Articles | Volume 9, issue 2
https://doi.org/10.5194/gi-9-267-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.Auroral classification ergonomics and the implications for machine learning
Related authors
Related subject area
Data quality
Airborne electromagnetic data levelling based on the structured variational method
Upgrade of LSA-SAF Meteosat Second Generation daily surface albedo (MDAL) retrieval algorithm incorporating aerosol correction and other improvements
Swarm Langmuir probes' data quality validation and future improvements
Evaluating methods for reconstructing large gaps in historic snow depth time series
Production of definitive data from Indonesian geomagnetic observatories
Geosci. Instrum. Method. Data Syst., 13, 193–203,
2024Geosci. Instrum. Method. Data Syst., 11, 389–412,
2022Geosci. Instrum. Method. Data Syst., 11, 149–162,
2022Geosci. Instrum. Method. Data Syst., 10, 297–312,
2021Geosci. Instrum. Method. Data Syst., 10, 169–182,
2021Cited articles
Brändström, U.: Kiruna All-Sky Camera, Swedish Institute of Space Physics, available at: http://www2.irf.se/allsky/data.html, last access: 7 July 2020. a
Culverhouse, P. F.: Human and machine factors in algae monitoring performance,
Ecol. Inform., 2, 361–366,
https://doi.org/10.1016/j.ecoinf.2007.07.001, 2007. a, b, c
Culverhouse, P. F., Williams, R., Reguera, B., Herry, V., and González-Gil,
S.: Do experts make mistakes? A comparison of human and machine
indentification of dinoflagellates, Mar. Ecol.-Prog. Ser., 247,
17–25, https://doi.org/10.3354/meps247017, 2003. a
Domingos, P.: A unified bias-variance decomposition, in: ICML '00: Proceedings
of the Seventeenth International Conference on Machine Learning, edited by:
Langley, P., Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 231–238, 2000. a
Kvammen, A., Wickstrøm, K., McKay, D., and Partamies, N.: Auroral Image
Classification with Deep Neural Networks, https://doi.org/10.1002/essoar.10501968.1 online first, 2020a. a, b, c, d