Articles | Volume 13, issue 2
https://doi.org/10.5194/gi-13-337-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-13-337-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improving relative humidity measurements on Mars: new laboratory calibration measurements
Finnish Meteorological Institute, Erik Palmenin aukio 1, 00560 Helsinki, Finland
Iina Jaakonaho
Finnish Meteorological Institute, Erik Palmenin aukio 1, 00560 Helsinki, Finland
Jouni Polkko
Finnish Meteorological Institute, Erik Palmenin aukio 1, 00560 Helsinki, Finland
Andreas Lorek
Planetary Analog Simulation Laboratory (PASLAB), Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Rutherfordstraße 2, 12489 Berlin
Stephen Garland
Planetary Analog Simulation Laboratory (PASLAB), Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Rutherfordstraße 2, 12489 Berlin
Jean-Pierre de Vera
Planetary Analog Simulation Laboratory (PASLAB), Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Rutherfordstraße 2, 12489 Berlin
Space Operations and Astronaut Training, Microgravity User Support Center (MUSC), Geb. 29, Linder Höhe, 51147 Cologne, Germany
Maria Genzer
Finnish Meteorological Institute, Erik Palmenin aukio 1, 00560 Helsinki, Finland
Ari-Matti Harri
Finnish Meteorological Institute, Erik Palmenin aukio 1, 00560 Helsinki, Finland
Related authors
Joonas Leino, Ari-Matti Harri, Mark Paton, Jouni Polkko, Maria Hieta, and Hannu Savijärvi
Ann. Geophys., 42, 331–348, https://doi.org/10.5194/angeo-42-331-2024, https://doi.org/10.5194/angeo-42-331-2024, 2024
Short summary
Short summary
The 1-D column model has been used extensively in studying the Martian atmosphere. In this study, we investigated the sensitivity of the column model to its initialization. The results of the model were compared with Curiosity rover measurements. The initial value of airborne dust and surface temperature had the greatest influence on the temperature prediction, while the initial atmospheric moisture content and the shape of the initial moisture profile modified the humidity prediction the most.
Andreas Lorek and Stephen Patrick Garland
EGUsphere, https://doi.org/10.5194/egusphere-2024-3944, https://doi.org/10.5194/egusphere-2024-3944, 2025
This preprint is open for discussion and under review for Geoscientific Instrumentation, Methods and Data Systems (GI).
Short summary
Short summary
Humidity sensors that function under extreme conditions are needed in experimental chambers as well as for humidity measurements on Mars. Such a sensor was already used in a chamber at the German Aerospace Center and is well characterized, however this sensor is no longer in production and has been replaced by a new generation, requiring verification of the new sensor under extreme conditions. The results show that the new sensor is suitable for measurements under Martian atmospheric conditions.
Joonas Leino, Ari-Matti Harri, Mark Paton, Jouni Polkko, Maria Hieta, and Hannu Savijärvi
Ann. Geophys., 42, 331–348, https://doi.org/10.5194/angeo-42-331-2024, https://doi.org/10.5194/angeo-42-331-2024, 2024
Short summary
Short summary
The 1-D column model has been used extensively in studying the Martian atmosphere. In this study, we investigated the sensitivity of the column model to its initialization. The results of the model were compared with Curiosity rover measurements. The initial value of airborne dust and surface temperature had the greatest influence on the temperature prediction, while the initial atmospheric moisture content and the shape of the initial moisture profile modified the humidity prediction the most.
Jens O. Herrle, Cornelia Spiegel, Andreas Läufer, and Jean-Pierre Paul de Vera
Polarforschung, 89, 51–55, https://doi.org/10.5194/polf-89-51-2021, https://doi.org/10.5194/polf-89-51-2021, 2021
Short summary
Short summary
The Geology and Geophysics working group is one the largest within the German Society of Polar Research. Here, we present an overview of the development of major scientific German polar research programs and locations as well as important white papers from the last decades. This work is based on the contributions of members and institutions, including the Alfred Wegener Institute, the Federal Institute for Geosciences and Natural Resources and German Universities with polar research programs.
Walter Schmidt, Ari-Matti Harri, Timo Nousiainen, Harri Hohti, Lasse Johansson, Olli Ojanperä, Erkki Viitala, Jarkko Niemi, Jani Turpeinen, Erkka Saukko, Topi Rönkkö, and Pekka Lahti
Geosci. Instrum. Method. Data Syst., 9, 397–406, https://doi.org/10.5194/gi-9-397-2020, https://doi.org/10.5194/gi-9-397-2020, 2020
Short summary
Short summary
Combining short-time forecast models, standardized interfaces to a wide range of environment detectors and a flexible user access interface, CITYZER provides decision-making authorities and private citizens with reliable information about the near-future development of critical environmental parameters like air quality and rain. The system can be easily adapted to different areas or different parameters. Alarms for critical situations can be set and used to support authority decisions.
Mark Paton, Ari-Matti Harri, Oliver Vierkens, and Hannu Savijärvi
Geosci. Instrum. Method. Data Syst., 8, 251–263, https://doi.org/10.5194/gi-8-251-2019, https://doi.org/10.5194/gi-8-251-2019, 2019
Short summary
Short summary
A software application for streamlining investigations of the Martian atmosphere is described. The main components are a 1-D model of the Martian atmosphere, observations of the Martian atmosphere and a software wrapper. We verify our model using the application. The model and observations agree except over the winter solstice where mechanical heating of the atmosphere, from downward flowing air, is likely warming the atmosphere. We update our model to include this effect.
Tuomas Kynkäänniemi, Osku Kemppinen, Ari-Matti Harri, and Walter Schmidt
Geosci. Instrum. Method. Data Syst., 6, 217–229, https://doi.org/10.5194/gi-6-217-2017, https://doi.org/10.5194/gi-6-217-2017, 2017
Short summary
Short summary
The new wind reconstruction algorithm developed in this article extends the amount of available sols from the Viking Lander 1 (VL1) mission from 350 to 2245. The reconstruction of wind measurement data enables the study of both short-term phenomena, such as daily variations in wind conditions or dust devils, and long-term phenomena, such as the seasonal variations in Martian tides.
Ari-Matti Harri, Konstantin Pichkadze, Lev Zeleny, Luis Vazquez, Walter Schmidt, Sergey Alexashkin, Oleg Korablev, Hector Guerrero, Jyri Heilimo, Mikhail Uspensky, Valery Finchenko, Vyacheslav Linkin, Ignacio Arruego, Maria Genzer, Alexander Lipatov, Jouni Polkko, Mark Paton, Hannu Savijärvi, Harri Haukka, Tero Siili, Vladimir Khovanskov, Boris Ostesko, Andrey Poroshin, Marina Diaz-Michelena, Timo Siikonen, Matti Palin, Viktor Vorontsov, Alexander Polyakov, Francisco Valero, Osku Kemppinen, Jussi Leinonen, and Pilar Romero
Geosci. Instrum. Method. Data Syst., 6, 103–124, https://doi.org/10.5194/gi-6-103-2017, https://doi.org/10.5194/gi-6-103-2017, 2017
Short summary
Short summary
Investigations of Mars – its atmosphere, surface and interior – require simultaneous, distributed in situ measurements. We have developed an innovative prototype of the Mars Network Lander (MNL), a small lander/penetrator with a 20 % payload mass fraction. MNL features an innovative Entry, Descent and Landing System to increase reliability and reduce the system mass. It is ideally suited for piggy-backing on spacecraft, for network missions and pathfinders for high-value landed missions.
J. Köhler, R. F. Wimmer-Schweingruber, J. Appel, B. Ehresmann, C. Zeitlin, D. M. Hassler, G. Reitz, D. E. Brinza, S. Böttcher, E. Böhm, S. Burmeister, J. Guo, A.-M. Harri, H. Kahanpää, J. Krauss, H. Lohf, C. Martin, D. Matthiä, A. Posner, and S. Rafkin
Ann. Geophys., 34, 133–141, https://doi.org/10.5194/angeo-34-133-2016, https://doi.org/10.5194/angeo-34-133-2016, 2016
Short summary
Short summary
The Radiation Assessment Detector (RAD), on board the Mars Science Laboratory (MSL) rover Curiosity, measures the energetic charged and neutral particles and the radiation dose rate on the surface of Mars. In this work we compare predicted electron/positron spectra with the signal measured by RAD.
We find that the RAD electron/positron measurements agree well with the spectra predicted by Planetocosmics.
A. Lorek
J. Sens. Sens. Syst., 3, 177–185, https://doi.org/10.5194/jsss-3-177-2014, https://doi.org/10.5194/jsss-3-177-2014, 2014
A. Lorek and N. Wagner
The Cryosphere, 7, 1839–1855, https://doi.org/10.5194/tc-7-1839-2013, https://doi.org/10.5194/tc-7-1839-2013, 2013
O. Kemppinen, J. E. Tillman, W. Schmidt, and A.-M. Harri
Geosci. Instrum. Method. Data Syst., 2, 61–69, https://doi.org/10.5194/gi-2-61-2013, https://doi.org/10.5194/gi-2-61-2013, 2013
M. D. Paton, A.-M. Harri, T. Mäkinen, and H. Savijärvi
Geosci. Instrum. Method. Data Syst., 2, 17–27, https://doi.org/10.5194/gi-2-17-2013, https://doi.org/10.5194/gi-2-17-2013, 2013
Related subject area
Atmospheric instruments
Accuracies of field CO2–H2O data from open-path eddy-covariance flux systems: assessment based on atmospheric physics and biological environment
Intercomparison of photoacoustic and cavity attenuated phase shift instruments: laboratory calibration and field measurements
Evaluation of climate change impact on extreme temperature variability in the Blue Nile Basin, Ethiopia
Managing the transition from Vaisala RS92 to RS41 radiosondes within the Global Climate Observing System Reference Upper-Air Network (GRUAN): a progress report
Description of the Baseline Surface Radiation Network (BSRN) station at the Izaña Observatory (2009–2017): measurements and quality control/assurance procedures
Laboratory spectral calibration of the TanSat atmospheric carbon dioxide grating spectrometer
The World Optical Depth Research and Calibration Center (WORCC) quality assurance and quality control of GAW-PFR AOD measurements
In search of traceability: two decades of calibrated Brewer UV measurements in Sodankylä and Jokioinen
The Niwot Ridge Subalpine Forest US-NR1 AmeriFlux site – Part 1: Data acquisition and site record-keeping
Fourier transform spectrometer measurements of column CO2 at Sodankylä, Finland
Comparison and application of wind retrieval algorithms for small unmanned aerial systems
Atmospheric muons: experimental aspects
Xinhua Zhou, Tian Gao, Ning Zheng, Bai Yang, Yanlei Li, Fengyuan Yu, Tala Awada, and Jiaojun Zhu
Geosci. Instrum. Method. Data Syst., 11, 335–357, https://doi.org/10.5194/gi-11-335-2022, https://doi.org/10.5194/gi-11-335-2022, 2022
Short summary
Short summary
Overall accuracy of CO2/H2O data from open-path eddy-covariance systems is modeled for data analysis. The model is further formulated into CO2 and H2O accuracy equations for uses. Based on atmospheric physics and bio-environment, both equations are used to evaluate accuracy of ecosystem CO2/H2O data and, as rationales, to assess field CO2/H2O zero and span procedures for the systems. The procedures are assessed for measurement improvement. An impractical H2O span while cold is found unnecessary.
Jialuo Zhang, Jun Chen, Meng Wang, Mingxu Su, Wu Zhou, Ravi Varma, and Shengrong Lou
Geosci. Instrum. Method. Data Syst., 10, 245–255, https://doi.org/10.5194/gi-10-245-2021, https://doi.org/10.5194/gi-10-245-2021, 2021
Short summary
Short summary
Based on the intercomparison of photoacoustic and cavity attenuation phase shift instruments, this paper has corrected and calibrated the data of recent field measurements. It showed good agreement and close correlation in the optical properties measured from different optical methods, and the scattering coefficient plays a crucial role as the bridge in constructing correlation between both instruments.
Mostafa Abdel-Hameed Mohamed and Mohamed El-Sayed El-Mahdy
Geosci. Instrum. Method. Data Syst., 10, 45–54, https://doi.org/10.5194/gi-10-45-2021, https://doi.org/10.5194/gi-10-45-2021, 2021
Short summary
Short summary
The Blue Nile Basin is of vital importance for the whole Nile Basin. The investigation of the impact of climate change on this basin is essential. The Blue Nile Basin annual and monthly temperatures were investigated. Spatial and temporal patterns of changes in extreme temperatures are investigated using 10 meteorological stations' data for the period 1950–2018. The investigation showed that climate change increased temperatures in the basin.
Ruud J. Dirksen, Greg E. Bodeker, Peter W. Thorne, Andrea Merlone, Tony Reale, Junhong Wang, Dale F. Hurst, Belay B. Demoz, Tom D. Gardiner, Bruce Ingleby, Michael Sommer, Christoph von Rohden, and Thierry Leblanc
Geosci. Instrum. Method. Data Syst., 9, 337–355, https://doi.org/10.5194/gi-9-337-2020, https://doi.org/10.5194/gi-9-337-2020, 2020
Short summary
Short summary
This paper describes GRUAN's strategy for a network-wide change of the operational radiosonde from Vaisala RS92 to RS41. GRUAN's main goal is to provide long-term data records that are free of inhomogeneities due to instrumental effects, which requires proper change management. The approach is to fully characterize differences between the two radiosonde types using laboratory tests, twin soundings, and ancillary data, as well as by drawing from the various fields of expertise available in GRUAN.
Rosa Delia García, Emilio Cuevas, Ramón Ramos, Victoria Eugenia Cachorro, Alberto Redondas, and José A. Moreno-Ruiz
Geosci. Instrum. Method. Data Syst., 8, 77–96, https://doi.org/10.5194/gi-8-77-2019, https://doi.org/10.5194/gi-8-77-2019, 2019
Short summary
Short summary
IZA is a high-mountain station located in Tenerife (Canary Islands, Spain, at 28.3º N, 16.5º W; 2373 m a.s.l.) and is a representative site of the subtropical North Atlantic free troposphere. It contributes with basic-BSRN radiation measurements, such as, global shortwave radiation, direct radiation, diffuse radiation and longwave downward radiation and extended-BSRN measurements, including ultraviolet ranges, shortwave upward radiation and longwave upward radiation.
Zhongdong Yang, Yuquan Zhen, Zenshan Yin, Chao Lin, Yanmeng Bi, Wu Liu, Qian Wang, Long Wang, Songyan Gu, and Longfei Tian
Geosci. Instrum. Method. Data Syst., 7, 245–252, https://doi.org/10.5194/gi-7-245-2018, https://doi.org/10.5194/gi-7-245-2018, 2018
Short summary
Short summary
TanSat is a key satellite mission in the Chinese Earth Observation program and is designed to measure the global atmospheric column-averaged dry-air CO2 mole fraction. Several critical aspects of the spectrometer, including the spectral resolution, spectral dispersion, and the instrument line shape function of each channel were evaluated. The instrument line shape function of the spectrometer is notably symmetrical and perfectly consistent across all channels in the three bands.
Stelios Kazadzis, Natalia Kouremeti, Stephan Nyeki, Julian Gröbner, and Christoph Wehrli
Geosci. Instrum. Method. Data Syst., 7, 39–53, https://doi.org/10.5194/gi-7-39-2018, https://doi.org/10.5194/gi-7-39-2018, 2018
Short summary
Short summary
The World Optical Depth Research Calibration Center (WORCC) has been established after the recommendations of WMO for calibration of aerosol optical depth (AOD) -related sun photometers. WORCC is mandated to initiate homogenization activities among different AOD networks and to run a network (GAW-PFR) of sun photometers. To calibrate such instruments aiming at low measurement uncertainties the quality assurance, quality control and a basic hierarchy have to be defined and followed.
Anu Heikkilä, Jakke Sakari Mäkelä, Kaisa Lakkala, Outi Meinander, Jussi Kaurola, Tapani Koskela, Juha Matti Karhu, Tomi Karppinen, Esko Kyrö, and Gerrit de Leeuw
Geosci. Instrum. Method. Data Syst., 5, 531–540, https://doi.org/10.5194/gi-5-531-2016, https://doi.org/10.5194/gi-5-531-2016, 2016
Short summary
Short summary
Lamp measurements used for the UV irradiance calibration of two Brewer spectrophotometers operated for 20 years in Jokioinen and Sodankylä, Finland, were examined. Temporal development of the responsivity after fixing the irradiance measurements into a specific scale was studied. Both long-term gradual decrease and abrupt changes in responsiveness were detected. Frequent-enough measurements of working standard lamps were found necessary to detect the short-term variations in responsiveness.
Sean P. Burns, Gordon D. Maclean, Peter D. Blanken, Steven P. Oncley, Steven R. Semmer, and Russell K. Monson
Geosci. Instrum. Method. Data Syst., 5, 451–471, https://doi.org/10.5194/gi-5-451-2016, https://doi.org/10.5194/gi-5-451-2016, 2016
Short summary
Short summary
The hardware and software used to collect eddy-covariance ecosystem
fluxes of carbon dioxide, heat, and water vapor at a high-elevation
subalpine forest site over 17 years are described. Over time,
software/hardware improvements have increased the system robustness,
leading to a successful 10 Hz data-collection rate of better than 99.98 %. We also provide philosophical concepts that shaped our data system design and are applicable to many different types of environmental data collection.
Rigel Kivi and Pauli Heikkinen
Geosci. Instrum. Method. Data Syst., 5, 271–279, https://doi.org/10.5194/gi-5-271-2016, https://doi.org/10.5194/gi-5-271-2016, 2016
Short summary
Short summary
Carbon dioxide is the most abundant greenhouse gas emitted due to human activities. Changes in atmospheric columns of carbon dioxide can be measured accurately using ground-based Fourier transform spectrometers, which are operating in the near-infrared spectral region. Our measurements at Sodankylä reveal a significant increase of column carbon dioxide since the start of the column measurements at Sodankylä in early 2009.
T. A. Bonin, P. B. Chilson, B. S. Zielke, P. M. Klein, and J. R. Leeman
Geosci. Instrum. Method. Data Syst., 2, 177–187, https://doi.org/10.5194/gi-2-177-2013, https://doi.org/10.5194/gi-2-177-2013, 2013
S. Cecchini and M. Spurio
Geosci. Instrum. Method. Data Syst., 1, 185–196, https://doi.org/10.5194/gi-1-185-2012, https://doi.org/10.5194/gi-1-185-2012, 2012
Cited articles
Buck, A. L.: New equations for computing vapor pressure and enhancement factor, J. Appl. Meteorol. Clim., 20, 1527–1532, https://doi.org/10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2, 1981. a
de Vera, J.-P., Schulze-Makuch, D., Khan, A., Lorek, A., Koncz, A., Möhlmann, D., and Spohn, T.: Adaption of an Antarctic lichen to Martian niche conditions can occur within 34 days, Planet. Space Sci., 98, 182–190, https://doi.org/10.1016/j.pss.2013.07.014, 2014. a
Esposito, F., Debei, S., Bettanini, C., Molfese, C., Arruego Rodríguez, I., Colombatti, G., Harri, A.-M., Montmessin, F., Wilson, C., Aboudan, A., Schipani, P., Marty, L., Álvarez, F. J., Apestigue, V., Bellucci, G., Berthelier, J.-J., Brucato, J. R., Calcutt, S. B., Chiodini, S., Cortecchia, F., Cozzolino, F., Cucciarrè, F., Deniskina, N., Déprez, G., Di Achille, G., Ferri, F., Forget, F., Franzese, G., Friso, E., Genzer, M., Hassen-Kodja, R., Haukka, H., Hieta, M., Jiménez, J. J., Josset, J.-L., Kahanpää, H., Karatekin, O., Landis, G., Lapauw, L., Lorenz, R., Martinez-Oter, J., Mennella, V., Möhlmann, D., Moirin, D., Molinaro, R., Nikkanen, T., Palomba, E., Patel, M. R., Pommereau, J.-P., Popa, C. I., Rafkin, S., Rannou, P., Renno, N. O., Rivas, J., Schmidt, W., Segato, E., Silvestro, S., Spiga, A., Toledo, D., Trautner, R., Valero, F., Vázquez, L., Vivat, F., Witasse, O., Yela, M., Mugnuolo, R., Marchetti, E., and Pirrotta, S.: The DREAMS Experiment Onboard the Schiaparelli Module of the ExoMars 2016 Mission: Design, Performances and Expected Results, Space Sci. Rev., 214, 103, https://doi.org/10.1007/s11214-018-0535-0, 2018. a, b
Fischer, E., Martínez, G., and Rennó, N.: Formation and Persistence of Brine on Mars: Experimental Simulations throughout the Diurnal Cycle at the Phoenix Landing Site, Astrobiology, 16, 937–948, https://doi.org/10.1089/ast.2016.1525, 2016. a
Fischer, E., Martínez, G. M., Rennó, N. O., Tamppari, L. K., and Zent, A. P.: Relative Humidity on Mars: New Results From the Phoenix TECP Sensor, J. Geophys. Res.-Planet., 124, 2780–2792, https://doi.org/10.1029/2019JE006080, 2019. a
Gomez-Elvira, J., Armiens, C., Castañer, L., Domínguez, M., Genzer, M., Gómez, F., Haberle, R., Harri, A.-M., Jiménez, V., Kahanpää, H., Kowalski, L., Lepinette, A., Martín, J., Martínez-Frías, J., McEwan, I., Mora, L., Moreno, J., Navarro, S., de Pablo, M. A., Peinado, V., Peña, A., Polkko, J., Ramos, M., Renno, N. O., Ricart, J., Richardson, M., Rodríguez-Manfredi, J., Romeral, J., Sebastián, E., Serrano, J., de la Torre Juárez, M., Torres, J., Torrero, F., Urquí, R., Vázquez, L., Velasco, T., Verdasca, J., Zorzano, M.-P., and Martín-Torres, J.: REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover, Space Sci. Rev., 170, 583–640, https://doi.org/10.1007/s11214-012-9921-1, 2012. a
Harri, A.-M., Linkin, V., Polkko, J., Marov, M., Pommereau, J. P., Lipatov, A., Siili, T., Manuilov, K., Lebedev, V., Lehto, A., Pellinen, R., Pirjola, R., Carpentier, T., Malique, C., Makarov, V., Khloustova, L., Esposito, L., Maki, J., Lawrence, G., and Lystsev, V.: Meteorological observations on Martian surface: met-packages of Mars-96 Small Stations and Penetrators, Planet. Space Sci., 46, 779–793, https://doi.org/10.1016/S0032-0633(98)00012-9, 1998. a
Harri, A.-M., Genzer, M., Kemppinen, O., Gomez-Elvira, J., Haberle, R., Polkko, J., Savijärvi, H., Rennó, N., Rodriguez-Manfredi, J. A., Schmidt, W., Richardson, M., Siili, T., Paton, M., de la Torre-Juarez, M., Mäkinen, T., Newman, C., Rafkin, S., Mischna, M., Merikallio, S., Haukka, H., Martin-Torres, J., Komu, M., Zorzano, M.-P., Peinado, V., Vazquez, L., and Urqui, R.: Mars Science Laboratory relative humidity observations: Initial results, J. Geophys. Res.-Planet., 119, 2132–2147, https://doi.org/10.1002/2013JE004514, 2014. a, b, c
Harri, A.-M., Paton, M., Hieta, M., Polkko, J., Newman, C., Pla-Garcia, J., Leino, J., Mäkinen, T., Kauhanen, J., Jaakonaho, I., Sánchez-Lavega, A., Hueso, R., Genzer, M., Lorenz, R., Lemmon, M., Vicente-Retortillo, A., Tamppari, L. K., Viudez-Moreiras, D., de la Torre-Juarez, M., Savijärvi, H., Rodríguez-Manfredi, J. A., and Martinez, G.: Perseverance MEDA Atmospheric Pressure Observations–Initial Results, J. Geophys. Res.-Planet., 129, e2023JE007880, https://doi.org/10.1029/2023JE007880, 2024. a
Hieta, M., Genzer, M., Polkko, J., Jaakonaho, I., Tabandeh, S., Lorek, A., Garland, S., de Vera, J.-P., Fischer, E., Martínez, G. M., Harri, A.-M., Tamppari, L., Haukka, H., Meskanen, M., de la Torre Juárez, M., and Rodriguez Manfredi, J. A.: MEDA HS: Relative humidity sensor for the Mars 2020 Perseverance rover, Planet. Space Sci., 223, 105590, https://doi.org/10.1016/j.pss.2022.105590, 2022. a, b, c, d, e
Jakosky, B. M.: The Seasonal Cycle of Water on Mars, Space Sci. Rev., 41, 131–200, https://doi.org/10.1007/BF00241348, 1985. a
Jakosky, B. M., Zent, A. P., and Zurek, R. W.: The Mars Water Cycle: Determining the Role of Exchange with the Regolith, Icarus, 130, 87–95, https://doi.org/10.1006/icar.1997.5799, 1997. a
Kappen, L., Schroeter, B., Scheidegger, C., Sommerkorn, M., and Hestmark, G.: Cold resistance and metabolic activity of lichens below 0 degC, Adv. Space Res., 18, 119–128, https://doi.org/10.1016/0273-1177(96)00007-5, 1996. a
Lorek, A.: Humidity measurement with capacitive humidity sensors between −70 °C and 25 °C in low vacuum, J. Sens. Sens. Syst., 3, 177–185, https://doi.org/10.5194/jsss-3-177-2014, 2014. a, b
Lorek, A. and Koncz, A.: Simulation and Measurement of Extraterrestrial Conditions for Experiments on Habitability with Respect to Mars, in: Habitability of Other Planets and Satellites, vol. 28, edited by: de Vera, J.-P. and Seckbach, J., Springer Netherlands, Dordrecht, 145–162, https://doi.org/10.1007/978-94-007-6546-7_9, 2013. a
Lorek, A. and Majewski, J.: Humidity Measurement in Carbon Dioxide with Capacitive Humidity Sensors at Low Temperature and Pressure, Sensors, 18, 2615, https://doi.org/10.3390/s18082615, 2018. a, b, c
Martínez, G. M., Fischer, E., Rennó, N., Sebastián, E., Kemppinen, O., Bridges, N., Borlina, C., Meslin, P.-Y., Genzer, M., Harri, A.-H., Vicente-Retortillo, A., Ramos, M., de la Torre Juárez, M., Gómez, F., and Gómez-Elvira, J.: Likely frost events at Gale crater: Analysis from MSL/REMS measurements, Icarus, 280, 93–102, https://doi.org/10.1016/j.icarus.2015.12.004, 2016. a
Martínez, G. M., Newman, C. N., De Vicente-Retortillo, A., Fischer, E., Rennó, N. O., Richardson, M. I., Fairén, A. G., Genzer, M., Guzewich, S. D., Haberle, R. M., Harri, A.-M., Kemppinen, O., Lemmon, M. T., Smith, M. D., de la Torre-Juárez, M., and Vasavada, A. R.: The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity, Space Sci. Rev., 212, 295–338, https://doi.org/10.1007/s11214-017-0360-x, 2017. a
Polkko, J., Hieta, M., Harri, A.-M., Tamppari, L., Martínez, G., Viúdez-Moreiras, D., Savijärvi, H., Conrad, P., Zorzano Mier, M. P., De La Torre Juarez, M., Hueso, R., Munguira, A., Leino, J., Gómez, F., Jaakonaho, I., Fischer, E., Genzer, M., Apestigue, V., Arruego, I., Banfield, D., Lepinette, A., Paton, M., Rodriguez-Manfredi, J. A., Sánchez Lavega, A., Sebastian, E., Toledo, D., Vicente-Retortillo, A., and MEDA team: Initial Results of the Relative Humidity Observations by MEDA Instrument Onboard the Mars 2020 Perseverance Rover, J. Geophys. Res.-Planet., 128, e2022JE007447, https://doi.org/10.1029/2022JE007447, 2023. a, b
Rodriguez-Manfredi, J. A., de la Torre Juárez, M., Alonso, A., Apéstigue, V., Arruego, I., Atienza, T., Banfield, D., Boland, J., Carrera, M. A., Castañer, L., Ceballos, J., Chen-Chen, H., Cobos, A., Conrad, P. G., Cordoba, E., del Río-Gaztelurrutia, T., de Vicente-Retortillo, A., Domínguez-Pumar, M., Espejo, S., Fairen, A. G., Fernández-Palma, A., Ferrándiz, R., Ferri, F., Fischer, E., García-Manchado, A., García-Villadangos, M., Genzer, M., Giménez, S., Gómez-Elvira, J., Gómez, F., Guzewich, S. D., Harri, A. M., Hernández, C. D., Hieta, M., Hueso, R., Jaakonaho, I., Jiménez, J. J., Jiménez, V., Larman, A., Leiter, R., Lepinette, A., Lemmon, M. T., López, G., Madsen, S. N., Mäkinen, T., Marín, M., Martín-Soler, J., Martínez, G., Molina, A., Mora-Sotomayor, L., Moreno-Álvarez, J. F., Navarro, S., Newman, C. E., Ortega, C., Parrondo, M. C., Peinado, V., Peña, A., Pérez-Grande, I., Pérez-Hoyos, S., Pla-García, J., Polkko, J., Postigo, M., Prieto-Ballesteros, O., Rafkin, S. C. R., Ramos, M., Richardson, M. I., Romeral, J., Romero, C., Runyon, K. D., Saiz-Lopez, A., Sánchez-Lavega, A., Sard, I., Schofield, J. T., Sebastian, E., Smith, M. D., Sullivan, R. J., Tamppari, L. K., Thompson, A. D., Toledo, D., Torrero, F., Torres, J., Urquí, R., Velasco, T., Viúdez-Moreiras, D., Zurita, S., and MEDA team: The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission, Space Sci. Rev., 217, 48, https://doi.org/10.1007/s11214-021-00816-9, 2021. a
Rodriguez-Manfredi, J. A., de la Torre Juarez, M., Sanchez-Lavega, A., Hueso, R., Martinez, G., Lemmon, M. T., Newman, C. E., Munguira, A., Hieta, M., Tamppari, L. K., Polkko, J., Toledo, D., Sebastian, E., Smith, M. D., Jaakonaho, I., Genzer, M., De Vicente-Retortillo, A., Viudez-Moreiras, D., Ramos, M., Saiz-Lopez, A., Lepinette, A., Wolff, M., Sullivan, R. J., Gomez-Elvira, J., Apestigue, V., Conrad, P. G., Del Rio-Gaztelurrutia, T., Murdoch, N., Arruego, I., Banfield, D., Boland, J., Brown, A. J., Ceballos, J., Dominguez-Pumar, M., Espejo, S., Fairén, A. G., Ferrandiz, R., Fischer, E., Garcia-Villadangos, M., Gimenez, S., Gomez-Gomez, F., Guzewich, S. D., Harri, A.-M., Jimenez, J. J., Jimenez, V., Makinen, T., Marin, M., Martin, C., Martin-Soler, J., Molina, A., Mora-Sotomayor, L., Navarro, S., Peinado, V., Perez-Grande, I., Pla-Garcia, J., Postigo, M., Prieto-Ballesteros, O., Rafkin, S. C. R., Richardson, M. I., Romeral, J., Romero, C., Savijärvi, H., Schofield, J. T., Torres, J., Urqui, R., and Zurita, S.: The diverse meteorology of Jezero crater over the first 250 sols of Perseverance on Mars, Nat. Geosci., 16, 19–28, https://doi.org/10.1038/s41561-022-01084-0, 2023. a
Savijärvi, H., Harri, A.-M., and Kemppinen, O.: The diurnal water cycle at Curiosity: Role of exchange with the regolith, Icarus, 265, 63–69, https://doi.org/10.1016/j.icarus.2015.10.008, 2016. a
Savijärvi, H., McConnochie, T. H., Harri, A.-M., and Paton, M.: Annual and diurnal water vapor cycles at Curiosity from observations and column modeling, Icarus, 319, 485–490, https://doi.org/10.1016/j.icarus.2018.10.008, 2019. a, b
Savijärvi, H., Martinez, G. M., Fischer, E., Rennó, N., Tamppari, L., Zent, A., and Harri, A.-M.: Humidity observations and column simulations for a warm period at the Mars Phoenix lander site: Constraining the adsorptive properties of regolith, Icarus, 343, 113688, https://doi.org/10.1016/j.icarus.2020.113688, 2020. a
Stevenson, A., Burkhardt, J., Cockell, C., Cray, J., Dijksterhuis, J., Fox-Powell, M., Kee, T., Kminek, G., Mcgenity, T., Timmis, K., Timson, D., Voytek, M., Westall, F., Yakimov, M., and Hallsworth, J.: Multiplication of microbes below 0.690 water activity: Implications for terrestrial and extraterrestrial life, Environ. Microbiol., 17, 257–277, https://doi.org/10.1111/1462-2920.12598, 2014. a
Trainer, M. G., Wong, M. H., McConnochie, T. H., Franz, H. B., Atreya, S. K., Conrad, P. G., Lefèvre, F., Mahaffy, P. R., Malespin, C. A., Manning, H. L., Martín-Torres, J., Martínez, G. M., McKay, C. P., Navarro-González, R., Vicente-Retortillo, Á., Webster, C. R., and Zorzano, M.-P.: Seasonal Variations in Atmospheric Composition as Measured in Gale Crater, Mars, J. Geophys. Res.-Planet., 124, 3000–3024, https://doi.org/10.1029/2019JE006175, 2019. a
Zelenyi, L. M., Korablev, O. I., Rodionov, D. S., Novikov, B. S., Marchenkov, K. I., Andreev, O. N., and Larionov, E. V.: Scientific objectives of the scientific equipment of the landing platform of the ExoMars-2018 mission, Solar Syst. Res.+, 49, 509–517, https://doi.org/10.1134/S0038094615070229, 2015. a
Zent, A. P., Hecht, M. H., Cobos, D. R., Campbell, G. S., Campbell, C. S., Cardell, G., Foote, M. C., Wood, S. E., and Mehta, M.: Thermal and Electrical Conductivity Probe (TECP) for Phoenix, J. Geophys. Res.-Planet., 114, E00A27, https://doi.org/10.1029/2007JE003052, 2009. a
Short summary
This paper describes new humidity measurements performed with the humidity instruments of the MSL, Mars 2020 and ExoMars missions. Special facilities are needed to create Martian conditions, and a measurement campaign was performed at the German Aerospace Center (DLR) to obtain datasets for REMS-H, MEDA HS and METEO-H instruments. The results from the campaign improved the humidity data we receive from MEDA HS/Perseverance and can further improve the existing Martian relative humidity data.
This paper describes new humidity measurements performed with the humidity instruments of the...