Articles | Volume 9, issue 1
https://doi.org/10.5194/gi-9-255-2020
https://doi.org/10.5194/gi-9-255-2020
Research article
 | 
01 Jul 2020
Research article |  | 01 Jul 2020

Development of a new centralized data acquisition system for seismic exploration

Feng Guo, Qisheng Zhang, Qimao Zhang, Wenhao Li, Yueyun Luo, Yuefeng Niu, and Shuaiqing Qiao

Related authors

Development of a power station unit in a distributed hybrid acquisition system of seismic and electrical methods based on the narrowband Internet of Things (NB-IoT)
Feng Guo, Qisheng Zhang, and Shenghui Liu
Geosci. Instrum. Method. Data Syst., 12, 111–120, https://doi.org/10.5194/gi-12-111-2023,https://doi.org/10.5194/gi-12-111-2023, 2023
Short summary
Development of a new distributed hybrid seismic and electrical data acquisition station based on system-on-a-programmable-chip technology
Qisheng Zhang, Wenhao Li, Feng Guo, Zhenzhong Yuan, Shuaiqing Qiao, and Qimao Zhang
Geosci. Instrum. Method. Data Syst., 8, 241–249, https://doi.org/10.5194/gi-8-241-2019,https://doi.org/10.5194/gi-8-241-2019, 2019
Short summary
Development of a distributed hybrid seismic–electrical data acquisition system based on the Narrowband Internet of Things (NB-IoT) technology
Wenhao Li, Qisheng Zhang, Qimao Zhang, Feng Guo, Shuaiqing Qiao, Shiyang Liu, Yueyun Luo, Yuefeng Niu, and Xing Heng
Geosci. Instrum. Method. Data Syst., 8, 177–186, https://doi.org/10.5194/gi-8-177-2019,https://doi.org/10.5194/gi-8-177-2019, 2019
Short summary
Development of a New Centralized Data Acquisition System for Seismic Exploration
Feng Guo, Qisheng Zhang, Qimao Zhang, Wenhao Li, Yueyun Luo, Yuefeng Niu, and Shauiqing Qiao
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2018-48,https://doi.org/10.5194/gi-2018-48, 2019
Revised manuscript not accepted
Short summary

Related subject area

System design
Research and application of small-diameter hydraulic fracturing in situ stress measurement system
Yimin Liu, Mian Zhang, Yixuan Li, and Huan Chen
Geosci. Instrum. Method. Data Syst., 13, 107–116, https://doi.org/10.5194/gi-13-107-2024,https://doi.org/10.5194/gi-13-107-2024, 2024
Short summary
New ring shear deformation apparatus for three-dimensional multiphase experiments: first results
Shae McLafferty, Haley Bix, Kyle Bogatz, and Jacqueline E. Reber
Geosci. Instrum. Method. Data Syst., 12, 141–154, https://doi.org/10.5194/gi-12-141-2023,https://doi.org/10.5194/gi-12-141-2023, 2023
Short summary
Design and performance of the Hotrod melt-tip ice-drilling system
William Colgan, Christopher Shields, Pavel Talalay, Xiaopeng Fan, Austin P. Lines, Joshua Elliott, Harihar Rajaram, Kenneth Mankoff, Morten Jensen, Mira Backes, Yunchen Liu, Xianzhe Wei, Nanna B. Karlsson, Henrik Spanggård, and Allan Ø. Pedersen
Geosci. Instrum. Method. Data Syst., 12, 121–140, https://doi.org/10.5194/gi-12-121-2023,https://doi.org/10.5194/gi-12-121-2023, 2023
Short summary
Towards agricultural soil carbon monitoring, reporting, and verification through the Field Observatory Network (FiON)
Olli Nevalainen, Olli Niemitalo, Istem Fer, Antti Juntunen, Tuomas Mattila, Olli Koskela, Joni Kukkamäki, Layla Höckerstedt, Laura Mäkelä, Pieta Jarva, Laura Heimsch, Henriikka Vekuri, Liisa Kulmala, Åsa Stam, Otto Kuusela, Stephanie Gerin, Toni Viskari, Julius Vira, Jari Hyväluoma, Juha-Pekka Tuovinen, Annalea Lohila, Tuomas Laurila, Jussi Heinonsalo, Tuula Aalto, Iivari Kunttu, and Jari Liski
Geosci. Instrum. Method. Data Syst., 11, 93–109, https://doi.org/10.5194/gi-11-93-2022,https://doi.org/10.5194/gi-11-93-2022, 2022
Short summary
An autonomous low-power instrument platform for monitoring water and solid discharges in mesoscale rivers
Guillaume Nord, Yoann Michielin, Romain Biron, Michel Esteves, Guilhem Freche, Thomas Geay, Alexandre Hauet, Cédric Legoût, and Bernard Mercier
Geosci. Instrum. Method. Data Syst., 9, 41–67, https://doi.org/10.5194/gi-9-41-2020,https://doi.org/10.5194/gi-9-41-2020, 2020
Short summary

Cited articles

Adhikary, A., Lin, X., and Wang, Y.: Performance Evaluation of NB-IoT Coverage, C. 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), 1–5, https://doi.org/10.1109/VTCFall.2016.7881160, 2016. 
Liang, G. and Li, W.: Some thoughts and practice on performance improvement in distributed control system based on fieldbus and ethernet, J. Mea. Control, 49, 109–118, 2016. 
Marjanovic, D., Grozdanovic, M., and Janackovic G.: Data acquisition and remote control systems in coal mines: a serbian experience, J. Mea. Control, 48, 28–36, 2015. 
Mazza, S., Basili, A., Bono, A., Lauciani, V., Mandiello, A. G., Marcocci, C., Mele, F., Pintore, S., Quintiliani, M., Scognamiglio, L., and Selvaggi, G.: AIDA–Seismic data acquisition, processing, storage and distribution at the National Earthquake Center, J. Ann. Geophys., 55, 541–548, 2012. 
Nakagawa, S.: Split Hopkinson resonant bar test for sonic-frequency acoustic velocity and attenuation measurements of small, isotropic geological samples, J. Rev. Sci. Instrum., 82, 044901, https://doi.org/10.1063/1.3579501, 2011. 
Download
Short summary
The CUGB-CS48DAS data acquisition system was primarily designed for seismic purposes. However, we tried to integrate the acquisition circuit for electrical purposes and implemented hardware improvements as well as software updates. Moreover, technology including narrow-band internet of things QC monitoring was also introduced. After a few field tests, the system was proven to be stable and easy to use and has a good application effect in engineering geology, mineral geology, and energy geology.