Articles | Volume 11, issue 2
Geosci. Instrum. Method. Data Syst., 11, 293–306, 2022
Geosci. Instrum. Method. Data Syst., 11, 293–306, 2022
Research article
11 Aug 2022
Research article | 11 Aug 2022

Response time correction of slow-response sensor data by deconvolution of the growth-law equation

Knut Ola Dølven et al.

Related authors

Autonomous methane seep site monitoring offshore western Svalbard: hourly to seasonal variability and associated oceanographic parameters
Knut Ola Dølven, Bénédicte Ferré, Anna Silyakova, Pär Jansson, Peter Linke, and Manuel Moser
Ocean Sci., 18, 233–254,,, 2022
Short summary

Related subject area

Magnetic interference mapping of four types of unmanned aircraft systems intended for aeromagnetic surveying
Loughlin E. Tuck, Claire Samson, Jeremy Laliberté, and Michael Cunningham
Geosci. Instrum. Method. Data Syst., 10, 101–112,,, 2021
Short summary
Using near-surface atmospheric measurements as a proxy for quantifying field-scale soil gas flux
Andrew Barkwith, Stan E. Beaubien, Thomas Barlow, Karen Kirk, Thomas R. Lister, Maria C. Tartarello, and Helen Taylor-Curran
Geosci. Instrum. Method. Data Syst., 9, 483–490,,, 2020
Short summary
A novel permanent gauge-cam station for surface-flow observations on the Tiber River
Flavia Tauro, Andrea Petroselli, Maurizio Porfiri, Lorenzo Giandomenico, Guido Bernardi, Francesco Mele, Domenico Spina, and Salvatore Grimaldi
Geosci. Instrum. Method. Data Syst., 5, 241–251,,, 2016
Short summary
Practical considerations for enhanced-resolution coil-wrapped distributed temperature sensing
Koen Hilgersom, Tim van Emmerik, Anna Solcerova, Wouter Berghuijs, John Selker, and Nick van de Giesen
Geosci. Instrum. Method. Data Syst., 5, 151–162,,, 2016
Short summary
The surface temperatures of Earth: steps towards integrated understanding of variability and change
C. J. Merchant, S. Matthiesen, N. A. Rayner, J. J. Remedios, P. D. Jones, F. Olesen, B. Trewin, P. W. Thorne, R. Auchmann, G. K. Corlett, P. C. Guillevic, and G. C. Hulley
Geosci. Instrum. Method. Data Syst., 2, 305–321,,, 2013

Cited articles

Ando, T.: Bayesian Model Selection and Statistical Modeling, 1st edn., Chapman and Hall/CRC,, 2010. a
Aster, R. C., Borchers, B., and Thurber, C. H.: Parameter estimation and inverse problems, 3rd edn., Elsevier, 2019. a, b
Atamanchuk, D., Tengberg, A., Aleynik, D., Fietzek, P., Shitashima, K., Lichtschlag, A., Hall, P. O. J., and Stahl, H.: Detection of CO2 leakage from a simulated sub-seabed storage site using three different types of pCO2 sensors, Int. J. Greenh. Gas Con., 38, 121–134,, 2015. a
Bittig, H. C., Fiedler, B., Scholz, R., Krahmann, G., and Körtzinger, A.: Time response of oxygen optodes on profiling platforms and its dependence on flow speed and temperature, Limnol. Oceanogr.-Meth., 12, 617–636,, 2014. a, b
Canning, A. R., Fietzek, P., Rehder, G., and Körtzinger, A.: Technical note: Seamless gas measurements across the land–ocean aquatic continuum – corrections and evaluation of sensor data for CO2, CH4 and O2 from field deployments in contrasting environments, Biogeosciences, 18, 1351–1373,, 2021. a, b
Short summary
Sensors capable of measuring rapid fluctuations are important to improve our understanding of environmental processes. Many sensors are unable to do this, due to their reliance on the transfer of the measured property, for instance a gas, across a semi-permeable barrier. We have developed a mathematical tool which enables the retrieval of fast-response signals from sensors with this type of sensor design.