Articles | Volume 8, issue 1
https://doi.org/10.5194/gi-8-129-2019
https://doi.org/10.5194/gi-8-129-2019
Research article
 | 
08 May 2019
Research article |  | 08 May 2019

A network of magnetometers for multi-scale urban science and informatics

Trevor A. Bowen, Elena Zhivun, Arne Wickenbrock, Vincent Dumont, Stuart D. Bale, Christopher Pankow, Gregory Dobler, Jonathan S. Wurtele, and Dmitry Budker

Related authors

Visualization of dynamics in coupled multi-spin systems
Jingyan Xu, Dmitry Budker, and Danila A. Barskiy
Magn. Reson., 3, 145–160, https://doi.org/10.5194/mr-3-145-2022,https://doi.org/10.5194/mr-3-145-2022, 2022
Short summary

Related subject area

Magnetometers
Enabling in situ validation of mitigation algorithms for magnetic interference via a laboratory-generated dataset
Matthew G. Finley, Allison M. Flores, Katherine J. Morris, Robert M. Broadfoot, Sam Hisel, Jason Homann, Chris Piker, Ananya Sen Gupta, and David M. Miles
Geosci. Instrum. Method. Data Syst., 13, 263–275, https://doi.org/10.5194/gi-13-263-2024,https://doi.org/10.5194/gi-13-263-2024, 2024
Short summary
First in situ measurements of the prototype Tesseract fluxgate magnetometer on the ACES-II-Low sounding rocket
Kenton Greene, Scott R. Bounds, Robert M. Broadfoot, Connor Feltman, Samuel J. Hisel, Ryan M. Kraus, Amanda Lasko, Antonio Washington, and David M. Miles
Geosci. Instrum. Method. Data Syst., 13, 249–262, https://doi.org/10.5194/gi-13-249-2024,https://doi.org/10.5194/gi-13-249-2024, 2024
Short summary
Accuracy of the scalar magnetometer aboard ESA's JUICE mission
Christoph Amtmann, Andreas Pollinger, Michaela Ellmeier, Michele Dougherty, Patrick Brown, Roland Lammegger, Alexander Betzler, Martín Agú, Christian Hagen, Irmgard Jernej, Josef Wilfinger, Richard Baughen, Alex Strickland, and Werner Magnes
Geosci. Instrum. Method. Data Syst., 13, 177–191, https://doi.org/10.5194/gi-13-177-2024,https://doi.org/10.5194/gi-13-177-2024, 2024
Short summary
Analysis of Orientation Errors in Triaxial Fluxgate Sensors and Research on Their Calibration Methods
Xiujuan Hu, Shaopeng He, Qin Tian, Alimjan Mamatemin, Pengkun Guo, and Guoping Chang
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2024-5,https://doi.org/10.5194/gi-2024-5, 2024
Revised manuscript accepted for GI
Short summary
Copper permalloys for fluxgate magnetometer sensors
B. Barry Narod and David M. Miles
Geosci. Instrum. Method. Data Syst., 13, 131–161, https://doi.org/10.5194/gi-13-131-2024,https://doi.org/10.5194/gi-13-131-2024, 2024
Short summary

Cited articles

Abbott, B. P., Abbott, R., Abbott, T. D., et al.: Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett., 116, 061102, https://doi.org/10.1103/PhysRevLett.116.061102, 2016. a
Abbott, B. P., Abbott, R., Abbott, T. D., et al.: Multi-messenger Observations of a Binary Neutron Star Merger, Astrophys. J. Lett., 848, L12, https://doi.org/10.3847/2041-8213/aa91c9, 2017. a
Abramovici, A., Althouse, W. E., Drever, R. W. P., Gursel, Y., Kawamura, S., Raab, F. J., Shoemaker, D., Sievers, L., Spero, R. E., Thorne, K. S., Vogt, R. E., Weiss, R., Whitcomb, S. E., and Zucker, M. E.: LIGO – The Laser Interferometer Gravitational-Wave Observatory, Science, 256, 325–333, https://doi.org/10.1126/science.256.5055.325, 1992. a
Afach, S., Budker, D., DeCamp, G., Dumont, V., Grujić, Z. D., Guo, H., Kimball, D. F. J., Kornack, T. W., Lebedev, V., Li, W., Masia-Roig, H., Nix, S., Padniuk, M., Palm, C. A., Pankow, C., Penaflor, A., Peng, X., Pustelny, S., Scholtes, T., Smiga, J. A., Stalnaker, J. E., Weis, A., Wickenbrock, A., and Wurm, D.: Characterization of the global network of optical magnetometers to search for exotic physics (GNOME), Phys. Dark Universe, 22, 162–180, https://doi.org/10.1016/j.dark.2018.10.002, 2018. a
Angelopoulos, V.: The THEMIS Mission, Space Sci. Rev., 141, 5, https://doi.org/10.1007/s11214-008-9336-1, 2008. a
Download
Short summary
We highlight the development of a low-cost portable sensor array to study magnetic fields in urban areas. Recent advancements in urban science have demonstrated significant utility in characterizing a city based on physical measurements. Magnetic fields of cities are characterized by significant noise; in the case of the San Francisco Bay Area, this noise is dominated by the BART train system. We demonstrate an ability to identify and extract BART noise from the urban magnetic environment.