Articles | Volume 13, issue 1
https://doi.org/10.5194/gi-13-193-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-13-193-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Airborne electromagnetic data levelling based on the structured variational method
Qiong Zhang
School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China
Jilin Provincial Science and Technology Innovation Center of Intelligent Perception and Information Processing, Changchun 130022, China
Xin Chen
School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China
Jilin Provincial Science and Technology Innovation Center of Intelligent Perception and Information Processing, Changchun 130022, China
Zhonghang Ji
School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China
Jilin Provincial Science and Technology Innovation Center of Intelligent Perception and Information Processing, Changchun 130022, China
Fei Yan
School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China
Jilin Provincial Science and Technology Innovation Center of Intelligent Perception and Information Processing, Changchun 130022, China
Zhengkun Jin
School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China
Jilin Provincial Science and Technology Innovation Center of Intelligent Perception and Information Processing, Changchun 130022, China
Yunqing Liu
CORRESPONDING AUTHOR
School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China
Jilin Provincial Science and Technology Innovation Center of Intelligent Perception and Information Processing, Changchun 130022, China
Related authors
Qiong Zhang, Changchang Sun, Fei Yan, Chao Lv, and Yunqing Liu
Geosci. Instrum. Method. Data Syst., 11, 183–194, https://doi.org/10.5194/gi-11-183-2022, https://doi.org/10.5194/gi-11-183-2022, 2022
Short summary
Short summary
In airborne survey, dynamic flight conditions cause unequal data levels, which seriously impact airborne geophysical data analysis and interpretation. A new technique is proposed to level geophysical data in view of the image space properties. We have confirmed the reliability of the method by applying it to the airborne electromagnetic, magnetic and apparent-conductivity data. The method can automatically extract leveling errors without the participation of staff members or tie-line control.
Qiong Zhang, Changchang Sun, Fei Yan, Chao Lv, and Yunqing Liu
Geosci. Instrum. Method. Data Syst., 11, 183–194, https://doi.org/10.5194/gi-11-183-2022, https://doi.org/10.5194/gi-11-183-2022, 2022
Short summary
Short summary
In airborne survey, dynamic flight conditions cause unequal data levels, which seriously impact airborne geophysical data analysis and interpretation. A new technique is proposed to level geophysical data in view of the image space properties. We have confirmed the reliability of the method by applying it to the airborne electromagnetic, magnetic and apparent-conductivity data. The method can automatically extract leveling errors without the participation of staff members or tie-line control.
Related subject area
Data quality
Upgrade of LSA-SAF Meteosat Second Generation daily surface albedo (MDAL) retrieval algorithm incorporating aerosol correction and other improvements
Swarm Langmuir probes' data quality validation and future improvements
Evaluating methods for reconstructing large gaps in historic snow depth time series
Production of definitive data from Indonesian geomagnetic observatories
Auroral classification ergonomics and the implications for machine learning
Artifacts from manganese reduction in rock samples prepared by focused ion beam (FIB) slicing for X-ray microspectroscopy
The influence of sample geometry on the permeability of a porous sandstone
The operator difference in absolute geomagnetic measurements
One second vector and scalar magnetic measurements at the low-latitude Choutuppal (CPL) magnetic observatory
Data quality control and tools in passive seismic experiments exemplified on the Czech broadband seismic pool MOBNET in the AlpArray collaborative project
Time-stamp correction of magnetic observatory data acquired during unavailability of time-synchronization services
Stability analysis of geomagnetic baseline data obtained at Cheongyang observatory in Korea
European UV DataBase (EUVDB) as a repository and quality analyser for solar spectral UV irradiance monitored in Sodankylä
Bed conduction impact on fiber optic distributed temperature sensing water temperature measurements
A framework for benchmarking of homogenisation algorithm performance on the global scale
New analysis software for Viking Lander meteorological data
Innovations and applications of the VERA quality control
Daniel Juncu, Xavier Ceamanos, Isabel F. Trigo, Sandra Gomes, and Sandra C. Freitas
Geosci. Instrum. Method. Data Syst., 11, 389–412, https://doi.org/10.5194/gi-11-389-2022, https://doi.org/10.5194/gi-11-389-2022, 2022
Short summary
Short summary
MDAL is a near real-time, satellite-based surface albedo product based on the geostationary Meteosat Second Generation mission. We propose an update to the processing algorithm that generates MDAL and evaluate the results of these changes through comparison with the pre-update, currently operational MDAL product as well as reference data using different satellite-based albedo products and in situ measurements. We find that the update provides a valuable improvement.
Filomena Catapano, Stephan Buchert, Enkelejda Qamili, Thomas Nilsson, Jerome Bouffard, Christian Siemes, Igino Coco, Raffaella D'Amicis, Lars Tøffner-Clausen, Lorenzo Trenchi, Poul Erik Holmdahl Olsen, and Anja Stromme
Geosci. Instrum. Method. Data Syst., 11, 149–162, https://doi.org/10.5194/gi-11-149-2022, https://doi.org/10.5194/gi-11-149-2022, 2022
Short summary
Short summary
The quality control and validation activities performed by the Swarm data quality team reveal the good-quality LPs. The analysis demonstrated that the current baseline plasma data products are improved with respect to previous baseline. The LPs have captured the ionospheric plasma variability over more than half of a solar cycle, revealing the data quality dependence on the solar activity. The quality of the LP data will further improve promotion of their application to a broad range of studies.
Johannes Aschauer and Christoph Marty
Geosci. Instrum. Method. Data Syst., 10, 297–312, https://doi.org/10.5194/gi-10-297-2021, https://doi.org/10.5194/gi-10-297-2021, 2021
Short summary
Short summary
Methods for reconstruction of winter long data gaps in snow depth time series are compared. The methods use snow depth data from neighboring stations or calculate snow depth from temperature and precipitation data. All methods except one are able to reproduce the average snow depth and maximum snow depth in a winter reasonably well. For reconstructing the number of snow days with snow depth ≥ 1 cm, results suggest using a snow model instead of relying on data from neighboring stations.
Relly Margiono, Christopher W. Turbitt, Ciarán D. Beggan, and Kathryn A. Whaler
Geosci. Instrum. Method. Data Syst., 10, 169–182, https://doi.org/10.5194/gi-10-169-2021, https://doi.org/10.5194/gi-10-169-2021, 2021
Short summary
Short summary
We have produced a standardised high-quality set of measurements to create definitive data for four Indonesian Geomagnetic Observatories for 2010–2018. We explain the steps taken to update the existing data collection and processing protocols and suggest improvements to further enhance the quality of the magnetic time series at each observatory. The new data will fill the gap in the western Pacific region and provide input into geomagnetic field modeling and secular variation studies.
Derek McKay and Andreas Kvammen
Geosci. Instrum. Method. Data Syst., 9, 267–273, https://doi.org/10.5194/gi-9-267-2020, https://doi.org/10.5194/gi-9-267-2020, 2020
Short summary
Short summary
Researchers are making increasing use of machine learning to improve accuracy, efficiency and consistency. During such a study of the aurora, it was noted that biases or distortions had crept into the data because of the conditions (or ergonomics) of the human trainers. As using machine-learning techniques in auroral research is relatively new, it is critical that such biases are brought to the attention of the academic and citizen science communities.
Dorothea S. Macholdt, Jan-David Förster, Maren Müller, Bettina Weber, Michael Kappl, A. L. David Kilcoyne, Markus Weigand, Jan Leitner, Klaus Peter Jochum, Christopher Pöhlker, and Meinrat O. Andreae
Geosci. Instrum. Method. Data Syst., 8, 97–111, https://doi.org/10.5194/gi-8-97-2019, https://doi.org/10.5194/gi-8-97-2019, 2019
Short summary
Short summary
Focused ion beam (FIB) slicing is a widely used technique to prepare ultrathin slices for the microanalysis of geological and environmental samples. During our investigations of the manganese oxidation states in rock varnish slices, we found an FIB-related reduction of manganese(IV) to manganese(II) at the samples’ surfaces. This study characterizes the observed reduction artifacts and emphasizes that caution is needed in the analysis of transition metal oxidation states upon FIB preparation.
Michael J. Heap
Geosci. Instrum. Method. Data Syst., 8, 55–61, https://doi.org/10.5194/gi-8-55-2019, https://doi.org/10.5194/gi-8-55-2019, 2019
Short summary
Short summary
To better understand the influence of sample geometry on laboratory measurements of permeability, the permeabilities of sandstone samples with different lengths and diameters were measured. Despite the large range in length, aspect ratio, and volume, the permeabilities of the samples are near identical. This is due to a homogeneous porosity structure and the small grain/pore size with respect to the minimum tested diameter and length. More tests are now needed to help develop such guidelines.
Yufei He, Xudong Zhao, Jianjun Wang, Fuxi Yang, Xijing Li, Changjiang Xin, Wansheng Yan, and Wentong Tian
Geosci. Instrum. Method. Data Syst., 8, 21–27, https://doi.org/10.5194/gi-8-21-2019, https://doi.org/10.5194/gi-8-21-2019, 2019
Nelapatla Phani Chandrasekhar, Sai Vijay Kumar Potharaju, Kusumita Arora, Chandra Shakar Rao Kasuba, Leonid Rakhlin, Sergey Tymoshyn, Laszlo Merenyi, Anusha Chilukuri, Jayashree Bulusu, and Sergey Khomutov
Geosci. Instrum. Method. Data Syst., 6, 547–560, https://doi.org/10.5194/gi-6-547-2017, https://doi.org/10.5194/gi-6-547-2017, 2017
Short summary
Short summary
This work presents the progressive steps which led to the successful setup of such measurements at the new magnetic observatory in Choutuppal (CPL) of CSIR-NGRI, Hyderabad, India. Iterative tuning of the setup led to the generation of good quality data from 2016 onward. The processes of commissioning this setup in low-latitude conditions, with the aim of producing 1 s definitive data, and the characteristics of the data from this new instrument are presented here.
Luděk Vecsey, Jaroslava Plomerová, Petr Jedlička, Helena Munzarová, Vladislav Babuška, and the AlpArray working group
Geosci. Instrum. Method. Data Syst., 6, 505–521, https://doi.org/10.5194/gi-6-505-2017, https://doi.org/10.5194/gi-6-505-2017, 2017
Short summary
Short summary
This paper focuses on major issues related to data reliability and MOBNET network performance in the AlpArray seismic experiments. We present both new hardware and software tools that help to assure the high-quality standard of broadband seismic data. Special attention is paid to issues like a detection of sensor misorientation, timing problems, exchange of record components and/or their polarity reversal, sensor mass centring, or anomalous channel amplitudes due to imperfect gain.
Pierdavide Coïsson, Kader Telali, Benoit Heumez, Vincent Lesur, Xavier Lalanne, and Chang Jiang Xin
Geosci. Instrum. Method. Data Syst., 6, 311–317, https://doi.org/10.5194/gi-6-311-2017, https://doi.org/10.5194/gi-6-311-2017, 2017
Short summary
Short summary
Data loggers of magnetic observatories use GPS receivers to provide accurate time stamping of recorded data. Typical sampling rate is 1 s. A failure of the GPS receiver can result in erroneous time stamps. The observatory of Lanzhou, China, accumulated a lag of 28 s over 1 year. Using magnetic data recorded at other locations in a radius of 3000 km it was possible to estimate the diurnal lag and correct the time tamps to produce reliable 1 min averages of magnetic data.
Shakirah M. Amran, Wan-Seop Kim, Heh Ree Cho, and Po Gyu Park
Geosci. Instrum. Method. Data Syst., 6, 231–238, https://doi.org/10.5194/gi-6-231-2017, https://doi.org/10.5194/gi-6-231-2017, 2017
Short summary
Short summary
In this work, we analysed the Cheongyang geomagnetic baseline data from 2014 to 2016. We observed a step of more than 5 nT in the H and Z baseline in 2014 and 2015 due to artificial magnetic noise in the absolute hut. The baseline also shows a periodic modulation due to temperature variations in the fluxgate magnetometer hut. The quality of the baselines was improved by correcting the discontinuity in the H and Z baselines.
Anu Heikkilä, Jussi Kaurola, Kaisa Lakkala, Juha Matti Karhu, Esko Kyrö, Tapani Koskela, Ola Engelsen, Harry Slaper, and Gunther Seckmeyer
Geosci. Instrum. Method. Data Syst., 5, 333–345, https://doi.org/10.5194/gi-5-333-2016, https://doi.org/10.5194/gi-5-333-2016, 2016
Short summary
Short summary
Solar spectral UV irradiance data measured by the Brewer #037 spectroradiometer in Sodankylä, Finland, in 1990–2014 were examined for their quality flags given by the quality assurance (QA) tools of the European UV DataBase (EUVDB). Statistical analysis on the flags was performed, and five cases were investigated in detail. The results can be used in further development of the quality control/QA tools and selection of cases of exceptional atmospheric conditions for process studies.
T. O'Donnell Meininger and J. S. Selker
Geosci. Instrum. Method. Data Syst., 4, 19–22, https://doi.org/10.5194/gi-4-19-2015, https://doi.org/10.5194/gi-4-19-2015, 2015
K. Willett, C. Williams, I. T. Jolliffe, R. Lund, L. V. Alexander, S. Brönnimann, L. A. Vincent, S. Easterbrook, V. K. C. Venema, D. Berry, R. E. Warren, G. Lopardo, R. Auchmann, E. Aguilar, M. J. Menne, C. Gallagher, Z. Hausfather, T. Thorarinsdottir, and P. W. Thorne
Geosci. Instrum. Method. Data Syst., 3, 187–200, https://doi.org/10.5194/gi-3-187-2014, https://doi.org/10.5194/gi-3-187-2014, 2014
O. Kemppinen, J. E. Tillman, W. Schmidt, and A.-M. Harri
Geosci. Instrum. Method. Data Syst., 2, 61–69, https://doi.org/10.5194/gi-2-61-2013, https://doi.org/10.5194/gi-2-61-2013, 2013
D. Mayer, A. Steiner, and R. Steinacker
Geosci. Instrum. Method. Data Syst., 1, 135–149, https://doi.org/10.5194/gi-1-135-2012, https://doi.org/10.5194/gi-1-135-2012, 2012
Cited articles
Bandy, W. L., Gangi, A. F., and Morgan, F. D.: Direct method for determining constant corrections to geophysical survey lines for reducing mis-tie, Geophysics, 55, 885–896, https://doi.org/10.1190/1.1442903, 1990.
Beiki, M., Bastani, M., and Pedersen, L. B.: Leveling HEM and aeromagnetic data using differential polynomial fitting, Geophysics, 75, 13–23, https://doi.org/10.1190/1.3279792, 2010.
Bertsekas, D. P.: Constrained optimization and Lagrange Multiplier methods, Computer Science and Applied Mathematics, Academic Press, Boston, MA, USA, ISBN 1886529043, 1982.
Davydenko, A. Y. and Grayver, A. V.: Principal component analysis for filtering and leveling of geophysical data, J. Appl. Geophys., 109, 266–280, https://doi.org/10.1016/j.jappgeo.2014.08.006, 2014.
Eppelbaum, L. V. and Mishne, A. R.: Unmanned Airborne Magnetic and VLF investigations: Effective Geophysical Methodology of the Near Future, Positioning, 2, 112–133, https://doi.org/10.4236/pos.2011.23012, 2011.
Fan, Z. F., Huang, L., Zhang, X. J., and Fang, G. Y.: An elaborately designed virtual frame to level aeromagnetic data, IEEE Geosci. Remote Sens. Lett., 13, 1153–1157, https://doi.org/10.1109/LGRS.2016.2574750, 2016.
Ferraccioli, F., Gambetta, M., and Bozzo, E.: Microlevelling procedures applied to regional aeromagnetic data: an example from the Transantarctic Mountains, Geophys. Prospect., 46, 177–196, https://doi.org/10.1046/j.1365-2478.1998.00080.x, 1998.
Foster, M. R., Jines, W. R., and Weg, K. V.: Statistical estimation of systematic errors at intersections of lines of aeromagnetic survey data, J. Geophys. Res., 75, 1507–1511, https://doi.org/10.1029/JB075i008p01507, 1970.
Fraser, D. C.: A new multicoil aerial electromagnetic prospecting system, Geophysics, 37, 518–537, https://doi.org/10.1190/1.1440277, 1972.
Gao, L. Q., Yin, C. C., Wang, N., Liu, Y. H., Su, Y., and Xiong, B.: Leveling of airborne electromagnetic data based on curvelet transform, Chinese J. Geophys., 5, 1785–1796, https://doi.org/10.6038/cjg2020N0365, 2021.
Green, A.: Correcting drift errors in HEM data, ASEG Spec. Publ., 2, 1, https://doi.org/10.1071/aseg2003ab058, 2003.
Groune, D., Allek, K., and Bouguern, A.: Statistical approach for microleveling of aerophysical data, J. Appl. Geophys., 159, 418–428, https://doi.org/10.1016/j.jappgeo.2018.09.023, 2018.
Hood, P.: History of Aeromagnetic Survey in Canada, Leading Edge, 26, 1384–1392, https://doi.org/10.1190/1.2805759, 2007.
Huang, H. P.: Airborne geophysical data leveling based on line-to-line correlations, Geophysics, 73, 83–89, https://doi.org/10.1190/1.2836674, 2008.
Huang, H. P. and Fraser, D. C.: Airborne resistivity data leveling, Geophysics, 64, 378–385, https://doi.org/10.1190/1.1444542, 1999.
Ishihara, T.: A new leveling method without the direct use of crossover data and its application in marine magnetic surveys, weighted spatial averaging and temporal filtering, Earth Planets Space, 67, 1–14, https://doi.org/10.1186/s40623-015-0181-7, 2015.
Liu, L., Xu, L. P., and Fang, H. Z.: Simultaneous Intensity Bias Estimation and Stripe Noise Removal in Infrared Images Using the Global and Local Sparsity Constraints, IEEE T. Geosci. Remote, 58, 1777–1789, https://doi.org/10.1109/TGRS.2019.2948601, 2019.
Luo, Y., Wand, P., Duan, S. L., and Cheng, H. D.: Leveling total field aeromagnetic data with measured vertical gradient, Chinese J. Geophys., 55, 3854–3861, https://doi.org/10.6038/j.issn.0001-5733.2012.11.033, 2012.
Luyendyk, A. P. J.: Processing of airborne magnetic data, AGSO J. Aust. Geol. Geophys., 17, 31–38, 1997.
Mauring E. and Kihle, O.: Leveling aerogeophysical data using a moving differential median filter, Geophysics, 71, 5–11, https://doi.org/10.1190/1.2163912, 2006.
Mauring, E., Beard, L. P., and Kihle, O.: A comparison of aeromagnetic levelling techniques with an introduction to median leveling, Geophys. Prospect., 50, 43–54, https://doi.org/10.1046/j.1365-2478.2002.00300.x, 2002.
Meju, M. A.: Short Note: A simple method of transient electromagnetic data analysis, Geophysics, 63, 405–410, https://doi.org/10.1190/1.1444340, 1998.
Minty, B. R. S.: Simple micro-levelling for aeromagnetic data, Explor. Geophys., 22, 591–592, https://doi.org/10.1071/eg991591, 1991.
Nelson, J. B.: Leveling total-field aeromagnetic data with measured horizontal gradients, Geophysics, 59, 1166–1170, https://doi.org/10.1190/1.1443673, 1994.
Ontario Geological Survey: Ontario airborne geophysical surveys, magnetic and electromagnetic data, grid and profile data (ASCII and Geosoft® formats) and vector data, Nestor Falls area, Geophysical Data Set 1076, Ontario Geological Survey, 2014.
Rudin, L. I., Osher, S., and Fatemi, E.: Nonlinear total variation based noise removal algorithms, Physica D, 60, 259–268, https://doi.org/10.1016/0167-2789(92)90242-F, 1992.
Siemon, B.: Levelling of helicopter-borne frequency-domain electromagnetic data, J. Appl. Geophys., 67, 206–218, https://doi.org/10.1016/j.jappgeo.2007.11.001, 2009.
Srimanee, C., Dumrongchai, P., and Duangdee, N.: Airborne gravity data adjustment using a cross-over adjustment with constraints, Int. J. Geoinform., 16, 51–60, 2020.
Tadmor, E., Nezzar, S., and Vese, L.: A multiscale image representation using hierarchical, Multiscale Model. Simul., 2, 554–579, https://doi.org/10.1137/030600448, 2003.
Tezkan, B., Stoll, J. B., Bergers, R., and Grossbach, H.: Unmanned aircraft system proves itself as a geophysical measuring platform for aeromagnetic surveys, First Break, 29, 103–105, 2011.
Urquhart, T.: Decorrugation of enhanced magnetic field maps, Seg Technical Program Expanded Abstracts, SEG Library, 371–372, https://doi.org/10.1190/1.1892383, 1988.
Valleau, N. C.: HEM data processing – A practical overview, Explor. Geophys., 31, 584–594, https://doi.org/10.1071/eg00584, 2000.
White, J. C. and Beamish, D.: Levelling aeromagnetic survey data without the need for tie-lines, Geophys. Prospect., 63, 451–460, https://doi.org/10.1111/1365-2478.12198, 2015.
Yarger, H. L., Robertson, R. R., and Wentland, R. L.: Diurnal drift removal from aeromagnetic data using least squares, Geophysics, 43, 1148–1156, https://doi.org/10.1190/1.1440884, 1978.
Yin, C. C. and Fraser, D. C.: Attitude corrections of helicopter EM data using a superposed dipole model, Geophysics, 69, 431–439, https://doi.org/10.1190/1.1707063, 2004.
Yin, C. C., Ren, X. Y., Liu, Y. H., and Cai, J.: Exploration capability of airborne TEM systems for typical targets in the subsurface, Chinese J. Geophys., 58, 3370–3379, https://doi.org/10.6038/cjg20150929, 2015.
Zhang, Q., Peng, C., Lu, Y. M., Wang, H., and Zhu, K. G.: Airborne electromagnetic data levelling using principal component analysis based on flight line difference, J. Appl. Geophys., 151, 290–297, https://doi.org/10.1016/j.jappgeo.2018.02.023, 2018.
Zhang, Q., Yan, F., and Liu, Y. Q.: Airborne geophysical data levelling based on variational mode decomposition, Near Surf. Geophys., 19, 377–394, https://doi.org/10.1002/nsg.12138, 2021.
Zhang, Q., Sun, C., Yan, F., Lv, C., and Liu, Y.: Leveling airborne geophysical data using a unidirectional variational model, Geosci. Instrum. Method. Data Syst., 11, 183–194, https://doi.org/10.5194/gi-11-183-2022, 2022 (data available at: https://www.hub.geologyontario.mines.gov.on.ca/, last access: 1 February 2024).
Zhang, Y. Z. and Zhang, T. X.: Structure-guided unidirectional variation de-striping in the infrared bands of MODIS and hyperspectral images, Infrared Phys. Technol., 77, 132–143, https://doi.org/10.1016/j.infrared.2016.05.022, 2016.
Zhu, K. G., Zhang, Q., Peng, C., Wang, H., and Lu, Y. M.: Airborne electromagnetic data levelling based on inequality-constrained polynomial fitting, Explor. Geophys., 51, 600–608, 2020.
Short summary
In an airborne survey, dynamic flight conditions cause unequal data levels, which have a serious impact on airborne geophysical data analysis and interpretation. A new technique is proposed to level geophysical data, and we confirm the reliability of the method by applying it to magnetic data and apparent conductivity data. The method can automatically extract the levelling errors without the participation of staff members or tie line control.
In an airborne survey, dynamic flight conditions cause unequal data levels, which have a serious...