.5194/angeo-41-551-2023, https://doi.org/10.5194/angeo-41-551-2023, 2023
Short summary
Short summary
Magnetosheath jets are structures of enhanced plasma density and/or velocity in a region of near-Earth space known as the magnetosheath. When they propagate towards the Earth, these jets can disturb the Earth's magnetic field and cause hazards for satellites. In this study, we use a simulation called Vlasiator to model near-Earth space and investigate jets using case studies and statistical analysis. We find that jets that propagate towards the Earth are different from jets that do not.
Joachim Vogt, Octav Marghitu, Adrian Blagau, Leonie Pick, Nele Stachlys, Stephan Buchert, Theodoros Sarris, Stelios Tourgaidis, Thanasis Balafoutis, Dimitrios Baloukidis, and Panagiotis Pirnaris
Geosci. Instrum. Method. Data Syst., 12, 239–257, https://doi.org/10.5194/gi-12-239-2023, https://doi.org/10.5194/gi-12-239-2023, 2023
Short summary
Short summary
Motivated by recent community interest in a satellite mission to the atmospheric lower thermosphere and ionosphere (LTI) region (100–200 km altitude), the DIPCont project is concerned with the reconstruction quality of vertical profiles of key LTI variables using dual- and single-spacecraft observations. The report introduces the probabilistic DIPCont modeling framework, demonstrates its usage by means of a set of self-consistent parametric non-isothermal models, and discusses first results.
Panagiotis Pirnaris and Theodoros Sarris
Ann. Geophys., 41, 339–354, https://doi.org/10.5194/angeo-41-339-2023, https://doi.org/10.5194/angeo-41-339-2023, 2023
Short summary
Short summary
The relation between electron, ion and neutral temperatures in the lower thermosphere–ionosphere (LTI) is key to understanding the energy balance and transfer between species. However, their simultaneous measurement is rare in the LTI. Based on data from the AE-C, AE-D, AE-E and DE-2 satellites of the 1970s and 1980s, a large number of events where neutrals are hotter than ions are identified and statistically analyzed. Potential mechanisms that could trigger these events are proposed.
Cyril Simon Wedlund, Martin Volwerk, Christian Mazelle, Sebastián Rojas Mata, Gabriella Stenberg Wieser, Yoshifumi Futaana, Jasper Halekas, Diana Rojas-Castillo, César Bertucci, and Jared Espley
Ann. Geophys., 41, 225–251, https://doi.org/10.5194/angeo-41-225-2023, https://doi.org/10.5194/angeo-41-225-2023, 2023
Short summary
Short summary
Mirror modes are magnetic bottles found in the space plasma environment of planets contributing to the energy exchange with the solar wind. We use magnetic field measurements from the NASA Mars Atmosphere and Volatile EvolutioN mission to detect them around Mars and show how they evolve in time and space. The structures concentrate in two regions: one behind the bow shock and the other closer to the planet. They compete with other wave modes depending on the solar flux and heliocentric distance.
Konstantinos Papadakis, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Markku Alho, Maxime Grandin, Maxime Dubart, Lucile Turc, Hongyang Zhou, Konstantinos Horaites, Ivan Zaitsev, Giulia Cozzani, Maarja Bussov, Evgeny Gordeev, Fasil Tesema, Harriet George, Jonas Suni, Vertti Tarvus, and Minna Palmroth
Geosci. Model Dev., 15, 7903–7912, https://doi.org/10.5194/gmd-15-7903-2022, https://doi.org/10.5194/gmd-15-7903-2022, 2022
Short summary
Short summary
Vlasiator is a plasma simulation code that simulates the entire near-Earth space at a global scale. As 6D simulations require enormous amounts of computational resources, Vlasiator uses adaptive mesh refinement (AMR) to lighten the computational burden. However, due to Vlasiator’s grid topology, AMR simulations suffer from grid aliasing artifacts that affect the global results. In this work, we present and evaluate the performance of a mechanism for alleviating those artifacts.
Irina Mironova, Miriam Sinnhuber, Galina Bazilevskaya, Mark Clilverd, Bernd Funke, Vladimir Makhmutov, Eugene Rozanov, Michelle L. Santee, Timofei Sukhodolov, and Thomas Ulich
Atmos. Chem. Phys., 22, 6703–6716, https://doi.org/10.5194/acp-22-6703-2022, https://doi.org/10.5194/acp-22-6703-2022, 2022
Short summary
Short summary
From balloon measurements, we detected unprecedented, extremely powerful, electron precipitation over the middle latitudes. The robustness of this event is confirmed by satellite observations of electron fluxes and chemical composition, as well as by ground-based observations of the radio signal propagation. The applied chemistry–climate model shows the almost complete destruction of ozone in the mesosphere over the region where high-energy electrons were observed.
David A. Newnham, Mark A. Clilverd, William D. J. Clark, Michael Kosch, Pekka T. Verronen, and Alan E. E. Rogers
Atmos. Meas. Tech., 15, 2361–2376, https://doi.org/10.5194/amt-15-2361-2022, https://doi.org/10.5194/amt-15-2361-2022, 2022
Short summary
Short summary
Ozone (O3) is an important trace gas in the mesosphere and lower thermosphere (MLT), affecting heating rates and chemistry. O3 profiles measured by the Ny-Ålesund Ozone in the Mesosphere Instrument agree with Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) for winter night-time, but autumn twilight SABER abundances are up to 50 % higher. O3 abundances in the MLT from two different SABER channels also show significant differences for both autumn twilight and summer daytime.
Filomena Catapano, Stephan Buchert, Enkelejda Qamili, Thomas Nilsson, Jerome Bouffard, Christian Siemes, Igino Coco, Raffaella D'Amicis, Lars Tøffner-Clausen, Lorenzo Trenchi, Poul Erik Holmdahl Olsen, and Anja Stromme
Geosci. Instrum. Method. Data Syst., 11, 149–162, https://doi.org/10.5194/gi-11-149-2022, https://doi.org/10.5194/gi-11-149-2022, 2022
Short summary
Short summary
The quality control and validation activities performed by the Swarm data quality team reveal the good-quality LPs. The analysis demonstrated that the current baseline plasma data products are improved with respect to previous baseline. The LPs have captured the ionospheric plasma variability over more than half of a solar cycle, revealing the data quality dependence on the solar activity. The quality of the LP data will further improve promotion of their application to a broad range of studies.
Vertti Tarvus, Lucile Turc, Markus Battarbee, Jonas Suni, Xóchitl Blanco-Cano, Urs Ganse, Yann Pfau-Kempf, Markku Alho, Maxime Dubart, Maxime Grandin, Andreas Johlander, Konstantinos Papadakis, and Minna Palmroth
Ann. Geophys., 39, 911–928, https://doi.org/10.5194/angeo-39-911-2021, https://doi.org/10.5194/angeo-39-911-2021, 2021
Short summary
Short summary
We use simulations of Earth's magnetosphere and study the formation of transient wave structures in the region where the solar wind first interacts with the magnetosphere. These transients move earthward and play a part in the solar wind–magnetosphere interaction. We show that the transients are a common feature and their properties are altered as they move earthward, including an increase in temperature, decrease in solar wind speed and an alteration in their propagation properties.
Manfred Ern, Mohamadou Diallo, Peter Preusse, Martin G. Mlynczak, Michael J. Schwartz, Qian Wu, and Martin Riese
Atmos. Chem. Phys., 21, 13763–13795, https://doi.org/10.5194/acp-21-13763-2021, https://doi.org/10.5194/acp-21-13763-2021, 2021
Short summary
Short summary
Details of the driving of the semiannual oscillation (SAO) of the tropical winds in the middle atmosphere are still not known. We investigate the SAO and its driving by small-scale gravity waves (GWs) using satellite data and different reanalyses. In a large altitude range, GWs mainly drive the SAO westerlies, but in the upper mesosphere GWs seem to drive both SAO easterlies and westerlies. Reanalyses reproduce some features of the SAO but are limited by model-inherent damping at upper levels.
Andrei Runov, Maxime Grandin, Minna Palmroth, Markus Battarbee, Urs Ganse, Heli Hietala, Sanni Hoilijoki, Emilia Kilpua, Yann Pfau-Kempf, Sergio Toledo-Redondo, Lucile Turc, and Drew Turner
Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, https://doi.org/10.5194/angeo-39-599-2021, 2021
Short summary
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
Minna Palmroth, Savvas Raptis, Jonas Suni, Tomas Karlsson, Lucile Turc, Andreas Johlander, Urs Ganse, Yann Pfau-Kempf, Xochitl Blanco-Cano, Mojtaba Akhavan-Tafti, Markus Battarbee, Maxime Dubart, Maxime Grandin, Vertti Tarvus, and Adnane Osmane
Ann. Geophys., 39, 289–308, https://doi.org/10.5194/angeo-39-289-2021, https://doi.org/10.5194/angeo-39-289-2021, 2021
Short summary
Short summary
Magnetosheath jets are high-velocity features within the Earth's turbulent magnetosheath, separating the Earth's magnetic domain from the solar wind. The characteristics of the jets are difficult to assess statistically as a function of their lifetime because normally spacecraft observe them only at one position within the magnetosheath. This study first confirms the accuracy of the model used, Vlasiator, by comparing it to MMS spacecraft, and then carries out the first jet lifetime statistics.
Joshua Dreyer, Noora Partamies, Daniel Whiter, Pål G. Ellingsen, Lisa Baddeley, and Stephan C. Buchert
Ann. Geophys., 39, 277–288, https://doi.org/10.5194/angeo-39-277-2021, https://doi.org/10.5194/angeo-39-277-2021, 2021
Short summary
Short summary
Small-scale auroral features are still being discovered and are not well understood. Where aurorae are caused by particle precipitation, the newly reported fragmented aurora-like emissions (FAEs) seem to be locally generated in the ionosphere (hence,
aurora-like). We analyse data from multiple instruments located near Longyearbyen to derive their main characteristics. They seem to occur as two types in a narrow altitude region (individually or in regularly spaced groups).
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Markus Battarbee, Thiago Brito, Markku Alho, Yann Pfau-Kempf, Maxime Grandin, Urs Ganse, Konstantinos Papadakis, Andreas Johlander, Lucile Turc, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 39, 85–103, https://doi.org/10.5194/angeo-39-85-2021, https://doi.org/10.5194/angeo-39-85-2021, 2021
Short summary
Short summary
We investigate local acceleration dynamics of electrons with a new numerical simulation method, which is an extension of a world-leading kinetic plasma simulation. We describe how large supercomputer simulations can be used to initialize the electron simulations and show numerical stability for the electron method. We show that features of our simulated electrons match observations from Earth's magnetic tail region.
Maxime Dubart, Urs Ganse, Adnane Osmane, Andreas Johlander, Markus Battarbee, Maxime Grandin, Yann Pfau-Kempf, Lucile Turc, and Minna Palmroth
Ann. Geophys., 38, 1283–1298, https://doi.org/10.5194/angeo-38-1283-2020, https://doi.org/10.5194/angeo-38-1283-2020, 2020
Short summary
Short summary
Plasma waves are ubiquitous in the Earth's magnetosphere. They are responsible for many energetic processes happening in Earth's atmosphere, such as auroras. In order to understand these processes, thorough investigations of these waves are needed. We use a state-of-the-art numerical model to do so. Here we investigate the impact of different spatial resolutions in the model on these waves in order to improve in the future the model without wasting computational resources.
Patrick Mungufeni, Sripathi Samireddipalle, Yenca Migoya-Orué, and Yong Ha Kim
Ann. Geophys., 38, 1203–1215, https://doi.org/10.5194/angeo-38-1203-2020, https://doi.org/10.5194/angeo-38-1203-2020, 2020
Short summary
Short summary
This study developed a model of total electron content (TEC) over the African region. The TEC data were derived from radio occultation measurements done by the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. Data during geomagnetically quiet time for the years 2008–2011 and 2013–2017 were binned according to local time, seasons, solar flux level, geographic longitude, and dip latitude. Cubic B splines were used to fit the data for the model.
Markus Battarbee, Xóchitl Blanco-Cano, Lucile Turc, Primož Kajdič, Andreas Johlander, Vertti Tarvus, Stephen Fuselier, Karlheinz Trattner, Markku Alho, Thiago Brito, Urs Ganse, Yann Pfau-Kempf, Mojtaba Akhavan-Tafti, Tomas Karlsson, Savvas Raptis, Maxime Dubart, Maxime Grandin, Jonas Suni, and Minna Palmroth
Ann. Geophys., 38, 1081–1099, https://doi.org/10.5194/angeo-38-1081-2020, https://doi.org/10.5194/angeo-38-1081-2020, 2020
Short summary
Short summary
We investigate the dynamics of helium in the foreshock, a part of near-Earth space found upstream of the Earth's bow shock. We show how the second most common ion in interplanetary space reacts strongly to plasma waves found in the foreshock. Spacecraft observations and supercomputer simulations both give us a new understanding of the foreshock edge and how to interpret future observations.
Sharon Aol, Stephan Buchert, Edward Jurua, and Marco Milla
Ann. Geophys., 38, 1063–1080, https://doi.org/10.5194/angeo-38-1063-2020, https://doi.org/10.5194/angeo-38-1063-2020, 2020
Short summary
Short summary
Ionospheric irregularities are a common phenomenon in the low-latitude ionosphere. In this paper, we compared simultaneous observations of plasma plumes by the JULIA radar, ionogram spread F generated from ionosonde observations installed at the Jicamarca Radio Observatory, and irregularities observed in situ by Swarm to determine whether Swarm in situ observations can be used as indicators of the presence of plasma plumes and spread F on the ground.
Lucile Turc, Vertti Tarvus, Andrew P. Dimmock, Markus Battarbee, Urs Ganse, Andreas Johlander, Maxime Grandin, Yann Pfau-Kempf, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 38, 1045–1062, https://doi.org/10.5194/angeo-38-1045-2020, https://doi.org/10.5194/angeo-38-1045-2020, 2020
Short summary
Short summary
Using global computer simulations, we study properties of the magnetosheath, the region of near-Earth space where the stream of particles originating from the Sun, the solar wind, is slowed down and deflected around the Earth's magnetic field. One of our main findings is that even for idealised solar wind conditions as used in our model, the magnetosheath density shows large-scale spatial and temporal variation in the so-called quasi-parallel magnetosheath, causing varying levels of asymmetry.
Stephan C. Buchert
Ann. Geophys., 38, 1019–1030, https://doi.org/10.5194/angeo-38-1019-2020, https://doi.org/10.5194/angeo-38-1019-2020, 2020
Short summary
Short summary
Winds in the Earth's upper atmosphere cause magnetic and electric variations both at the ground and in space all over the Earth. According to the model of entangled dynamos the true cause is wind differences between regions in the Northern and Southern Hemispheres that are connected by the Earth's dipole-like magnetic field. The power produced in the southern dynamo heats the northern upper atmosphere and vice versa. The dynamos exist owing to this entanglement, an analogy to quantum mechanics.
Harriet George, Emilia Kilpua, Adnane Osmane, Timo Asikainen, Milla M. H. Kalliokoski, Craig J. Rodger, Stepan Dubyagin, and Minna Palmroth
Ann. Geophys., 38, 931–951, https://doi.org/10.5194/angeo-38-931-2020, https://doi.org/10.5194/angeo-38-931-2020, 2020
Short summary
Short summary
We compared trapped outer radiation belt electron fluxes to high-latitude precipitating electron fluxes during two interplanetary coronal mass ejections (ICMEs) with opposite magnetic cloud rotation. The electron response had many similarities and differences between the two events, indicating that different acceleration mechanisms acted. Van Allen Probe data were used for trapped electron flux measurements, and Polar Operational Environmental Satellites were used for precipitating flux data.
João Teixeira da Encarnação, Pieter Visser, Daniel Arnold, Aleš Bezdek, Eelco Doornbos, Matthias Ellmer, Junyi Guo, Jose van den IJssel, Elisabetta Iorfida, Adrian Jäggi, Jaroslav Klokocník, Sandro Krauss, Xinyuan Mao, Torsten Mayer-Gürr, Ulrich Meyer, Josef Sebera, C. K. Shum, Chaoyang Zhang, Yu Zhang, and Christoph Dahle
Earth Syst. Sci. Data, 12, 1385–1417, https://doi.org/10.5194/essd-12-1385-2020, https://doi.org/10.5194/essd-12-1385-2020, 2020
Short summary
Short summary
Although not the primary mission of the Swarm three-satellite constellation, the sensors on these satellites are accurate enough to measure the melting and accumulation of Earth’s ice reservoirs, precipitation cycles, floods, and droughts, amongst others. Swarm sees these changes well compared to the dedicated GRACE satellites at spatial scales of roughly 1500 km. Swarm confirms most GRACE observations, such as the large ice melting in Greenland and the wet and dry seasons in the Amazon.
Milla M. H. Kalliokoski, Emilia K. J. Kilpua, Adnane Osmane, Drew L. Turner, Allison N. Jaynes, Lucile Turc, Harriet George, and Minna Palmroth
Ann. Geophys., 38, 683–701, https://doi.org/10.5194/angeo-38-683-2020, https://doi.org/10.5194/angeo-38-683-2020, 2020
Short summary
Short summary
We present a comprehensive statistical study of the response of the Earth's space environment in sheath regions prior to interplanetary coronal mass ejections. The inner magnetospheric wave activity is enhanced in sheath regions, and the sheaths cause significant changes to the outer radiation belt electron fluxes over short timescales. We also show that non-geoeffective sheaths can result in a significant response.
Markus Battarbee, Urs Ganse, Yann Pfau-Kempf, Lucile Turc, Thiago Brito, Maxime Grandin, Tuomas Koskela, and Minna Palmroth
Ann. Geophys., 38, 625–643, https://doi.org/10.5194/angeo-38-625-2020, https://doi.org/10.5194/angeo-38-625-2020, 2020
Short summary
Short summary
The structure and medium-scale dynamics of Earth's bow shock and how charged solar wind particles are reflected by it are studied in order to better understand space weather effects. We use advanced supercomputer simulations to model the shock and reflected ions. We find that the thickness of the shock depends on solar wind conditions but also has small-scale variations. Charged particle reflection is shown to be non-localized. Magnetic fields are important for ion reflection.
Emilia Kilpua, Liisa Juusola, Maxime Grandin, Antti Kero, Stepan Dubyagin, Noora Partamies, Adnane Osmane, Harriet George, Milla Kalliokoski, Tero Raita, Timo Asikainen, and Minna Palmroth
Ann. Geophys., 38, 557–574, https://doi.org/10.5194/angeo-38-557-2020, https://doi.org/10.5194/angeo-38-557-2020, 2020
Short summary
Short summary
Coronal mass ejection sheaths and ejecta are key drivers of significant space weather storms, and they cause dramatic changes in radiation belt electron fluxes. Differences in precipitation of high-energy electrons from the belts to the upper atmosphere are thus expected. We investigate here differences in sheath- and ejecta-induced precipitation using the Finnish riometer (relative ionospheric opacity meter) chain.
Sharon Aol, Stephan Buchert, and Edward Jurua
Ann. Geophys., 38, 243–261, https://doi.org/10.5194/angeo-38-243-2020, https://doi.org/10.5194/angeo-38-243-2020, 2020
Short summary
Short summary
During the night, in the F region, equatorial ionospheric irregularities manifest as plasma depletions observed by satellites and may cause radio signals to fluctuate. We checked the distribution traits of ionospheric F-region irregularities in the low latitudes using 16 Hz electron density observations made by the faceplate onboard Swarm satellites. Using the high-resolution faceplate data, we were able to identify ionospheric irregularities of scales of only a few hundred metres.
Anasuya Aruliah, Matthias Förster, Rosie Hood, Ian McWhirter, and Eelco Doornbos
Ann. Geophys., 37, 1095–1120, https://doi.org/10.5194/angeo-37-1095-2019, https://doi.org/10.5194/angeo-37-1095-2019, 2019
Short summary
Short summary
Winds near the top of the atmosphere are expected to be the same at all heights for a given location by assuming high viscosity in rarefied gases. However, wind measurements from satellite drag at 350–400 km altitude were found to be up to 2 times larger than optical measurements at ∼240 km. Satellites provide global measurements, and ground-based FPIs provide long-term monitoring at single sites. So we must understand this inconsistency to model and predict atmospheric behaviour correctly.
Maxime Grandin, Markus Battarbee, Adnane Osmane, Urs Ganse, Yann Pfau-Kempf, Lucile Turc, Thiago Brito, Tuomas Koskela, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 37, 791–806, https://doi.org/10.5194/angeo-37-791-2019, https://doi.org/10.5194/angeo-37-791-2019, 2019
Short summary
Short summary
When the terrestrial magnetic field is disturbed, particles from the near-Earth space can precipitate into the upper atmosphere. This work presents, for the first time, numerical simulations of proton precipitation in the energy range associated with the production of aurora (∼1–30 keV) using a global kinetic model of the near-Earth space: Vlasiator. We find that nightside proton precipitation can be regulated by the transition region between stretched and dipolar geomagnetic field lines.
Antti Lakka, Tuija I. Pulkkinen, Andrew P. Dimmock, Emilia Kilpua, Matti Ala-Lahti, Ilja Honkonen, Minna Palmroth, and Osku Raukunen
Ann. Geophys., 37, 561–579, https://doi.org/10.5194/angeo-37-561-2019, https://doi.org/10.5194/angeo-37-561-2019, 2019
Short summary
Short summary
We study how the Earth's space environment responds to two different amplitude interplanetary coronal mass ejection (ICME) events that occurred in 2012 and 2014 by using the GUMICS-4 global MHD model. We examine local and large-scale dynamics of the Earth's space environment and compare simulation results to in situ data. It is shown that during moderate driving simulation agrees well with the measurements; however, GMHD results should be interpreted cautiously during strong driving.
David A. Newnham, Mark A. Clilverd, Michael Kosch, Annika Seppälä, and Pekka T. Verronen
Atmos. Meas. Tech., 12, 1375–1392, https://doi.org/10.5194/amt-12-1375-2019, https://doi.org/10.5194/amt-12-1375-2019, 2019
Short summary
Short summary
A simulation study has been carried out to investigate the potential for observing ozone and hydroxyl radical abundances in the mesosphere and lower thermosphere using ground-based passive microwave radiometry. In the polar middle atmosphere these chemical species respond strongly to geomagnetic activity associated with space weather. The results show that measuring diurnal variations in ozone and hydroxyl from high-latitude Northern Hemisphere and Antarctic locations would be possible.
Xinhua Wei, Chunlin Cai, Henri Rème, Iannis Dandouras, and George Parks
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-124, https://doi.org/10.5194/angeo-2018-124, 2018
Revised manuscript not accepted
Short summary
Short summary
Observations of flapping current sheet in the magnetotail are presented to reveal their intrinsic excitation mechanism induced by alternating north-south asymmetric ion populations in the sheet center. The results suggest that nonadiabatic ions play a substantial role to determine current sheet dynamics, both its bulk mechanical instability and current profiles.
Tarique A. Siddiqui, Astrid Maute, Nick Pedatella, Yosuke Yamazaki, Hermann Lühr, and Claudia Stolle
Ann. Geophys., 36, 1545–1562, https://doi.org/10.5194/angeo-36-1545-2018, https://doi.org/10.5194/angeo-36-1545-2018, 2018
Short summary
Short summary
Extreme meteorological events such as SSWs induce variabilities in the ionosphere by modulating the atmospheric tides, and these variabilities can be comparable to a moderate geomagnetic storm. The equatorial electrojet (EEJ) is a narrow ribbon of current flowing over the dip equator in the ionosphere and is particularly sensitive to tidal changes. In this study, we use ground-magnetic measurements to investigate the semidiurnal solar and lunar tidal variabilities of the EEJ during SSWs.
Liisa Juusola, Sanni Hoilijoki, Yann Pfau-Kempf, Urs Ganse, Riku Jarvinen, Markus Battarbee, Emilia Kilpua, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1183–1199, https://doi.org/10.5194/angeo-36-1183-2018, https://doi.org/10.5194/angeo-36-1183-2018, 2018
Short summary
Short summary
The solar wind interacts with the Earth’s magnetic field, forming a magnetosphere. On the night side solar wind stretches the magnetosphere into a long tail. A process called magnetic reconnection opens the magnetic field lines and reconnects them, accelerating particles to high energies. We study this in the magnetotail using a numerical simulation model of the Earth’s magnetosphere. We study the motion of the points where field lines reconnect and the fast flows driven by this process.
Minna Palmroth, Heli Hietala, Ferdinand Plaschke, Martin Archer, Tomas Karlsson, Xóchitl Blanco-Cano, David Sibeck, Primož Kajdič, Urs Ganse, Yann Pfau-Kempf, Markus Battarbee, and Lucile Turc
Ann. Geophys., 36, 1171–1182, https://doi.org/10.5194/angeo-36-1171-2018, https://doi.org/10.5194/angeo-36-1171-2018, 2018
Short summary
Short summary
Magnetosheath jets are high-velocity plasma structures that are commonly observed within the Earth's magnetosheath. Previously, they have mainly been investigated with spacecraft observations, which do not allow us to infer their spatial sizes, temporal evolution, or origin. This paper shows for the first time their dimensions, evolution, and origins within a simulation whose dimensions are directly comparable to the Earth's magnetosphere. The results are compared to previous observations.
Xochitl Blanco-Cano, Markus Battarbee, Lucile Turc, Andrew P. Dimmock, Emilia K. J. Kilpua, Sanni Hoilijoki, Urs Ganse, David G. Sibeck, Paul A. Cassak, Robert C. Fear, Riku Jarvinen, Liisa Juusola, Yann Pfau-Kempf, Rami Vainio, and Minna Palmroth
Ann. Geophys., 36, 1081–1097, https://doi.org/10.5194/angeo-36-1081-2018, https://doi.org/10.5194/angeo-36-1081-2018, 2018
Short summary
Short summary
We use the Vlasiator code to study the characteristics of transient structures that exist in the Earth's foreshock, i.e. upstream of the bow shock. The structures are cavitons and spontaneous hot flow anomalies (SHFAs). These transients can interact with the bow shock. We study the changes the shock suffers via this interaction. We also investigate ion distributions associated with the cavitons and SHFAs. A very important result is that the arrival of multiple SHFAs results in shock erosion.
Liisa Juusola, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Thiago Brito, Maxime Grandin, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1027–1035, https://doi.org/10.5194/angeo-36-1027-2018, https://doi.org/10.5194/angeo-36-1027-2018, 2018
Short summary
Short summary
The Earth's magnetic field is shaped by the solar wind. On the dayside the field is compressed and on the nightside it is stretched as a long tail. The tail has been observed to occasionally undergo flapping motions, but the origin of these motions is not understood. We study the flapping using a numerical simulation of the near-Earth space. We present a possible explanation for how the flapping could be initiated by a passing disturbance and then maintained as a standing wave.
Chao Xiong, Claudia Stolle, and Jaeheung Park
Ann. Geophys., 36, 679–693, https://doi.org/10.5194/angeo-36-679-2018, https://doi.org/10.5194/angeo-36-679-2018, 2018
Libin Weng, Jiuhou Lei, Eelco Doornbos, Hanxian Fang, and Xiankang Dou
Ann. Geophys., 36, 489–496, https://doi.org/10.5194/angeo-36-489-2018, https://doi.org/10.5194/angeo-36-489-2018, 2018
Short summary
Short summary
Thermospheric mass density from the GOCE satellite for Sun-synchronous orbits between 83.5° S and 83.5° N normalized to 270 km during 2009–2013 has been used to develop our GOCE model at dawn/dusk local solar time sectors based on the empirical orthogonal function (EOF) method. We find that both amplitude and phase of the seasonal variations have strong latitudinal and solar activity dependences, and the annual asymmetry and effect of the Sun–Earth distance vary with latitude and solar activity.
Quang Thai Trinh, Manfred Ern, Eelco Doornbos, Peter Preusse, and Martin Riese
Ann. Geophys., 36, 425–444, https://doi.org/10.5194/angeo-36-425-2018, https://doi.org/10.5194/angeo-36-425-2018, 2018
Minna Palmroth, Sanni Hoilijoki, Liisa Juusola, Tuija I. Pulkkinen, Heli Hietala, Yann Pfau-Kempf, Urs Ganse, Sebastian von Alfthan, Rami Vainio, and Michael Hesse
Ann. Geophys., 35, 1269–1274, https://doi.org/10.5194/angeo-35-1269-2017, https://doi.org/10.5194/angeo-35-1269-2017, 2017
Short summary
Short summary
Much like solar flares, substorms occurring within the Earth's magnetic domain are explosive events that cause vivid auroral displays. A decades-long debate exists to explain the substorm onset. We devise a simulation encompassing the entire near-Earth space and demonstrate that detailed modelling of magnetic reconnection explains the central substorm observations. Our results help to understand the unpredictable substorm process, which will significantly improve space weather forecasts.
Antti Lakka, Tuija I. Pulkkinen, Andrew P. Dimmock, Adnane Osmane, Ilja Honkonen, Minna Palmroth, and Pekka Janhunen
Ann. Geophys., 35, 907–922, https://doi.org/10.5194/angeo-35-907-2017, https://doi.org/10.5194/angeo-35-907-2017, 2017
Short summary
Short summary
We studied the impact on global MHD simulations from different simulation initialisation methods. While the global MHD code used is GUMICS-4 we conclude that the results might be generalisable to other codes as well. It is found that different initialisation methods affect the dynamics of the Earth's space environment by creating differences in momentum transport several hours afterwards. These differences may even grow as a response to rapid solar wind condition changes.
Katja Matthes, Bernd Funke, Monika E. Andersson, Luke Barnard, Jürg Beer, Paul Charbonneau, Mark A. Clilverd, Thierry Dudok de Wit, Margit Haberreiter, Aaron Hendry, Charles H. Jackman, Matthieu Kretzschmar, Tim Kruschke, Markus Kunze, Ulrike Langematz, Daniel R. Marsh, Amanda C. Maycock, Stergios Misios, Craig J. Rodger, Adam A. Scaife, Annika Seppälä, Ming Shangguan, Miriam Sinnhuber, Kleareti Tourpali, Ilya Usoskin, Max van de Kamp, Pekka T. Verronen, and Stefan Versick
Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, https://doi.org/10.5194/gmd-10-2247-2017, 2017
Short summary
Short summary
The solar forcing dataset for climate model experiments performed for the upcoming IPCC report is described. This dataset provides the radiative and particle input of solar variability on a daily basis from 1850 through to 2300. With this dataset a better representation of natural climate variability with respect to the output of the Sun is provided which provides the most sophisticated and comprehensive respresentation of solar variability that has been used in climate model simulations so far.
Rikard Slapak, Audrey Schillings, Hans Nilsson, Masatoshi Yamauchi, Lars-Göran Westerberg, and Iannis Dandouras
Ann. Geophys., 35, 721–731, https://doi.org/10.5194/angeo-35-721-2017, https://doi.org/10.5194/angeo-35-721-2017, 2017
Short summary
Short summary
In this study, we have used Cluster satellite data to quantify the ionospheric oxygen ion (O+) escape into the solar wind and its dependence on geomagnetic activity. During times of high activity, the escape may be 2 orders of magnitude higher than under quiet conditions, strongly suggesting that the escape rate was much higher when the Sun was young. The results are important for future studies regarding atmospheric loss over geological timescales.
Theodore E. Sarris and Xinlin Li
Ann. Geophys., 35, 629–638, https://doi.org/10.5194/angeo-35-629-2017, https://doi.org/10.5194/angeo-35-629-2017, 2017
Short summary
Short summary
In this paper we describe a novel way to approximate the decomposition of magnetospheric ultra low-frequency (ULF) wave power in key azimuthal wavenumbers m, which is a parameter describing the number of azimuthal wavelengths that fit within a particle drift orbit. This is a critical parameter that is required in estimates of the rates of radial diffusion, and we show for the first time that there is a local time and geomagnetic activity dependence in the distribution of power in wavenumbers m.
Yann Pfau-Kempf, Heli Hietala, Steve E. Milan, Liisa Juusola, Sanni Hoilijoki, Urs Ganse, Sebastian von Alfthan, and Minna Palmroth
Ann. Geophys., 34, 943–959, https://doi.org/10.5194/angeo-34-943-2016, https://doi.org/10.5194/angeo-34-943-2016, 2016
Short summary
Short summary
We have simulated the interaction of the solar wind – the charged particles and magnetic fields emitted by the Sun into space – with the magnetic field of the Earth. The solar wind flows supersonically and creates a shock when it encounters the obstacle formed by the geomagnetic field. We have identified a new chain of events which causes phenomena in the downstream region to eventually cause perturbations at the shock and even upstream. This is confirmed by ground and satellite observations.
Hermann Lühr, Tao Huang, Simon Wing, Guram Kervalishvili, Jan Rauberg, and Haje Korth
Ann. Geophys., 34, 901–915, https://doi.org/10.5194/angeo-34-901-2016, https://doi.org/10.5194/angeo-34-901-2016, 2016
Short summary
Short summary
ESA's constellation mission Swarm makes it possible for the first time to determine field-aligned currents (FACs) reliably in the ionosphere. FACs are able to transport energy from the solar wind to the Earth and heat the upper atmosphere. Here we investigate FAC structures that have been missed by previous satellite missions. Most of them are found poleward of the northern light zone. The energy sources seem to be located on the nightside of Earth about 100 000 km away.
Tamás Kovács, John M. C. Plane, Wuhu Feng, Tibor Nagy, Martyn P. Chipperfield, Pekka T. Verronen, Monika E. Andersson, David A. Newnham, Mark A. Clilverd, and Daniel R. Marsh
Geosci. Model Dev., 9, 3123–3136, https://doi.org/10.5194/gmd-9-3123-2016, https://doi.org/10.5194/gmd-9-3123-2016, 2016
Short summary
Short summary
This study was completed on D-region atmospheric model development. The sophisticated 3-D Whole Atmosphere Community Climate Model (WACCM) and the 1-D Sodynkalä Ion and Neutral Chemistry Model (SIC) were combined in order to provide a detailed, accurate model (WACCM-SIC) that considers the processes taking place in solar proton events. The original SIC model was reduced by mechanism reduction, which provided an accurate sub-mechanism (rSIC, WACCM-rSIC) of the original model.
Theodore E. Sarris and Xinlin Li
Ann. Geophys., 34, 565–571, https://doi.org/10.5194/angeo-34-565-2016, https://doi.org/10.5194/angeo-34-565-2016, 2016
N. Y. Ganushkina, M. W. Liemohn, S. Dubyagin, I. A. Daglis, I. Dandouras, D. L. De Zeeuw, Y. Ebihara, R. Ilie, R. Katus, M. Kubyshkina, S. E. Milan, S. Ohtani, N. Ostgaard, J. P. Reistad, P. Tenfjord, F. Toffoletto, S. Zaharia, and O. Amariutei
Ann. Geophys., 33, 1369–1402, https://doi.org/10.5194/angeo-33-1369-2015, https://doi.org/10.5194/angeo-33-1369-2015, 2015
Short summary
Short summary
A number of current systems exist in the Earth's magnetosphere. It is very difficult to identify local measurements as belonging to a specific current system. Therefore, there are different definitions of supposedly the same current, leading to unnecessary controversy. This study presents a robust collection of these definitions of current systems in geospace, particularly in the near-Earth nightside magnetosphere, as viewed from a variety of observational and computational analysis techniques.
E. Lee, G. K. Parks, S. Y. Fu, M. Fillingim, Y. B. Cui, J. Hong, I. Dandouras, and H. Rème
Ann. Geophys., 33, 1263–1269, https://doi.org/10.5194/angeo-33-1263-2015, https://doi.org/10.5194/angeo-33-1263-2015, 2015
K. Konstantinidis and T. Sarris
Geosci. Model Dev., 8, 2967–2975, https://doi.org/10.5194/gmd-8-2967-2015, https://doi.org/10.5194/gmd-8-2967-2015, 2015
Short summary
Short summary
The 2nd & 3rd adiabatic invariants (in particular their proxies I & L*) are commonly used to characterize charged particle motion in a magnetic field. However care should be taken when calculating them, as the assumption of their conservation is not valid everywhere in the Earth’s magnetosphere. In this paper we compare calculations of I and L* using LANLstar, SPENVIS, IRBEM and a 3D particle tracer, and we map the areas in the Earth’s magnetosphere where I & L* can be assumed to be conserved.
J. Park, H. Lühr, C. Stolle, G. Malhotra, J. B. H. Baker, S. Buchert, and R. Gill
Ann. Geophys., 33, 829–835, https://doi.org/10.5194/angeo-33-829-2015, https://doi.org/10.5194/angeo-33-829-2015, 2015
Short summary
Short summary
Though high-latitude plasma convection has been monitored with a number of methods, more independent measurements are still warranted. In this study we introduce an automatic method to estimate along-track plasma drift velocity in the high-latitude ionosphere using the Swarm constellation. The obtained velocity is in qualitative agreement with Super Dual Auroral Radar Network (SuperDARN) data. The method can be generalized to any satellite constellations in pearls-on-a-string configurations.
T. Živković, S. Buchert, P. Ritter, L. Palin, and H. Opgenoorth
Ann. Geophys., 33, 623–635, https://doi.org/10.5194/angeo-33-623-2015, https://doi.org/10.5194/angeo-33-623-2015, 2015
Short summary
Short summary
In this paper we analyze 21 conjunctions between the Cluster and CHAMP satellites while they were passing magnetic cusp during relatively quiet solar activity. Only three of the conjunctions reveal field-aligned currents on both satellites as well as neutral density enhancement in the thermosphere. Poynting and electron energy fluxes (EEF) as well as Joule heating were computed and the conclusion is that for these weak events EEF has the strongest contribution to the observed density increase.
P. T. Verronen, M. E. Andersson, A. Kero, C.-F. Enell, J. M. Wissing, E. R. Talaat, K. Kauristie, M. Palmroth, T. E. Sarris, and E. Armandillo
Ann. Geophys., 33, 381–394, https://doi.org/10.5194/angeo-33-381-2015, https://doi.org/10.5194/angeo-33-381-2015, 2015
Short summary
Short summary
Electron concentrations observed by EISCAT radars can be reasonable well represented using AIMOS v1.2 satellite-data-based ionization model and SIC D-region ion chemistry model. SIC-EISCAT difference varies from event to event, probably because the statistical nature of AIMOS ionization is not capturing all the spatio-temporal fine structure of electron precipitation. Below 90km, AIMOS overestimates electron ionization because of proton contamination of the satellite electron detectors.
G. K. Parks, E. Lee, S. Y. Fu, M. Fillingim, I. Dandouras, Y. B. Cui, J. Hong, and H. Rème
Ann. Geophys., 33, 333–344, https://doi.org/10.5194/angeo-33-333-2015, https://doi.org/10.5194/angeo-33-333-2015, 2015
Short summary
Short summary
Ions from Earth's ionosphere continually escape into space. This article examines ions escaping the auroral oval, a region in the polar region of Earth where auroras occur. Previous works have shown that ionospheric ions escape during active auroras, and more as the intensity of the aurora increases. In contrast, we have examined times of no auroras and find that ions are still escaping the auroral ionosphere. These escaping ions are an important source of auroral ions in the magnetosphere.
T. A. Siddiqui, H. Lühr, C. Stolle, and J. Park
Ann. Geophys., 33, 235–243, https://doi.org/10.5194/angeo-33-235-2015, https://doi.org/10.5194/angeo-33-235-2015, 2015
Short summary
Short summary
This paper presents the long-term observations of lunar tidal signatures in the equatorial electrojet (EEJ) and their relation to stratospheric sudden warming (SSW) events. We propose an approach to estimate the occurrence of SSW events before their direct observations (before 1952) from the magnetic field observations at Huancayo.
A. Varsani, C. J. Owen, A. N. Fazakerley, C. Forsyth, A. P. Walsh, M. André, I. Dandouras, and C. M. Carr
Ann. Geophys., 32, 1093–1117, https://doi.org/10.5194/angeo-32-1093-2014, https://doi.org/10.5194/angeo-32-1093-2014, 2014
A. Blagau, I. Dandouras, A. Barthe, S. Brunato, G. Facskó, and V. Constantinescu
Geosci. Instrum. Method. Data Syst., 3, 49–58, https://doi.org/10.5194/gi-3-49-2014, https://doi.org/10.5194/gi-3-49-2014, 2014
G. N. Kervalishvili and H. Lühr
Ann. Geophys., 32, 249–261, https://doi.org/10.5194/angeo-32-249-2014, https://doi.org/10.5194/angeo-32-249-2014, 2014
M. Yamauchi, Y. Ebihara, H. Nilsson, and I. Dandouras
Ann. Geophys., 32, 83–90, https://doi.org/10.5194/angeo-32-83-2014, https://doi.org/10.5194/angeo-32-83-2014, 2014
M. E. Andersson, P. T. Verronen, C. J. Rodger, M. A. Clilverd, and S. Wang
Atmos. Chem. Phys., 14, 1095–1105, https://doi.org/10.5194/acp-14-1095-2014, https://doi.org/10.5194/acp-14-1095-2014, 2014
D. Pokhotelov, S. von Alfthan, Y. Kempf, R. Vainio, H. E. J. Koskinen, and M. Palmroth
Ann. Geophys., 31, 2207–2212, https://doi.org/10.5194/angeo-31-2207-2013, https://doi.org/10.5194/angeo-31-2207-2013, 2013
P. Kajdič, X. Blanco-Cano, N. Omidi, K. Meziane, C. T. Russell, J.-A. Sauvaud, I. Dandouras, and B. Lavraud
Ann. Geophys., 31, 2163–2178, https://doi.org/10.5194/angeo-31-2163-2013, https://doi.org/10.5194/angeo-31-2163-2013, 2013
M. Yamauchi, I. Dandouras, H. Rème, R. Lundin, and L. M. Kistler
Ann. Geophys., 31, 1569–1578, https://doi.org/10.5194/angeo-31-1569-2013, https://doi.org/10.5194/angeo-31-1569-2013, 2013
I. Dandouras
Ann. Geophys., 31, 1143–1153, https://doi.org/10.5194/angeo-31-1143-2013, https://doi.org/10.5194/angeo-31-1143-2013, 2013
A. T. Aikio, T. Pitkänen, I. Honkonen, M. Palmroth, and O. Amm
Ann. Geophys., 31, 1021–1034, https://doi.org/10.5194/angeo-31-1021-2013, https://doi.org/10.5194/angeo-31-1021-2013, 2013
J. Markkanen, T. Nygrén, M. Markkanen, M. Voiculescu, and A. Aikio
Ann. Geophys., 31, 859–870, https://doi.org/10.5194/angeo-31-859-2013, https://doi.org/10.5194/angeo-31-859-2013, 2013
C. P. Escoubet, J. Berchem, K. J. Trattner, F. Pitout, R. Richard, M. G. G. T. Taylor, J. Soucek, B. Grison, H. Laakso, A. Masson, M. Dunlop, I. Dandouras, H. Reme, A. Fazakerley, and P. Daly
Ann. Geophys., 31, 713–723, https://doi.org/10.5194/angeo-31-713-2013, https://doi.org/10.5194/angeo-31-713-2013, 2013
G. N. Kervalishvili and H. Lühr
Ann. Geophys., 31, 541–554, https://doi.org/10.5194/angeo-31-541-2013, https://doi.org/10.5194/angeo-31-541-2013, 2013
Y. L. Zhou, S. Y. Ma, R. S. Liu, H. Luehr, and E. Doornbos
Ann. Geophys., 31, 15–30, https://doi.org/10.5194/angeo-31-15-2013, https://doi.org/10.5194/angeo-31-15-2013, 2013
Related subject area
System concept
CITYZER observation network and data delivery system
In situ measurements of the ice flow motion at Eqip Sermia Glacier using a remotely controlled unmanned aerial vehicle (UAV)
Martian magnetism with orbiting sub-millimeter sensor: simulated retrieval system
Electric solar wind sail mass budget model
Walter Schmidt, Ari-Matti Harri, Timo Nousiainen, Harri Hohti, Lasse Johansson, Olli Ojanperä, Erkki Viitala, Jarkko Niemi, Jani Turpeinen, Erkka Saukko, Topi Rönkkö, and Pekka Lahti
Geosci. Instrum. Method. Data Syst., 9, 397–406, https://doi.org/10.5194/gi-9-397-2020, https://doi.org/10.5194/gi-9-397-2020, 2020
Short summary
Short summary
Combining short-time forecast models, standardized interfaces to a wide range of environment detectors and a flexible user access interface, CITYZER provides decision-making authorities and private citizens with reliable information about the near-future development of critical environmental parameters like air quality and rain. The system can be easily adapted to different areas or different parameters. Alarms for critical situations can be set and used to support authority decisions.
Guillaume Jouvet, Eef van Dongen, Martin P. Lüthi, and Andreas Vieli
Geosci. Instrum. Method. Data Syst., 9, 1–10, https://doi.org/10.5194/gi-9-1-2020, https://doi.org/10.5194/gi-9-1-2020, 2020
Short summary
Short summary
We report the first-ever in situ measurements of ice flow motion using a remotely controlled drone. We used a quadcopter to land on a highly crevassed area of Eqip Sermia Glacier, Greenland. The drone measured 70 cm of ice displacement over more than 4 h thanks to an accurate onboard GPS. Our study demonstrates that drones have great potential for geoscientists, especially to deploy sensors in hostile environments such as glaciers.
Richard Larsson, Mathias Milz, Patrick Eriksson, Jana Mendrok, Yasuko Kasai, Stefan Alexander Buehler, Catherine Diéval, David Brain, and Paul Hartogh
Geosci. Instrum. Method. Data Syst., 6, 27–37, https://doi.org/10.5194/gi-6-27-2017, https://doi.org/10.5194/gi-6-27-2017, 2017
Short summary
Short summary
By computer simulations, we explore and quantify how to use radiation emitted by molecular oxygen in the Martian atmosphere to measure the magnetic field from the crust of the planet. This crustal magnetic field is important to understand the past evolution of Mars. Our method can measure the magnetic field at lower altitudes than has so far been done, which could give important information on the characteristics of the crustal sources if a mission with the required instrument is launched.
P. Janhunen, A. A. Quarta, and G. Mengali
Geosci. Instrum. Method. Data Syst., 2, 85–95, https://doi.org/10.5194/gi-2-85-2013, https://doi.org/10.5194/gi-2-85-2013, 2013
Cited articles
Ahn, B. H., Akasofu, S. I., and Kamide, Y.: The Joule heat production rate and
the particle energy injection rate as a function of the geomagnetic indices
AE and AL, J. Geophys. Res., 88, 6275–6287, 1983.
Aikio, A. T. and Selkälä, A.: Statistical properties of Joule
heating rate, electric field and conductances at high latitudes, Ann.
Geophys., 27, 2661–2673, https://doi.org/10.5194/angeo-27-2661-2009, 2009.
Aikio, A. T., Cai, L., and Nygrén, T.: Statistical distribution of
height-integrated energy exchange rates in the ionosphere, J. Geophys. Res.,
117, A10325, https://doi.org/10.1029/2012JA018078, 2012.
Alizadeh, M. M., Schuh, H., Todorova, S., and Schmidt, M.: Global
ionosphere maps of VTEC from GNSS, satellite altimetry, and
Formosat-3/COSMIC data, J. Geodesy, 85, 975–987, 2011.
Amm, O.: Method of characteristics for calculating ionospheric electrodynamics from multisatellite and ground‐based radar data, J. Geophys. Res., 107, 1270, https://doi.org/10.1029/2001JA005077, 2002.
Amm, O., Fujii, R., Kauristie, K., Aikio, A., Yoshikawa, A., Ieda, A.,
and Vanhamäki, H.: A statistical investigation of the Cowling channel
efficiency in the auroral zone, J. Geophys. Res., 116, A02304, https://doi.org/10.1029/2010JA015988,
2011.
Anderson, B. J., Takahashi, K., and Toth, B. A.: Sensing global Birkeland
currents with Iridium engineering magnetometer data, Geophys. Res. Lett.,
27, 4045–4048, 2000.
Andersson, L., Ergun, R. E., Delory, G. T., Eriksson, A., Westfall, J.,
Reed, H., McCauly, J., Summers, D., and Meyers, D.: The Langmuir Probe and
Waves (LPW) Instrument for MAVEN, Space Sci. Rev., 195, 173–198,
https://doi.org/10.1007/s11214-015-0194-3, 2015.
Andersson, M. E., Verronen, P. T., Rodger, C. J., Clilverd, M. A., and
Seppälä, A.: Missing driver in the Sun–Earth connection from
energetic electron precipitation impacts mesospheric ozone, Nat. Commun., 5, 5197,
https://doi.org/10.1038/ncomms6197, 2014.
Appleton, E. V.: Two anomalies in the ionosphere, Nature, 157, p. 691, 1946.
Archer, M. O., Horbury, T. S., Brown, P., Eastwood, J. P., Oddy, T. M., Whiteside, B. J., and Sample, J. G.: The MAGIC of CINEMA: first in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer. Ann. Geophys, 33, 725–735, https://doi.org/10.5194/angeo-33-725-2015, 2015.
Auster, H. U., Apathy, I., Berghofer, G., Remizov, a., Roll, R., Fornacon,
K. H., Glassmeier, K. H., Haerendel, G., Hejja, I., Kuhrt, E., Magnes, W., Moehlmann, D., Motschmann, U., Richter, I., Rosenbauer, H., Russell, C.T., Rustenbach, J., Sauer, K., Schwingenschuh, K., Szemerey, I., and Waesch, R.: ROMAP: Rosetta Magnetometer and Plasma
Monitor, Space Sc. Rev., 128, 221–240,
https://doi.org/10.1007/s11214-006-9033-x, 2007.
Auster, H. U., Glassmeier, K. H., Magnes, W., Aydogar, O., Baumjohann, W.,
Constantinescu, D., Fischer, D., Fornacon, K.H., Georgescu, E., Harvey, P., Hillenmaier, O., Kroth, R., Ludlam, M., Narita, Y., Nakamura, R., Okrafka, K., Plaschke, F., Richter, I., Schwarzl, H., Stoll, B., Valavanoglou, A., and Wiedemann, M.: The THEMIS Fluxgate Magnetometer,
Space Sci. Rev., 141, 235–264, https://doi.org/10.1007/s11214-008-9365-9,
2008.
Auster, H. U., Richter, I., Glassmeier, K. H., Berghofer, G., Carr, C. M.,
and Motschmann, U.: Magnetic field investigations during ROSETTA's 2867
Šteins flyby, Plane. Space Sci., 58, 1124–1128,
https://doi.org/10.1016/j.pss.2010.01.006, 2010.
Bale, S. D., Ullrich, R., Goetz, K., Alster, N., Cecconi, B., Dekkali, M., Linger, N. R., Macher, W., Manning, R. E., McCauley, J., Monson, S. J., Oswald, T. H., and Pulupa, M.: The Electric Antennas for the
STEREO/WAVES Experiment, Space Sci. Rev., 136, 529–547,
https://doi.org/10.1007/s11214-007-9251-x, 2008.
Bilitza, D. and Reinisch, B.: International Reference Ionosphere 2007:
Improvements and new parameters, J. Adv. Space Res., 42, 599–609,
https://doi.org/10.1016/j.asr.2007.07.048, 2008.
Birkeland, K.: The Norwegian Aurora Polaris Expedition 1902–1903, New York
and Christiania (now Oslo), edited by: Aschehoug, H. and Company, out-of-print,
available at: https://archive.org/details/norwegianaurorap01chririch (last access: 29 March 2020), 1908.
Blelly, P.-L., Lathuillère, C., Emery, B., Lilensten, J., Fontanari, J., and Alcaydé, D.: An extended TRANSCAR model including ionospheric convection: simulation of EISCAT observations using inputs from AMIE, Ann. Geophys., 23, 419–431, https://doi.org/10.5194/angeo-23-419-2005, 2005.
Breneman, A., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov,
O., Shumko, M., Turner, D., Santolik, O., Wygant, J., Cattell, C., Thaller,
S., Blake, B., Spence, H., and Kletzing, C.: Observations directly linking
relativistic electron microbursts to whistler mode chorus: Van Allen Probes
and FIREBIRD II: Simultaneous chorus and microbursts, Geophys. Res.
Lett., 44, 11265–11272, https://doi.org/10.1002/2017GL075001, 2017.
Buchert, S. C.: Entangled Dynamos and Joule Heating in the Earth's Ionosphere, Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-71, in review, 2019.
Burchill, J. K., Knudsen, D. J., Bock, B. J. J., Pfaff, R. F., Wallis, D. D.,
Clemmons, J. H., Bounds, S. R., and Stenbaek-Nielsen, H.: Core ion interactions with BB
ELF, lower hybrid, and Alfvén waves in the high-latitude topside
ionosphere. J. Geophys. Res.. 109, A01219, https://doi.org/10.1029/2003JA010073, 2004.
Burchill, J. K., Knudsen, D. J., Clemmons, J. H., Oksavik, K., Pfaff, R. F.,
Steigies, C. T., Yau, A. W., and Yeoman, T. K.: Thermal ion upflow in the cusp ionosphere
and its dependence on soft electron energy flux, J. Geophys. Res., 115,
A05206, https://doi.org/10.1029/2009JA015006, 2010.
Burchill, J. K., Clemmons, J. H., Knudsen, D. J., Larsen, M., Nicolls, M. J.,
Pfaff, R. F., Rowland, D., and Sangalli, L.: High-latitude E region
ionosphere-thermosphere coupling: A comparative study using in situ and
incoherent scatter radar observations, J. Geophys. Res., 117, A02301,
https://doi.org/10.1029/2011JA017175, 2012.
Cai, L., Aikio, A. T., and Nygrén, T.: Height-dependent energy exchange
rates in the high-latitude E region ionosphere, J. Geophys. Res.-Space, 118, 7369–7383, https://doi.org/10.1002/2013JA019195, 2013.
Carlson, C. W., Curtis, D. W., Paschmann, G., and Michael, W.: An instrument
for rapidly measuring plasma distribution functions with high resolution,
Adv. Space Res., 2, 67–70, 1983.
Chun, F. K., Knipp, D. J., McHarg, M. G., Lu, G., Emery, B. A., Vennerstrom,
S., and Troshichev, O. A.: Polar cap index as a proxy for hemispheric Joule
heating, Geophys. Res. Lett., 26, 1101–1104, 1999.
Codrescu, M. V., Fuller-Rowell, T. J., and Foster, J. C.: On the importance
of E-field variability for Joule heating in the high-latitude thermosphere,
Geophys. Res. Lett., 22, 2393–2396, https://doi.org/10.1029/95GL01909, 1995.
Codrescu, M. V., Fuller-Rowell, T. J., Roble, R. G., and Evans, D. S.:
Medium energy particle precipitation influences on the mesosphere and lower
thermosphere, J. Geophys. Res., 102, 19977–19987, 1997.
Connor, H., Zesta, E., Fedrizzi, M., Shi, Y., Raeder, J., Codrescu, M., and
Fuller-Rowell, T.: Modeling the ionosphere-thermosphere response to a
geomagnetic storm using physics-based magnetospheric energy input:
OpenGGCM-CTIM results, J. Space Weather Space Clim., 6, A25,
https://doi.org/10.1051/swsc/2016019, 2016.
Crowley, G., Fish, C., Swenson, C., Burt, R., Neilsen, T., Barjatya, A.,
Bust, G., and Larsen, M.: Dynamic Ionosphere Cubesat Experiment (DICE),
Proceedings of the 24th Annual AIAA/USU Conference on Small Satellites,
Logan, UT, USA, 9–12 August, 2010, SSC10-III-7, 2010.
Crowley, G., Fish, C., Swenson, C., Burt, R., Stromberg, E., Neilsen, T.,
Burr, S., Barjatya, A., Bust, G., and Larsen, M.: Dynamic Ionosphere Cubesat
Experiment (DICE), Proceedings of the 25th Annual AIAA/USU Conference on
Small Satellites, Logan, UT, USA, 8–11 August, 2011, paper: SSC11-XII-6, 2011.
Cully, C. M., Ergun, R. E., and Eriksson, A. I.: Electrostatic structure
around spacecraft in tenuous plasmas, J. Geophys. Res.-Space, 112, A09211, https://doi.org/10.1029/2007JA012269, 2007.
Cully, C. M., Ergun, R. E., Stevens, K., Nammari, A., and Westfall, J.: The
THEMIS Digital Fields Board, Space Sci. Rev., 141, 343–355,
https://doi.org/10.1007/s11214-008-9417-1, 2008.
Davies, J. A., Yeoman, T. K., Lester, M., and Milan, S. E.: Letter to the Editor: A comparison of F-region ion velocity observations from the EISCAT Svalbard and VHF radars with irregularity drift velocity measurements from the CUTLASS Finland HF radar, Ann. Geophys., 18, 589–594, https://doi.org/10.1007/s00585-000-0589-6, 2000.
Deng, W., Killeen, T. L., Burns, A. G., Johnson, R. M., Emery, B. A., Roble,
R. G., Winningham, J. D., and Gary, J. B.: One-dimensional hybrid satellite
track model for the Dynamics Explorer 2 (DE 2) satellite, J. Geophys. Res.,
100, 1611–1624, 1995.
Dhadly, M. S., Emmert, J. T., Drob, D. P., Conde, M. G., Doornbos, E.,
Shepherd, G. G., and Ridley, A. J.: Seasonal dependence of geomagnetic
active-time northern high-latitude upper thermospheric winds, J. Geophys.
Res.-Space, 123, 739–754, https://doi.org/10.1002/2017JA024715,
2018.
Doss, N., Fazakerley, A. N., Mihaljčić, B., Lahiff, A. D., Wilson,
R. J., Kataria, D., Rozum, I., Watson, G., and Bogdanova, Y.: In-flight
calibration of the Cluster PEACE sensors, Geosci. Instrum. Method. Data
Syst., 3, 59–70, https://doi.org/10.5194/gi-3-59-2014, 2014.
Doornbos, E., van den Ijssel, J., Lühr, H.,
Förster, M., and Koppenwallner, G: Neutral Density and
Crosswind Determination from Arbitrarily Oriented Multiaxis Accelerometers
on Satellites, J. Spacecraft Rockets, 47, 580–589,
https://doi.org/10.2514/1.48114, 2010.
Drob, D. P., Emmert, J. T., Crowley, G., Picone, J. M., Shepherd, G. G., Skinner, W., Hays, P., Niciejewski, R. J., Larsen, M., She, C. Y., Meriwether, J. W., Hernandez, G., Jarvis, M. J., Sipler, D. P., Tepley, C. A., O'Brien, M. S., Bowman, J. R., Wu, Q., Murayama, Y., Kawamura, S., Reid, I. M., and Vincent, R. A.: An empirical model of the Earth's horizontal wind
fields: HWM07, J. Geophys. Res., 113, A12304, https://doi.org/10.1029/2008JA013668, 2008.
Dunlop, M. W., Balogh, A., Glassmeier, K. H., and Robert, P.: Four-point
Cluster application of magnetic field analysis tools: The Curlometer, J.
Geophys. Res., 107, 1384–1397, 2002.
Earle, G. D., Klenzing, J. H., Roddy, P. A., Macaulay, W. A., Perdue, M. D., and
Patrick, E. L. : A new satellite-borne neutral wind instrument for
thermospheric diagnostics, Rev. Sci. Instrum., 78, 114501,
https://doi.org/10.1063/1.2813343, 2007.
Earle, G. D., Davidson, R. L., Heelis, R. A., Coley, W. R., Weimer, D. R.,
Makela, J. J., Fisher, D. J., Gerrard, A. J., and Meriwether, J.: Low latitude
thermospheric responses to magnetic storms, J. Geophys. Res.-Space,
118, 3866–3876, https://doi.org/10.1002/jgra.50212 2013.
Emery, B. A., Roble, R. G., Ridley, E. C., Killeen, T. L., Rees, M. H., Winningham, J. D., Caringan, G. R., Hays, P. B., Heelis, R. A., Hanson, W. B., Spencer, N. W., Brace, L. H., and Sugiura, M.: Thermospheric and ionospheric structure of the southern
hemisphere polar cap on October 21, 1981, as determined from Dynamics
Explorer 2 satellite data, J. Geophys. Res., 90, 6553–6566,
1985.
Emmert, J. T.: Thermospheric mass density: A review, Adv. Space Res., 56,
773–824, https://doi.org/10.1016/j.asr.2015.05.038, 2015.
Ergun, R. E., Tucker, S., Westfall, J., Goodrich, K. A., Malaspina, D. M.,
Summers, D., Wallace, J., Karlsson, M., Mack, J., Brennan, N., Pyke, B.,
Withnell, P., Torbert, R., Macri, J., Rau, D., Dors, I., Needell, J.,
Lindqvist, P.-A., Olsson, G., and Cully, C. M.: The Axial Double Probe and
Fields Signal Processing for the MMS Mission, Space Sci. Rev., 199, 167–188,
https://doi.org/10.1007/s11214-014-0115-x, 2016.
Fang H. and Cheng, C.: Retarding Potential Analyzer (RPA) for sounding
rocket, in: An Introduction to Space Instrumentation, edited by: Oyama, K. I. and
Cheng, C. Z., 139–153, 2013.
Fang, X., Randall, C. E., Lummerzheim, D., Wang, W., Lu, G., Solomon, S. C.,
and Frahm, R. A.: Parameterization of monoenergetic electron impact
ionization, Geophys. Res. Lett., 37, L22106, https://doi.org/10.1029/2010GL045406,
2010.
Fedrizzi, M., Fuller-Rowell, T. J., and Codrescu, M. V.: Global Joule
heating index derived from thermospheric density physics-based modeling and
observations, Space Weather, 10, S03001, https://doi.org/10.1029/2011SW000724, 2012.
Fish, C., Swenson, C. M., Crowley, G., Barjatya, A., Neilsen, T., Gunther, J., Azeem, I., Pilinski, M., Wilder, R., Allen, D., Anderson, M., Bingham, B., Bradford, K., Burr, S., Burt, R., Byers, B., Cook, J., Davis, K., Frazier, C., Grover, S., Hansen, G., Jensen, S., LeBaron, R., Martineau, J., Miller, J., Nelsen, J., Nelson, W., Patterson, P., Stromberg, E., Tran, J., Wassom, S., Weston, V., Whiteley, M., Young, Q., Petersen, J., Schaire, S., Davis, C. R., Bokai, M., Fullmer, R., Baktur, R., Sojka, J., and Cousins, M.: Design, Development,
Implementation, and On-orbit Performance of the Dynamic Ionosphere CubeSat
Experiment Mission, Springer, Space Sci. Rev., 181, 61–120, https://doi.org/10.1007/s11214-014-0034-x, 2014.
Fok, M. C., Moore, T. E., Wilson, G. R., Perez, J. D., Zhang, X. X., C:Son Brandt, P., Mitchell, D. G., Roelof, E. C., Jahn, J. M., Pollock, C. J., and Wolf, R. A.: Global ENA IMAGE Simulations, in:
Magnetospheric Imaging – The Image Prime Mission, edited by: Burch, J. L., Springer, Dordrecht,
2003.
Foster, J. C., St.-Maurice, J.-P., and Abreu, V. J.: Joule heating at high
latitudes, J. Geophys. Res., 88, 4885–4896, 1983.
Fratter, I., Léger, J.-M., Bertrand, F., Jager, T., Hulot, G., Brocco,
L., and Vigneron, P.: Swarm Absolute Scalar Magnetometers first in-orbit results
Acta Astronautica, 121, 76–87, https://doi.org/10.1016/j.actaastro.2015.12.025,
2016.
Ganushkina, N. Y., Liemohn, M. W., Dubyagin, S., Daglis, I. A., Dandouras, I., De Zeeuw, D. L., Ebihara, Y., Ilie, R., Katus, R., Kubyshkina, M., Milan, S. E., Ohtani, S., Ostgaard, N., Reistad, J. P., Tenfjord, P., Toffoletto, F., Zaharia, S., and Amariutei, O.: Defining and resolving current systems in geospace, Ann. Geophys., 33, 1369–1402, https://doi.org/10.5194/angeo-33-1369-2015, 2015.
Gary, J. B., Heelis, R. A., Hanson, W. B., and Slavin, J. A.: Field aligned
Poynting flux observations in the high latitude ionosphere, J. Geophys.
Res., 99, 11417–11427, 1994.
Gordiets, B. F., Kulikov, Y. N., Markov, M. N., and Marov, M. Y.: Numerical
modeling of the thermospheric heat budget, J. Geophys. Res., 87, 4504–4514,
https://doi.org/10.1029/JA087iA06p04504, 1982.
Hanson, W., Heelis, R., Power, R., Lippincott, C., Zuccaro, D., Holt, B.,
Harmon, L., and Sanatani, S.: The retarding potential analyzer for dynamics
explorer-b, Space Sci. Instrum., 5, 503–510, 1981.
Hanson, W. B., Ponzi, U., Arduini, C., and DiRuscio, M.: A satellite
anemometer, J. Astro. Sci., 40, 429 pp., 1992.
Hatch, W. S.: Plasma velocity vector instruments for small satellites,
Master's thesis, Utah State University, Logan, UT, 2016.
Hedin, A. E.: Extension of the MSIS Thermospheric Model into the middle and
lower atmosphere, J. Geophys. Res., 96, 1159–1172,
https://doi.org/10.1029/90JA02125, 1991.
Heise, S., Jakowski, N., Wehrenpfennig, A., Reigber, C., and
Lühr, H.: Sounding of the topside ionosphere/plasmasphere
based on GPS measurements from CHAMP: Initial results, Geophys. Res.
Lett., 29, 44-1–44-4, 2002.
Hernandez, S., Lopez, R. E., and Wiltberger, M.: Ionospheric joule heating
during magnetic storms: MHD simulations, Adv. Space Res.,
36, 1845–1848,
https://doi.org/10.1016/j.asr.2005.05.132, 2005.
Hoang, H, Røed, K., Bekkeng, T., Moen, J., Clausen, L., Trondsen, E.,
Lybekk, B., Strøm, H., Bang-Hauge, D., Pedersen, A., Nokes, C., Cupido,
C., Mann, I., Ariel, M., Portnoy, D., and Sagi, E.: The Multi-needle Langmuir
Probe Instrument for QB50 Mission: Case Studies of Ex-Alta 1 and Hoopoe
Satellites, Space Sci. Rev., 215, 21, https://doi.org/10.1007/s11214-019-0586-x, 2019.
Janhunen, P., Palmroth, M., Laitinen, T., Honkonen, I., Juusola, L.,
Facskó, G., and Pulkkinen, T. I.: The GUMICS-4 global MHD
magnetosphere–ionosphere coupling simulation, J. Atmos. Sol.-Terr. Phys., 80, 48–59, 2012.
Jones, M., Jr., Forbes, J. M., and Hagan, M. E.: Tidal-induced net transport
effects on the oxygen distribution in the thermosphere, Geophys. Res. Lett.,
41, 5272–5279, https://doi.org/10.1002/2014GL060698, 2014.
Juusola, L., Amm, O., Kauristie, K., and Viljanen, A.: A model for estimating the relation between the Hall to Pedersen conductance ratio and ground magnetic data derived from CHAMP satellite statistics, Ann. Geophys., 25, 721–736, https://doi.org/10.5194/angeo-25-721-2007, 2007.
Kelley, M.: The Earth's Ionosphere: Plasma Physics and Electrodynamics,
Academic Press, 38–46, 2009.
Kestilä, A., Tikka, T., Peitso, P., Rantanen, J., Näsilä, A.,
Nordling, K., Saari, H., Vainio, R., Janhunen, P., Praks, J.,
and Hallikainen, M.: Aalto-1 nanosatellite – technical description and mission
objectives, Geosci. Instrum. Method. Data Syst., 2,
121–130, https://doi.org/10.5194/gi-2-121-2013, 2013.
Kirkwood, S., Opgenoorth, H., and Murphree, J. S.: Ionospheric conductivities,
electric fields and currents associated with auroral substorms measured by
the EISCAT radar, Planet. Space Sci., 36,
1359–1380, https://doi.org/10.1016/0032-0633(88)90005-0,
1988.
Kivelson, M. G. and Russell, C. T.: Introduction to Space Physics,
Cambridge atmospheric and space science series, Cambridge University Press,
1995.
Klenzing, J., Davidson, R., Earle, G., Halford, A., Jones, S., Martinis, C., Paschalidis, N., Santos, L., and Pfaff, R.: PetitSat – a 6U CubeSat to examine the link between MSTIDs and ionospheric plasma density enhancements, 42nd COSPAR Scientific Assembly, Held 14-22 July 2018, in: Pasadena, California, USA, Abstract id. C2.4-16-18., Pub Date: July 2018, 2018.
Klobuchar, J. A.: Ionospheric effects on GPS, in: Global Positioning System:
Theory and Application, Vol. 1, edited by: Parkinson, B. W. and Spilker, J. J., American
Institute of Aeronautics and Astronautics INC, Washington, 485–515,
1996.
Knipp, D. J., Welliver, T., McHarg, M. G., Chun, F. K., Tobiska, W. K., and Evans, D.:
Climatology of extreme upper atmospheric heating events, Adv. Space
Res., 36, 2506–2510, https://doi.org/10.1016/j.asr.2004.02.019, 2005.
Knudsen, D. J., Burchill, J. K., Berg, K., Cameron, T., Enno, G. A.,
Marcellus, C. G., King, E. P., Wevers, I., and King, R. A.: A low-energy charged
particle distribution imager with a compact sensor for space applications,
Rev. Sci. Instrum., 74, 202–211, https://doi.org/10.1063/1.1525869, 2003.
Knudsen, D. J., Bock, B. J. J., Bounds, S. R., Burchill, J. K., Clemmons, J. H., Curtis, J. D., Eriksson, A. I., Koepke, M. E., Pfaff, R. F., Wallis, D. D., and Whaley, N.: Lower-hybrid cavity density depletions as a result
of transverse ion acceleration localized on the gyroradius scale, J.
Geophys. Res., 109, A04212, https://doi.org/10.1029/2003JA010089, 2004.
Koskinen, H. E. J. and Tanskanen, E.: Magnetospheric energy budget and the
epsilon parameter, J. Geophys. Res., 107, 1415, https://doi.org/10.1029/2002JA009283,
2002.
Laštovička, J.: Trends in the upper atmosphere and ionosphere:
Recent progress, J. Geophys. Res.-Space, 118, 3924–3935,
https://doi.org/10.1002/jgra.50341, 2013.
Laundal, K. M., Finlay, C. C., and Olsen, N.: Sunlight effects on the 3D
polar current system determined from low Earth orbit measurements, Earth
Planet. Space, 68, 1–19, https://doi.org/10.1186/s40623-016-0518-x, 2016.
Lean, J.: Calculations of Solar Irradiance: monthly means from 1882 to 2008, annual means from 1610 to 2008, available at: http://solarisheppa.geomar.de/solarisheppa/ (last access: 11 April, 2020), 2009.
Lefeuvre, F., Blanc, E., Pinçon, J.-L.,
Roussel-Dupre, R., Lawrence, D., Sauvaud, J.-A.,
Rauch, J.-L., Feraudy, H., and Lagoutte, D.:
TARANIS-A satellite project dedicated to the physics of TLEs and TGFs, Space
Sci. Rev., 137, 301–315, https://doi.org/10.1007/s11214-008-9414-4, 2008.
Léger, J.-M., Jager, T., Bertrand, F., Hulot, G., Brocco, L., Vigneron,
P., Lalanne, X., and Fratter, I.: In-flight performance of the Absolute
Scalar Magnetometer vector mode on board the Swarm satellites, Earth
Planet. Space, 67, 1–12, https://doi.org/10.1186/s40623-015-0231-1, 2015.
Li, X., Schiller, Q., Blum, L., Califf, S., Zhao, H., Tu, W., Turner, D. L., Gerhardt, D., Palo, S., Kanekal, S., Baker, D. N., Fennell, J., Blake, J. B., Looper, M., Reeves, G. D., and Spence, H.: First results from CSSWE CubeSat: Characteristics of
relativistic electrons in the near-Earth environment during the October 2012
magnetic storms, J. Geophys. Res.-Space, 118, 6489–6499, https://doi.org/10.1002/2013JA019342, 2013.
Lin, Z. W., Chao, C. K., Liu, J. Y., Huang, C. M., Chu, Y. H., Su, C. L.,
Mao, Y. C., and Chang, Y. S.: Advanced Ionospheric Probe scientific mission onboard
FORMOSAT-5 satellite, Terr. Atmos. Ocean. Sci., 28, 99–110, https://doi.org/10.3319/TAO.2016.09.14.01(EOF5), 2017.
Lin, Y. C. and Chu, Y. H.: Model simulations of ion and electron density
profiles in ionospheric E and F regions, J. Geophys. Res.-Space, 122, 2505–2529,
https://doi.org/10.1002/2016JA022855, 2017.
Lopez, R. E., Wiltberger, M., and Lyon, J. G.: Coupling between the solar wind
and the magnetosphere during strong driving: MHD Simulations, IEEE
Trans. Plasma Sci., 32, 1439–1442, https://doi.org/10.1109/TPS.2004.834037, 2004.
MacManus D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clilverd, M.
A., Petersen, T., Wolf, M. M., Thomson, N. R., and Divett, T.: Long-term
geomagnetically induced current observations in New Zealand: Earth return
corrections and geomagnetic field driver, Space Weather, 15, 1020–1038,
https://doi.org/10.1002/2017SW001635, 2017.
Malaspina, D. M., Ergun, R. E., Bolton, M., Kien, M., Summers, D., Stevens,
K., Yehle, A., Karlsson, M., Hoxie, V. C., Bale, S. D., and Goetz, K.: The
Digital Fields Board for the FIELDS instrument suite on the Solar Probe Plus
mission: Analog and digital signal processing, J. Geophys.
Res.-Space, 121, 5088–5096, https://doi.org/10.1002/2016JA022344,
2016.
McCrea, I., Aikio, A., Alfonsi, L., Belova, E., Buchert, S., Clilverd, M.,
Engler, N., Gustavsson, B., Heinselman, C., Kero, J., Kosch, M., Lamy, H.,
Leyser, T., Ogawa, Y., Oksavik, K., Pellinen-Wannberg, A., Pitout, F., Rapp,
M., Stanislawska, I., and Vierinen, J.: The science case for the
EISCAT_3D radar, Prog. Earth Plane. Sc.,
2, 21, https://doi.org/10.1186/s40645-015-0051-8, 2015.
Mozer, F. S.: DC and low-frequency double probe electric field measurements
in space, J. Geophys. Res.-Space, 121, 10942–10953, https://doi.org/10.1002/2016JA022952, 2016.
Ogawa, Y., Motoba, T., Buchert, S. C., Häggström, I., and Nozawa, S.:
Upper atmosphere cooling over the past 33 years, Geophys. Res. Lett., 41,
5629–5635, https://doi.org/10.1002/2014GL060591, 2014.
O'Hanlon, J. F.: A User's Guide to Vacuum Technology, 2nd Edn., John
Wiley, New York, 1989.
Olsson, A., Janhunen, P., Karlsson, T., Ivchenko, N., and Blomberg, L. G.: Statistics of Joule heating in the auroral zone and polar cap using Astrid-2 satellite Poynting flux, Ann. Geophys., 22, 4133–4142, https://doi.org/10.5194/angeo-22-4133-2004, 2004.
Palmroth, M., Janhunen, P., Pulkkinen, T. I., and Koskinen, H. E. J.: Ionospheric energy input as a function of solar wind parameters: global MHD simulation results, Ann. Geophys., 22, 549–566, https://doi.org/10.5194/angeo-22-549-2004, 2004.
Palmroth, M., Janhunen, P., Pulkkinen, T. I., Aksnes, A., Lu, G., Østgaard, N., Watermann, J., Reeves, G. D., and Germany, G. A.: Assessment of ionospheric Joule heating by GUMICS-4 MHD simulation, AMIE, and satellite-based statistics: towards a synthesis, Ann. Geophys., 23, 2051–2068, https://doi.org/10.5194/angeo-23-2051-2005, 2005.
Palmroth, M., Janhunen, P., Germany, G., Lummerzheim, D., Liou, K., Baker, D. N., Barth, C., Weatherwax, A. T., and Watermann, J.: Precipitation and total power consumption in the ionosphere: Global MHD simulation results compared with Polar and SNOE observations, Ann. Geophys., 24, 861–872, https://doi.org/10.5194/angeo-24-861-2006, 2006.
Park, J., Lühr, H., Kervalishvili, G., Rauberg, J.,
Stolle, C., Kwak, Y. S., and Lee, W. K.: Morphology of high-latitude 10
plasma density perturbations as deduced from the total electron content
measurements onboard the Swarm constellation, J. Geophys.
Res.-Space, 122, 1338–1359, 2017.
Parrot, M.: The micro-satellite DEMETER, J. Geodyn., 33, 535–541, https://doi.org/10.1016/S0264-3707(02)00014-5, 2002.
Paschalidis, N., Jones, S. L., Rodriguez, M., Sittler, E. C. Jr., and Chornay, D. J.: A Compact Ion Neutral Mass
Spectrometer for the ExoCube Mission, 6th European CubeSat Symposium,
Estavayet, Switzerland, 2014.
Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.: NRLMSISE-00
empirical model of the atmosphere: Statistical comparisons and scientific
issues, J. Geophys. Res.-Space, 107, 1468, https://doi.org/10.1029/2002JA009430, 2002.
Prölss, G. W.: Density Perturbations in the Upper Atmosphere Caused by
the Dissipation of Solar Wind Energy, Survey. Geophys., 32, 101–195,
https://doi.org/10.1007/s10712-010-9104-0, 2011.
Pulkkinen, A., Bernabeu, E., Thomson, A., Viljanen, A., Pirjola, R., Boteler, D.,
Eichner, J., Cilliers, P. J., Welling, D., Savani, N. P., Weigel, R. S., Love, J. J., Valch, C., Ngwira, C. M., Crowely, G., Schultz, A., Kataoka, R., Anderson, B., Fugate, D., Simpson, J. J., and MacAlester, M.:
Geomagnetically induced currents: Science, engineering, and applications
readiness, Space Weather, 15, 828–856, https://doi.org/10.1002/2016SW001501, 2017.
Qian, L., Laštovička, J., Roble, R. G., and Solomon, S. C.: Progress in
observations and simulations of global change in the upper atmosphere, J.
Geophys. Res., 116, A00H03, https://doi.org/10.1029/2010JA016317, 2011.
Randall, C. E., Harvey, V. L., Singleton, C. S., Bailey, S. M., Bernath, P.
F., Codrescu, M., Nakajima, H., and Russell III, J. M.: Energetic particle
precipitation effects on the Southern Hemisphere stratosphere in 1992–2005,
J. Geophys. Res., 112, D08308, https://doi.org/10.1029/2006JD007696, 2007.
Rees, M. H.: Auroral ionization and excitation by incident energetic
electrons, Planet. Space Sci., 11, 1209–1218, 1963.
Rich, F. J. and Hairston, M.: Large-scale convection patterns observed by DMSP, J. Geophys. Res., 99, 3827, https://doi.org/10.1029/93JA03296, 1994.
Richmond, A. D.: Assimilative mapping of ionospheric electrodynamics, Adv.
Space Res., 12, 669–668, 1992.
Richmond, A. D.: Ionospheric Electrodynamics, in: Handbook of Atmospheric
Electrodynamics, Vol. II, edited by: Volland, H., CRC Press, Boca Raton, Florida,
249–290, 1995.
Richmond, A. D., Ridley, E. C., and Roble, R. G.: A thermosphere/ionosphere
general circulation model with coupled electrodynamics, Geophys. Res. Lett.,
19, 601–604, https://doi.org/10.1029/92GL00401, 1992.
Richmond, A. D. and Maute, A.: Ionospheric electrodynamics modeling, in:
Modeling the Ionosphere-Thermosphere System, edited by: Huba, J., Schunk, R.,
and Khazanov, G., John Wiley, Chichester, UK, 57–71, https://doi.org/10.1002/9781118704417.ch6, 2014.
Richmond, A. D. and Thayer, J. P.: Ionospheric Electrodynamics: A Tutorial,
in: Magnetospheric Current Systems, edited by: Ohtani, S., Fujii, R., Hesse, M. and Lysak, R.
L., 131–146, https://doi.org/10.1029/GM118p0131, 2013.
Rishbeth, H. and Roble, R. G.: Cooling of the upper atmosphere by enhanced
greenhouse gases – Modelling of thermospheric and ionospheric effects,
Planet. Space Sci., 40, 1011–1026, https://doi.org/10.1016/0032-0633(92)90141-A,
1992.
Ritter, P. and Lühr, H.: Search for magnetically quiet CHAMP polar passes and the characteristics of ionospheric currents during the dark season, Ann. Geophys., 24, 2997–3009, https://doi.org/10.5194/angeo-24-2997-2006, 2006.
Ritter, P., Lühr, H., and Rauberg, J.: Determining field-aligned currents
with the Swarm constellation mission, Earth Planet Sp., 65, 9,
https://doi.org/10.5047/eps.2013.09.006, 2013.
Rodger, C. J., Clilverd, M. A., Green, J. C., and Lam, M. M.: Use of POES
SEM-2 observations to examine radiation belt dynamics and energetic electron
precipitation into the atmosphere, J. Geophys. Res., 115, A04202,
https://doi.org/10.1029/2008JA014023, 2010.
Rosenqvist, L., Buchert, S., Opgenoorth, H., Vaivads, A., and Lu, G.:
Magnetospheric energy budget during huge geomagnetic activity using Cluster
and ground-based data, J. Geophys. Res., 111, A10211,
https://doi.org/10.1029/2006JA011608, 2006.
Sangalli, L., Knudsen, D. J., Larsen, M. F., Zhan, T., Pfaff, R. F., and Rowland,
D.: Rocket-based measurements of ion velocity, neutral wind, and electric
field in the collisional transition region of the auroral ionosphere, J.
Geophys. Res. 114, A04306, https://doi.org/10.1029/2008JA013757, 2009.
Sarris, T. E., Talaat, E. R., Lappas, V. J., and Armandillo, E.: Feasibility Study for a Low-Flying Spacecraft for
the Exploration of the MLTI Region, Technical Report, ESA/ESTEC, CN 20991, 51–80,
2010.
Sarris, T. E., Talaat, E. R., Palmroth, M., Kauristie, K., and Verronen, P., and Armandillo, E.: Electrodynamics Study of the Upper Atmosphere in
Support to Future MLTI Missions, Technical Report, ESA/ESTEC, CN
4000104174/11/NL/AF, 2013.
Sauvaud, J.-A., Larson, D., Aoustin, C., Curtis, D., Médale, J.-L.,
Fedorov, A., Rouzaud, J., Luhmann, J., Moreau, T., Schröder, P., Louarn,
P., Dandouras, I., and Penou, E.: The IMPACT Solar Wind Electron Analyzer
(SWEA), Space Sci. Rev., 136, 227–239, https://doi.org/10.1007/s11214-007-9174-6,
2008.
Scarf, F. L., Fredricks, R. W., Gurnett, D. A., and Smith, E. J.: The ISEE-C
Plasma Wave Investigation, IEEE Transaction on Geoscience Electronics, Vol.
GE-16, 1978.
Schunk, R. and Nagy, A.: Ionospheres: Physics, Plasma Physics, and Chemistry (Cambridge Atmospheric and Space Science Series), Cambridge, Cambridge University Press, 254–287, https://doi.org/10.1017/CBO9780511551772,
2004.
Semeter, J. and Kamalabadi, F.: Determination of primary electron spectra
from incoherent scatter radar measurements of the auroral E region, Radio
Sci., 40, RS2006, https://doi.org/10.1029/2004RS003042, 2005.
Sechi, G, André, G., Andreis, D., and Saponara, M.: Magnetic Attitude
Control of the GOCE Satellite.” In 6th International ESA Conference on
Guidance, Navigation and Control Systems, Loutraki, Greece, 17–20 October
2005, ESA SP-606, 2006.
Semeter, J. and Kamalabadi, F.: Determination of primary electron spectra
from incoherent scatter radar measurements of the auroral E region, Radio
Sci., 40, RS2006, https://doi.org/10.1029/2004RS003042, 2005.
Seppälä, A., Verronen, P. T., Kyrölä, E., Hassinen, S.,
Backman, L., Hauchecorne, A., Bertaux, J. L., and Fussen, D.: Solar proton events
of October–November 2003: Ozone depletion in the Northern hemisphere
polar winter as seen by GOMOS/Envisat, Geophys. Res. Lett., 31, L19107,
https://doi.org/10.1029/2004GL021042, 2004.
Seppälä, A., Randall, C. E., Clilverd, M. A., Rozanov, E., and
Rodger, C. J.: Geomagnetic activity and polar surface air temperature variability,
J. Geophys. Res., 114, A10312, https://doi.org/10.1029/2008JA014029, 2009.
Sinnhuber, M., Nieder, H., and Wieters, N.: Surv Geophys: Energetic Particle
Precipitation and the Chemistry of the Mesosphere/Lower Thermosphere, Surv. Geophys., 33,
1281–1334, https://doi.org/10.1007/s10712-012-9201-3, 2012.
Slinker, S. P., Fedder, J. A., Emery, B. A., Baker, K. B., Lummerzheim, D.,
Lyon, J. G., and Rich, F. J.: Comparison of global MHD simulations with AMIE
simulations for the events of 19–20 May, 1996, J. Geophys. Res., 104,
28379–28395, 1999.
Solomon, S. C.: Global modeling of thermospheric airglow in the far
ultraviolet, J. Geophys. Res.-Space, 122, 7834–7848, https://doi.org/10.1002/2017JA024314, 2017.
Solomon, S. C., Qian, L., and Roble, R. G.: New 3-D simulations of climate
change in the thermosphere, J. Geophys. Res.-Space, 120, 2183–2193,
https://doi.org/10.1002/2014JA020886, 2015.
Stoneback, R. A., Davidson, R. L., and Heelis, R. A.: Ion drift meter calibration and photoemission correction for the C/NOFS satellite, J. Geophys. Res., 117, A08323, https://doi.org/10.1029/2012JA017636, 2012.
Stromberg, E.: DICE CubeSat Mission, 8th Annual CubeSat Developers'
Workshop, CalPoly, San Luis Obispo, CA, USA, 20–22 April 2011, 2011.
Sutton, E. K., Nerem, R. S., and Forbes, J. M.: Density and Winds in the
Thermosphere Deduced from Accelerometer Data, J. Spacecraft
Rockets, 44, 1210–1219, https://doi.org/10.2514/1.28641,
2007.
Swenson, A. P.: The Field-Programmable Gate Array Design of the Gridded
Retarding Ion Distribution Sensor, All Graduate Theses and Dissertations,
6876, available at: https://digitalcommons.usu.edu/etd/6876, 2017.
Thayer, J. P. and Semeter, J.: The convergence of magnetospheric energy flux
in the polar atmosphere, J. Atmos. Sol.-Terr. Phys., 66, 807–824, 2004.
Trotignon, J. G., D'eau, P. M. E., Rauch, J. L., Le Guirriec, J., Canu, P., and Darrouzet, F.: The Whisper
Relaxation Sounder Onboard Cluster: A Powerful Tool for Space Plasma
Diagnosis around the Earth, Cosmic Res., 41, 345–348, 2003.
Trotignon, J. G., Michau, J. L., Lagoutte, D., Chabassiere, M., Chalumeau, G., Colin, F., Decreau, P. M., Geiswiller, J., Gille, P., Grard, R., Hachemi, T., Hamelin, M., Eriksson, A., Laakso, H., Lebreton, J. P., Mazelle, C., Randriamboarison, O., Schmidt, W., Smit, A., Telljohann, U., and Zamora, P.: RPC-MIP: The Mutual
Impedance Probe of the Rosetta Plasma Consortium, Space Sci. Rev., 128, 713–728,
https://doi.org/10.1007/s11214-006-9005-1, 2007.
Vasyliūnas, V. M. and Song, P.: Meaning of ionospheric Joule heating,
J. Geophys. Res., 110, A02301, https://doi.org/10.1029/2004JA010615, 2005.
Virtanen, I. I., Gustavsson, B., Aikio, A. T., Kero, A., Asamura, K., and
Ogawa, Y.: Electron energy spectrumand auroral power estimation from
incoherent scatter radar measurements, J. Geophys. Res.-Space, 123,
6865–6887, https://doi.org/10.1029/2018JA025636, 2018.
Visentine, J.: Atomic oxygen effects measurements for Shuttle missions STS-8 and 41-G (NASA Technical Memorandum 100459), Houston, TX: NASA Lyndon B. Johnson Space Center, 1983.
Visentine, J., Leger, L., Kuminecz, J., and Spiker, I.: STS-8 atomic oxygen effects experiment, American Institute of Aeronautics and Astronautics, https://doi.org/10.2514/6.1985-415, 1985.
Visser, T, Doornbos, E. N., de Visser, C. C., Visser, P. N. A. M., and Fritsche,
B.: Torque model verification for the GOCE satellite, Adv. Space
Res., 62, 1114–1136, 2018.
Wang, H., Lühr, H., Ma, S. Y., Weygand, J., Skoug, R. M., and Yin, F.:
Field-aligned currents observed by CHAMP during the intense 2003 geomagnetic
storm events, Ann. Geophys., 24, 311–324,
https://doi.org/10.5194/angeo-24-311-2006, 2006.
Wayne, R.: Chemistry of Atmosphere, Oxford University Press, 2000.
Weimer, D. R.: Improved ionospheric electrodynamic models and application to
calculating Joule heating rates, J. Geophys. Res., 110, A05306,
https://doi.org/10.1029/2004JA010884, 2005a.
Weimer, D. R.: Predicting surface geomagnetic variations using ionospheric
electrodynamic models, J. Geophys. Res., 110, A12307,
https://doi.org/10.1029/2005JA011270, 2005b.
Westerhoff, J., Earle, G., Bishop, R., Swenson, G., Vadas, S., Clemmons, J.,
Davidson, R., Fanelli, L., Fish, C., Garg, V., Ghosh, A., Jagannatha, B.,
Kroeker, E., Marquis, P., Martin, D., Noel, S., Orr, C., and Robertson, R.:
LAICE CubeSat mission for gravity wave studies, Adv. Space Res.,
56, 1413–1427, https://doi.org/10.1016/j.asr.2015.06.036, 2015.
Wu, Q., Killeen, T. L., Deng, W., Burns, A. G., Winningham, J. D.,
Spencer, N. W., Heelis, R. A., and Hanson, W. B.: Dynamics Explorer 2 satellite
observations and satellite track model calculations in the cusp/cleft
region, J. Geophys. Res., 101, 5329–5342, 1995.
Wygant, J. R., Bonnell, J. W., Goetz, K., Ergun, R. E., Mozer, F. S., Bale, S. D., Ludlam, M., Turin, P., Harvey, P. R., Hochmann, R., Harps, K., Dalton, G., McCauley, J., Rachelson, W., Gordon, D., Donakowski, B., Shultz, C., Smith, C., Diaz-Aguado, M., Fisher, J., Heavner, S., Berg, P., Malaspina, D. M., Boltn, M. K., Hudson, M., Strangeway, R. J., Baker, D. N., Li, X., Albert, J., Foster, J.C., Chaston, C. C., Mann, I., Donovan, E., Cully, C. M., Cattell, C. A., Krasnoselskikh, V., Kersten, K., Brennemann, A., and Tao, J. B.: The Electric Field and Waves
Instruments on the Radiation Belt Storm Probes Mission, Space Sci. Rev., 179,
183–220, https://doi.org/10.1007/s11214-013-0013-7, 2013.
Xiong, C., Stolle, C., and Lühr, H.: The Swarm satellite loss of GPS signal and
its relation to ionospheric plasma irregularities, Space Weather, 14,
563–577, https://doi.org/10.1002/2016SW001439, 2016.
Yuan, Z., Xiong, Y., Li, H., Huang, S., Qiao, Z., Wang, Z., Zhou, M., Wang, D., Deng, X., Raita, T., and Wang, J.: Influence of precipitating energetic ions caused by EMIC waves on the subauroral ionospheric E region during a geomagnetic storm, J. Geophys. Res.-Space, 119, 8462–8471, 2014.
Zhang, X. X., Wang, C., Chen, T., Wang, Y. L., Tan, A., Wu, T. S., Germany, G. A.,
and Wang, W.: Global patterns of Joule heating in the high-latitude
ionosphere, J. Geophys. Res., 110, A12208, https://doi.org/10.1029/2005JA011222, 2005.
Zhou, Y.-L. and Lühr, H.: Net ionospheric currents closing
field-aligned currents in the auroral region: CHAMP results, J. Geophys.
Res.-Space, 122, 4436–4449, https://doi.org/10.1002/2016JA023090, 2017.
Zoennchen, J. H., Nass, U., Fahr, H. J., and Goldstein, J.: The response of the H geocorona between 3 and 8 Re to geomagnetic disturbances studied using TWINS stereo Lyman-α data, Ann. Geophys., 35, 171–179, https://doi.org/10.5194/angeo-35-171-2017, 2017.
Zurbuchen, H. T., von Steiger, R., Bartalev, S., Dong, X., Falanga, M., Fléron, R., Gregorio, A., Horbury, T. S., Klumpar, D., Küppers, M., Macdonald, M., Millan, R., Petrukovich, A., Schilling, K., Wu, J., and Yan, J.:
Performing High-Quality Science on CubeSats, Space Research Today, 196,
11–30, https://doi.org/10.1016/j.srt.2016.07.011, 2016.
Short summary
Daedalus aims to measure the largely unexplored area between Eart's atmosphere and space, the Earth's
ignorosphere. Here, intriguing and complex processes govern the deposition and transport of energy. The aim is to quantify this energy by measuring effects caused by electrodynamic processes in this region. The concept is based on a mother satellite that carries a suite of instruments, along with smaller satellites carrying a subset of instruments that are released into the atmosphere.
Daedalus aims to measure the largely unexplored area between Eart's atmosphere and space, the...