Articles | Volume 6, issue 2
https://doi.org/10.5194/gi-6-319-2017
https://doi.org/10.5194/gi-6-319-2017
Research article
 | 
05 Sep 2017
Research article |  | 05 Sep 2017

Magnetogama: an open schematic magnetometer

Wahyudi, Nurul Khakhim, Tri Kuntoro, Djati Mardiatno, Afif Rakhman, Anas Setyo Handaru, Adien Akhmad Mufaqih, and Theodosius Marwan Irnaka

Related subject area

Magnetometers
Enabling in situ validation of mitigation algorithms for magnetic interference via a laboratory-generated dataset
Matthew G. Finley, Allison M. Flores, Katherine J. Morris, Robert M. Broadfoot, Sam Hisel, Jason Homann, Chris Piker, Ananya Sen Gupta, and David M. Miles
Geosci. Instrum. Method. Data Syst., 13, 263–275, https://doi.org/10.5194/gi-13-263-2024,https://doi.org/10.5194/gi-13-263-2024, 2024
Short summary
First in situ measurements of the prototype Tesseract fluxgate magnetometer on the ACES-II-Low sounding rocket
Kenton Greene, Scott R. Bounds, Robert M. Broadfoot, Connor Feltman, Samuel J. Hisel, Ryan M. Kraus, Amanda Lasko, Antonio Washington, and David M. Miles
Geosci. Instrum. Method. Data Syst., 13, 249–262, https://doi.org/10.5194/gi-13-249-2024,https://doi.org/10.5194/gi-13-249-2024, 2024
Short summary
Accuracy of the scalar magnetometer aboard ESA's JUICE mission
Christoph Amtmann, Andreas Pollinger, Michaela Ellmeier, Michele Dougherty, Patrick Brown, Roland Lammegger, Alexander Betzler, Martín Agú, Christian Hagen, Irmgard Jernej, Josef Wilfinger, Richard Baughen, Alex Strickland, and Werner Magnes
Geosci. Instrum. Method. Data Syst., 13, 177–191, https://doi.org/10.5194/gi-13-177-2024,https://doi.org/10.5194/gi-13-177-2024, 2024
Short summary
Analysis of Orientation Errors in Triaxial Fluxgate Sensors and Research on Their Calibration Methods
Xiujuan Hu, Shaopeng He, Qin Tian, Alimjan Mamatemin, Pengkun Guo, and Guoping Chang
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2024-5,https://doi.org/10.5194/gi-2024-5, 2024
Revised manuscript accepted for GI
Short summary
Copper permalloys for fluxgate magnetometer sensors
B. Barry Narod and David M. Miles
Geosci. Instrum. Method. Data Syst., 13, 131–161, https://doi.org/10.5194/gi-13-131-2024,https://doi.org/10.5194/gi-13-131-2024, 2024
Short summary

Cited articles

Cleuziou, J.-P., Wernsdorfer, W., Bouchiat, V., Ondarçuhu, T., and Monthioux, M.: Carbon nanotube superconducting quantum interference device, Nat. Nanotechnol., 1, 53–59, 2006.
Drung, D., Cantor, R., Peters, M., Scheer, H., and Koch, H.: Low-noise high-speed dc superconducting quantum interference device magnetometer with simplified feedback electronics, Appl. Phys. Lett., 57, 406–408, 1990.
Fagaly, R.: Superconducting quantum interference device instruments and applications, Rev. Sci. Instrum., 77, 101101-1–101101-45, 2006.
Peeters, F. and Li, X.: Hall magnetometer in the ballistic regime, Appl. Phys. Lett., 72, 572–574, 1998.
Primdahl, F.: The fluxgate magnetometer, J. Phys. E-Sci. Instrum., 12, 241–253, https://doi.org/10.1088/0022-3735/12/4/001, 1979.
Download
Short summary
In geophysics exploration, measuring earth's magnetic field using magnetometers is a necessity to resolve earth's subsurface structure. In this paper we offer an open-schematic fluxgate magnetometer (Magnetogama) that will help people build their own magnetometer. We focus on how to assemble and record earth's magnetic response. Several sensitivity tests were performed to make sure that Magnetogama has the capability to be used in exploration.