Articles | Volume 11, issue 1
https://doi.org/10.5194/gi-11-195-2022
https://doi.org/10.5194/gi-11-195-2022
Review article
 | 
02 Jun 2022
Review article |  | 02 Jun 2022

GeoAI: a review of artificial intelligence approaches for the interpretation of complex geomatics data

Roberto Pierdicca and Marina Paolanti

Related authors

Advancing forest inventory: a comparative study of low-cost MLS lidar device with professional laser scanners
Mattia Balestra, Carlos Cabo, Arnadi Murtiyoso, Alessandro Vitali, Flor Alvarez-Taboada, Alejandro Cantero-Amiano, Rodolfo Bolaños, Diego Laino, and Roberto Pierdicca
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 9–15, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-9-2024,https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-9-2024, 2024
High definition 3D models of small legume seed: a close up application to support ancient plant genomics
Mattia Balestra, Federico Fattorini, Renato Angeloni, Laura Nanni, Adriano Mancini, Roberto Papa, and Roberto Pierdicca
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 17–24, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-17-2024,https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-17-2024, 2024
Comparing the accuracy of 3D urban olive tree models detected by smartphone using LiDAR sensor, photogrammetry and NeRF: a case study of ’Ascolana Tenera’ in Italy
Stefano Chiappini, Mattia Balestra, Federico Giulioni, Ernesto Marcheggiani, Eva Savina Malinverni, and Roberto Pierdicca
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-3-2024, 61–68, https://doi.org/10.5194/isprs-annals-X-3-2024-61-2024,https://doi.org/10.5194/isprs-annals-X-3-2024-61-2024, 2024
Augmented Reality for Air Quality Monitoring: Case Study in the Marche Region (Italy)
Marsia Sanità, Jonathan Fratini, Nikhil Muralikrishna, Roberto Pierdicca, and Eva Savina Malinverni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-2024, 389–395, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-389-2024,https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-389-2024, 2024
A COMPARISON OF PRE-PROCESSING APPROACHES FOR REMOTELY SENSED TIME SERIES CLASSIFICATION BASED ON FUNCTIONAL ANALYSIS
M. Balestra, R. Pierdicca, L. Cesaretti, G. Quattrini, A. Mancini, A. Galli, E. S. Malinverni, S. Casavecchia, and S. Pesaresi
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-1-W1-2023, 33–40, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-33-2023,https://doi.org/10.5194/isprs-annals-X-1-W1-2023-33-2023, 2023

Related subject area

Data management
Managing data of sensor-equipped transportation networks using graph databases
Erik Bollen, Rik Hendrix, and Bart Kuijpers
Geosci. Instrum. Method. Data Syst., 13, 353–371, https://doi.org/10.5194/gi-13-353-2024,https://doi.org/10.5194/gi-13-353-2024, 2024
Short summary
Modular approach to near-time data management for multi-city atmospheric environmental observation campaigns
Matthias Zeeman, Andreas Christen, Sue Grimmond, Daniel Fenner, William Morrison, Gregor Feigel, Markus Sulzer, and Nektarios Chrysoulakis
EGUsphere, https://doi.org/10.5194/egusphere-2024-1469,https://doi.org/10.5194/egusphere-2024-1469, 2024
Short summary
Research on online data transmission technology in a marine controlled-source electromagnetic transmitter
Chentao Wang, Ming Deng, Nini Duan, Xiaoxi Ma, and Meng Wang
Geosci. Instrum. Method. Data Syst., 12, 187–200, https://doi.org/10.5194/gi-12-187-2023,https://doi.org/10.5194/gi-12-187-2023, 2023
Short summary
Soil CO2 efflux errors are lognormally distributed – implications and guidance
Thomas Wutzler, Oscar Perez-Priego, Kendalynn Morris, Tarek S. El-Madany, and Mirco Migliavacca
Geosci. Instrum. Method. Data Syst., 9, 239–254, https://doi.org/10.5194/gi-9-239-2020,https://doi.org/10.5194/gi-9-239-2020, 2020
Short summary
CÆLIS: software for assimilation, management and processing data of an atmospheric measurement network
David Fuertes, Carlos Toledano, Ramiro González, Alberto Berjón, Benjamín Torres, Victoria E. Cachorro, and Ángel M. de Frutos
Geosci. Instrum. Method. Data Syst., 7, 67–81, https://doi.org/10.5194/gi-7-67-2018,https://doi.org/10.5194/gi-7-67-2018, 2018
Short summary

Cited articles

Adegun, A., Akande, N., Ogundokun, R., and Asani, E.: Image segmentation and classification of large scale satellite imagery for land use: a review of the state of the arts, Int. J. Civ. Eng. Technol, 9, 1534–1541, 2018. a
Akram, M. W., Li, G., Jin, Y., Chen, X., Zhu, C., and Ahmad, A.: Automatic detection of photovoltaic module defects in infrared images with isolated and develop-model transfer deep learning, Sol. Energy, 198, 175–186, 2020. a, b
Al-Habaibeh, A., Sen, A., and Chilton, J.: Evaluation tool for the thermal performance of retrofitted buildings using an integrated approach of deep learning artificial neural networks and infrared thermography, Energy and Built Environment, 2, 345–365, 2021. a, b
Ali, M. U., Khan, H. F., Masud, M., Kallu, K. D., and Zafar, A.: A machine learning framework to identify the hotspot in photovoltaic module using infrared thermography, Sol. Energy, 208, 643–651, 2020. a
Audebert, N., Le Saux, B., and Lefèvre, S.: Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks, ISPRS J. Photogramm., 140, 20–32, 2018. a
Short summary
For the processing of geomatics data, artificial intelligence (AI) offers overwhelming opportunities. The integration of AI approaches in geomatics has developed into the concept of geospatial artificial intelligence (GeoAI), which is a new paradigm for geographic knowledge discovery and beyond. This contribution outlines AI-based techniques for analysing and interpreting complex geomatics data. How AI approaches have been exploited for the interpretation of geomatic data is explained.