Articles | Volume 8, issue 2
https://doi.org/10.5194/gi-8-265-2019
https://doi.org/10.5194/gi-8-265-2019
Research article
 | 
24 Sep 2019
Research article |  | 24 Sep 2019

Evaluations of an ocean bottom electro-magnetometer and preliminary results offshore NE Taiwan

Ching-Ren Lin, Chih-Wen Chiang, Kuei-Yi Huang, Yu-Hung Hsiao, Po-Chi Chen, Hsu-Kuang Chang, Jia-Pu Jang, Kun-Hui Chang, Feng-Sheng Lin, Saulwood Lin, and Ban-Yuan Kuo

Related subject area

Ocean instruments
Glider observations of thermohaline staircases in the tropical North Atlantic using an automated classifier
Callum Rollo, Karen J. Heywood, and Rob A. Hall
Geosci. Instrum. Method. Data Syst., 11, 359–373, https://doi.org/10.5194/gi-11-359-2022,https://doi.org/10.5194/gi-11-359-2022, 2022
Short summary
Continuous in situ measurement of dissolved methane in Lake Kivu using a membrane inlet laser spectrometer
Roberto Grilli, François Darchambeau, Jérôme Chappellaz, Ange Mugisha, Jack Triest, and Augusta Umutoni
Geosci. Instrum. Method. Data Syst., 9, 141–151, https://doi.org/10.5194/gi-9-141-2020,https://doi.org/10.5194/gi-9-141-2020, 2020
Short summary
A comprehensive data quality evaluation method for the currents of marine controlled-source electromagnetic transmitters based on the analytic hierarchy process
Rui Yang, Meng Wang, Gongxiang Wang, Ming Deng, Jianen Jing, and Xiancheng Li
Geosci. Instrum. Method. Data Syst., 9, 69–77, https://doi.org/10.5194/gi-9-69-2020,https://doi.org/10.5194/gi-9-69-2020, 2020
Short summary
Removing low-frequency artefacts from Datawell DWR-G4 wave buoy measurements
J.-V. Björkqvist, H. Pettersson, L. Laakso, K. K. Kahma, H. Jokinen, and P. Kosloff
Geosci. Instrum. Method. Data Syst., 5, 17–25, https://doi.org/10.5194/gi-5-17-2016,https://doi.org/10.5194/gi-5-17-2016, 2016
Short summary
Simple, affordable, and sustainable borehole observatories for complex monitoring objectives
A. Kopf, T. Freudenthal, V. Ratmeyer, M. Bergenthal, M. Lange, T. Fleischmann, S. Hammerschmidt, C. Seiter, and G. Wefer
Geosci. Instrum. Method. Data Syst., 4, 99–109, https://doi.org/10.5194/gi-4-99-2015,https://doi.org/10.5194/gi-4-99-2015, 2015
Short summary

Cited articles

Bertrand, E., Unsworth, M., Chiang, C. W., Chen, C. S., Chen, C. C., Wu, F., Turkoglu, E., Hsu, H. L., and Hill, G.: Magnetotelluric evidence for thick-skinned tectonics in central Taiwan, Geology, 37, 711–714, 2009. 
Bertrand, E. A., Unsworth, M. J., Chiang, C. W., Chen, C. S., Chen, C. C., Wu, F. T., Turkoglu, E., Hsu, H. L., and Hill, G. J.: Magnetotelluric imaging beneath the Taiwan orogen: An arc-continent collision, J. Geophys. Res.-Sol. Ea., 117, B01402, https://doi.org/10.1029/2011JB008688, 2012. 
Chiang, C. W., Unsworth, M. J., Chen, C. S., Chen, C. C., Lin, A. T. S., and Hsu, H. L.: Fault zone resistivity structure and monitoring at the Taiwan Chelungpu Drilling Project (TCDP), Terr. Atmos. Ocean Sci., 19, 473–479, 2008. 
Chiang, C. W., Chen, C. C., Unsworth, M., Bertrand, E., Chen, C. S., Thong, D. K., and Hsu, H. L.: The deep electrical structure of southern Taiwan and its Tectonic Implications, Terr. Atmos. Ocean Sci., 21, 879–895, 2010. 
Chiang, C. W., Chen, C. C., Unsworth, M., Bertrand, E., Chen, C. S., Kieu, T. D., and Hsu, H. L.: Corrigendum to “The deep electrical structure of southern Taiwan and its tectonic implications”, Terr. Atmos. Ocean Sci., 22, 371–371, 2011. 
Download
Short summary
The first stage of field experiments involving the design and construction of a low power-consumption ocean bottom electro-magnetometer (OBEM) has been completed: this can be deployed more than 180 d on the seafloor with a time drift of less than 0.95 ppm. We found that the inclinations and magnetic data of the OBEM varied with two observed earthquakes when compared to the OBS data. The potential fields of the OBEM were slightly, but not obviously, affected by the earthquakes.