Journal cover Journal topic
Geoscientific Instrumentation, Methods and Data Systems An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.182 IF 1.182
  • IF 5-year value: 1.437 IF 5-year
    1.437
  • CiteScore value: 3.0 CiteScore
    3.0
  • SNIP value: 0.686 SNIP 0.686
  • IPP value: 1.36 IPP 1.36
  • SJR value: 0.538 SJR 0.538
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 11 Scimago H
    index 11
  • h5-index value: 13 h5-index 13
GI | Articles | Volume 9, issue 1
Geosci. Instrum. Method. Data Syst., 9, 69–77, 2020
https://doi.org/10.5194/gi-9-69-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Instrum. Method. Data Syst., 9, 69–77, 2020
https://doi.org/10.5194/gi-9-69-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 18 Mar 2020

Research article | 18 Mar 2020

A comprehensive data quality evaluation method for the currents of marine controlled-source electromagnetic transmitters based on the analytic hierarchy process

Rui Yang et al.

Related authors

A compact ocean bottom electromagnetic receiver and seismometer
Kai Chen, Ming Deng, Zhongliang Wu, Xianhu Luo, and Li Zhou
Geosci. Instrum. Method. Data Syst., 9, 213–222, https://doi.org/10.5194/gi-9-213-2020,https://doi.org/10.5194/gi-9-213-2020, 2020
Short summary
A new borehole electromagnetic receiver developed for CSEM methods
Sixuan Song, Ming Deng, Kai Chen, Muer A, and Sheng Jin
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2019-37,https://doi.org/10.5194/gi-2019-37, 2020
Revised manuscript under review for GI
Short summary
A wireless monitoring system for a high-power borehole–ground electromagnetic transmitter
Shuangshuang Cheng, Ming Deng, Meng Wang, Sheng Jin, Qisheng Zhang, and Kai Chen
Geosci. Instrum. Method. Data Syst., 8, 13–19, https://doi.org/10.5194/gi-8-13-2019,https://doi.org/10.5194/gi-8-13-2019, 2019
Short summary
Multifunction waveform generator for EM receiver testing
Kai Chen, Sheng Jin, and Ming Deng
Geosci. Instrum. Method. Data Syst., 7, 11–19, https://doi.org/10.5194/gi-7-11-2018,https://doi.org/10.5194/gi-7-11-2018, 2018
Short summary
Development of a full-waveform voltage and current recording device for multichannel transient electromagnetic transmitters
Xinyue Zhang, Qisheng Zhang, Meng Wang, Qiang Kong, Shengquan Zhang, Ruihao He, Shenghui Liu, Shuhan Li, and Zhenzhong Yuan
Geosci. Instrum. Method. Data Syst., 6, 495–503, https://doi.org/10.5194/gi-6-495-2017,https://doi.org/10.5194/gi-6-495-2017, 2017
Short summary

Related subject area

Ocean instruments
Continuous in situ measurement of dissolved methane in Lake Kivu using a membrane inlet laser spectrometer
Roberto Grilli, François Darchambeau, Jérôme Chappellaz, Ange Mugisha, Jack Triest, and Augusta Umutoni
Geosci. Instrum. Method. Data Syst., 9, 141–151, https://doi.org/10.5194/gi-9-141-2020,https://doi.org/10.5194/gi-9-141-2020, 2020
Short summary
Evaluations of an ocean bottom electro-magnetometer and preliminary results offshore NE Taiwan
Ching-Ren Lin, Chih-Wen Chiang, Kuei-Yi Huang, Yu-Hung Hsiao, Po-Chi Chen, Hsu-Kuang Chang, Jia-Pu Jang, Kun-Hui Chang, Feng-Sheng Lin, Saulwood Lin, and Ban-Yuan Kuo
Geosci. Instrum. Method. Data Syst., 8, 265–276, https://doi.org/10.5194/gi-8-265-2019,https://doi.org/10.5194/gi-8-265-2019, 2019
Short summary
Removing low-frequency artefacts from Datawell DWR-G4 wave buoy measurements
J.-V. Björkqvist, H. Pettersson, L. Laakso, K. K. Kahma, H. Jokinen, and P. Kosloff
Geosci. Instrum. Method. Data Syst., 5, 17–25, https://doi.org/10.5194/gi-5-17-2016,https://doi.org/10.5194/gi-5-17-2016, 2016
Short summary
Simple, affordable, and sustainable borehole observatories for complex monitoring objectives
A. Kopf, T. Freudenthal, V. Ratmeyer, M. Bergenthal, M. Lange, T. Fleischmann, S. Hammerschmidt, C. Seiter, and G. Wefer
Geosci. Instrum. Method. Data Syst., 4, 99–109, https://doi.org/10.5194/gi-4-99-2015,https://doi.org/10.5194/gi-4-99-2015, 2015
Short summary
Drilling cores on the sea floor with the remote-controlled sea floor drilling rig MeBo
T. Freudenthal and G. Wefer
Geosci. Instrum. Method. Data Syst., 2, 329–337, https://doi.org/10.5194/gi-2-329-2013,https://doi.org/10.5194/gi-2-329-2013, 2013

Cited articles

Chen, K., Jing, J. E., Zhao, Q. X., Luo, X. H., Tu, G. H., and Wang, M.: Ocean bottom EM receiver and application for gas-hydrate detection, Chinese J. Geophys.-Ch., 60, 4262–4272, https://doi.org/10.6038/cjg20171114, 2017a. 
Chen, K., Deng, M., Luo, X. H., and Wu, Z. L.: A micro ocean-bottom E-field receiver, Geophysics, 82, E233–E241, https://doi.org/10.1190/GEO2016-0242.1, 2017b. 
Constable, S. C.: Ten years of marine CSEM for hydrocarbon exploration, Geophysics, 75, A67–A81, 2010. 
Constable, S. C. and Srnka, L. J.: An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration, Geophysics, 72, WA3–WA12, https://doi.org/10.1190/1.2432483, 2007. 
Cox, C. S., Constable, S. C., Chave, A. D., and Webb, S. C.: Controlled-source electromagnetic sounding of the oceanic lithosphere, Nature, 320, 52–54, https://doi.org/10.1038/320052a0, 1986. 
Publications Copernicus
Download
Short summary
An electromagnetic transmitter sends an electromagnetic wave to the seabed; the receiver located on the seafloor receives the electromagnetic wave which carries the information of the geosphere. In this paper, an algorithm is proposed to improve the current quality of marine electromagnetic transmitters. It has an anomaly detection function for the unstable part of the transmitting current. Our results show that the instability of transmitting-current data can cause obvious anomalies.
An electromagnetic transmitter sends an electromagnetic wave to the seabed; the receiver located on...
Citation