Articles | Volume 9, issue 2
https://doi.org/10.5194/gi-9-267-2020
https://doi.org/10.5194/gi-9-267-2020
Research article
 | 
09 Jul 2020
Research article |  | 09 Jul 2020

Auroral classification ergonomics and the implications for machine learning

Derek McKay and Andreas Kvammen

Related authors

Observations of precipitation energies during different types of pulsating aurora
Fasil Tesema, Noora Partamies, Hilde Nesse Tyssøy, and Derek McKay
Ann. Geophys., 38, 1191–1202, https://doi.org/10.5194/angeo-38-1191-2020,https://doi.org/10.5194/angeo-38-1191-2020, 2020
Short summary

Related subject area

Data quality
Airborne electromagnetic data levelling based on the structured variational method
Qiong Zhang, Xin Chen, Zhonghang Ji, Fei Yan, Zhengkun Jin, and Yunqing Liu
Geosci. Instrum. Method. Data Syst., 13, 193–203, https://doi.org/10.5194/gi-13-193-2024,https://doi.org/10.5194/gi-13-193-2024, 2024
Short summary
Upgrade of LSA-SAF Meteosat Second Generation daily surface albedo (MDAL) retrieval algorithm incorporating aerosol correction and other improvements
Daniel Juncu, Xavier Ceamanos, Isabel F. Trigo, Sandra Gomes, and Sandra C. Freitas
Geosci. Instrum. Method. Data Syst., 11, 389–412, https://doi.org/10.5194/gi-11-389-2022,https://doi.org/10.5194/gi-11-389-2022, 2022
Short summary
Swarm Langmuir probes' data quality validation and future improvements
Filomena Catapano, Stephan Buchert, Enkelejda Qamili, Thomas Nilsson, Jerome Bouffard, Christian Siemes, Igino Coco, Raffaella D'Amicis, Lars Tøffner-Clausen, Lorenzo Trenchi, Poul Erik Holmdahl Olsen, and Anja Stromme
Geosci. Instrum. Method. Data Syst., 11, 149–162, https://doi.org/10.5194/gi-11-149-2022,https://doi.org/10.5194/gi-11-149-2022, 2022
Short summary
Evaluating methods for reconstructing large gaps in historic snow depth time series
Johannes Aschauer and Christoph Marty
Geosci. Instrum. Method. Data Syst., 10, 297–312, https://doi.org/10.5194/gi-10-297-2021,https://doi.org/10.5194/gi-10-297-2021, 2021
Short summary
Production of definitive data from Indonesian geomagnetic observatories
Relly Margiono, Christopher W. Turbitt, Ciarán D. Beggan, and Kathryn A. Whaler
Geosci. Instrum. Method. Data Syst., 10, 169–182, https://doi.org/10.5194/gi-10-169-2021,https://doi.org/10.5194/gi-10-169-2021, 2021
Short summary

Cited articles

Brändström, U.: Kiruna All-Sky Camera, Swedish Institute of Space Physics, available at: http://www2.irf.se/allsky/data.html, last access: 7 July 2020. a
Culverhouse, P. F.: Human and machine factors in algae monitoring performance, Ecol. Inform., 2, 361–366, https://doi.org/10.1016/j.ecoinf.2007.07.001, 2007. a, b, c
Culverhouse, P. F., Williams, R., Reguera, B., Herry, V., and González-Gil,  S.: Do experts make mistakes? A comparison of human and machine indentification of dinoflagellates, Mar. Ecol.-Prog. Ser., 247, 17–25, https://doi.org/10.3354/meps247017, 2003. a
Domingos, P.: A unified bias-variance decomposition, in: ICML '00: Proceedings of the Seventeenth International Conference on Machine Learning, edited by: Langley, P., Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 231–238, 2000. a
Kvammen, A., Wickstrøm, K., McKay, D., and Partamies, N.: Auroral Image Classification with Deep Neural Networks, https://doi.org/10.1002/essoar.10501968.1 online first, 2020a. a, b, c, d
Download
Short summary
Researchers are making increasing use of machine learning to improve accuracy, efficiency and consistency. During such a study of the aurora, it was noted that biases or distortions had crept into the data because of the conditions (or ergonomics) of the human trainers. As using machine-learning techniques in auroral research is relatively new, it is critical that such biases are brought to the attention of the academic and citizen science communities.