Articles | Volume 9, issue 2
https://doi.org/10.5194/gi-9-451-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-9-451-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Maximum-variance gradiometer technique for removal of spacecraft-generated disturbances from magnetic field data
Ovidiu Dragoş Constantinescu
CORRESPONDING AUTHOR
Institute for Geophysics and Extraterrestrial Physics, TU Braunschweig, Germany
Space Plasma and Magnetometry Laboratory, Institute for Space Sciences, Bucharest, Romania
Hans-Ulrich Auster
Institute for Geophysics and Extraterrestrial Physics, TU Braunschweig, Germany
Magda Delva
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Olaf Hillenmaier
Magson GmbH, Berlin, Germany
Werner Magnes
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Ferdinand Plaschke
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Related authors
Niklas Grimmich, Ferdinand Plaschke, Benjamin Grison, Fabio Prencipe, Christophe Philippe Escoubet, Martin Owain Archer, Ovidiu Dragos Constantinescu, Stein Haaland, Rumi Nakamura, David Gary Sibeck, Fabien Darrouzet, Mykhaylo Hayosh, and Romain Maggiolo
Ann. Geophys., 42, 371–394, https://doi.org/10.5194/angeo-42-371-2024, https://doi.org/10.5194/angeo-42-371-2024, 2024
Short summary
Short summary
In our study, we looked at the boundary between the Earth's magnetic field and the interplanetary magnetic field emitted by the Sun, called the magnetopause. While other studies focus on the magnetopause motion near Earth's Equator, we have studied it in polar regions. The motion of the magnetopause is faster towards the Earth than towards the Sun. We also found that the occurrence of unusual magnetopause locations is due to similar solar influences in the equatorial and polar regions.
Gerlinde Timmermann, David Fischer, Hans-Ulrich Auster, Ingo Richter, Benjamin Grison, and Ferdinand Plaschke
EGUsphere, https://doi.org/10.5194/egusphere-2025-4095, https://doi.org/10.5194/egusphere-2025-4095, 2025
This preprint is open for discussion and under review for Geoscientific Instrumentation, Methods and Data Systems (GI).
Short summary
Short summary
We've compared the amplitude spectral densities of a fluxgate magnetometer (FGM) and an anisotropic magnetoresistive (AMR) magnetometer during ground testing with the amplitude spectral densities obtained in different regions of near-Earth space. The FGM can measure the fields in the different space regions and their fluctuations within a frequency range of 1 mHz to 2.5 Hz. The AMR magnetometer is only suitable for more turbulent regions such as the magnetosheath due to its higher noise levels.
Niklas Grimmich, Adrian Pöppelwerth, Martin Owain Archer, David Gary Sibeck, Ferdinand Plaschke, Wenli Mo, Vicki Toy-Edens, Drew Lawson Turner, Hyangpyo Kim, and Rumi Nakamura
Ann. Geophys., 43, 151–173, https://doi.org/10.5194/angeo-43-151-2025, https://doi.org/10.5194/angeo-43-151-2025, 2025
Short summary
Short summary
The boundary of Earth's magnetic field, the magnetopause, deflects and reacts to the solar wind, the energetic particles emanating from the Sun. We find that certain types of solar wind favour the occurrence of deviations between the magnetopause locations observed by spacecraft and those predicted by models. In addition, the turbulent region in front of the magnetopause, the foreshock, has a large influence on the location of the magnetopause and thus on the accuracy of the model predictions.
Niklas Grimmich, Ferdinand Plaschke, Benjamin Grison, Fabio Prencipe, Christophe Philippe Escoubet, Martin Owain Archer, Ovidiu Dragos Constantinescu, Stein Haaland, Rumi Nakamura, David Gary Sibeck, Fabien Darrouzet, Mykhaylo Hayosh, and Romain Maggiolo
Ann. Geophys., 42, 371–394, https://doi.org/10.5194/angeo-42-371-2024, https://doi.org/10.5194/angeo-42-371-2024, 2024
Short summary
Short summary
In our study, we looked at the boundary between the Earth's magnetic field and the interplanetary magnetic field emitted by the Sun, called the magnetopause. While other studies focus on the magnetopause motion near Earth's Equator, we have studied it in polar regions. The motion of the magnetopause is faster towards the Earth than towards the Sun. We also found that the occurrence of unusual magnetopause locations is due to similar solar influences in the equatorial and polar regions.
Adrian Pöppelwerth, Georg Glebe, Johannes Z. D. Mieth, Florian Koller, Tomas Karlsson, Zoltán Vörös, and Ferdinand Plaschke
Ann. Geophys., 42, 271–284, https://doi.org/10.5194/angeo-42-271-2024, https://doi.org/10.5194/angeo-42-271-2024, 2024
Short summary
Short summary
In the magnetosheath, a near-Earth region of space, we observe increases in plasma velocity and density, so-called jets. As they propagate towards Earth, jets interact with the ambient plasma. We study this interaction with three spacecraft simultaneously to infer their sizes. While previous studies have investigated their size almost exclusively statistically, we demonstrate a new method of determining the sizes of individual jets.
Christoph Amtmann, Andreas Pollinger, Michaela Ellmeier, Michele Dougherty, Patrick Brown, Roland Lammegger, Alexander Betzler, Martín Agú, Christian Hagen, Irmgard Jernej, Josef Wilfinger, Richard Baughen, Alex Strickland, and Werner Magnes
Geosci. Instrum. Method. Data Syst., 13, 177–191, https://doi.org/10.5194/gi-13-177-2024, https://doi.org/10.5194/gi-13-177-2024, 2024
Short summary
Short summary
The paper discusses the accuracy of the scalar magnetometer on board the scientific satellite mission
Jupiter Icy Moons Explorerof the European Space Agency. A novel method is described which utilises experiments, performed with a coil system in a geomagnetic observatory, and a mathematical data processing approach to separate the systematic errors of the coil system from the systematic error of the magnetometer. With this, the paper shows that the instrument’s accuracy is below 0.2 nT (1σ).
Tomas Karlsson, Ferdinand Plaschke, Austin N. Glass, and Jim M. Raines
Ann. Geophys., 42, 117–130, https://doi.org/10.5194/angeo-42-117-2024, https://doi.org/10.5194/angeo-42-117-2024, 2024
Short summary
Short summary
The solar wind interacts with the planets in the solar system and creates a supersonic shock in front of them. The upstream region of this shock contains many complicated phenomena. One such phenomenon is small-scale structures of strong magnetic fields (SLAMS). These SLAMS have been observed at Earth and are important in determining the properties of space around the planet. Until now, SLAMS have not been observed at Mercury, but we show for the first time that SLAMS also exist there.
Leonard Schulz, Karl-Heinz Glassmeier, Ferdinand Plaschke, Simon Toepfer, and Uwe Motschmann
Ann. Geophys., 41, 449–463, https://doi.org/10.5194/angeo-41-449-2023, https://doi.org/10.5194/angeo-41-449-2023, 2023
Short summary
Short summary
The upper detection limit in reciprocal space, the spatial Nyquist limit, is derived for arbitrary spatial dimensions for the wave telescope analysis technique. This is important as future space plasma missions will incorporate larger numbers of spacecraft (>4). Our findings are a key element in planning the spatial distribution of future multi-point spacecraft missions. The wave telescope is a multi-dimensional power spectrum estimator; hence, this can be applied to other fields of research.
Martin Volwerk, Cyril Simon Wedlund, David Mautner, Sebastián Rojas Mata, Gabriella Stenberg Wieser, Yoshifumi Futaana, Christian Mazelle, Diana Rojas-Castillo, César Bertucci, and Magda Delva
Ann. Geophys., 41, 389–408, https://doi.org/10.5194/angeo-41-389-2023, https://doi.org/10.5194/angeo-41-389-2023, 2023
Short summary
Short summary
Freshly created ions in solar wind start gyrating around the interplanetary magnetic field. When they cross the bow shock, they get an extra kick, and this increases the plasma pressure against the magnetic pressure. This leads to the creation of so-called mirror modes, regions where the magnetic field decreases in strength and the plasma density increases. These structures help in exploring how energy is transferred from the ions to the magnetic field and where around Venus this is happening.
Mohammed Y. Boudjada, Hans U. Eichelberger, Emad Al-Haddad, Werner Magnes, Patrick H. M. Galopeau, Xuemin Zhang, Andreas Pollinger, and Helmut Lammer
Adv. Radio Sci., 20, 77–84, https://doi.org/10.5194/ars-20-77-2023, https://doi.org/10.5194/ars-20-77-2023, 2023
Short summary
Short summary
We investigate the variation of the electric power density linked to VLF signals emitted by NWC transmitter. The power density measurements were detected by the Electric Field Detector (EFD) instrument onboard CSES satellite above NWC station and its conjugate region (CR). The beam is subject to disturbances and modulations in CR. Above the NWC station, the beam can be considered as a hollow cone with inconsistency dependence of the half-opening angle on the electric power density.
Martin Volwerk, Beatriz Sánchez-Cano, Daniel Heyner, Sae Aizawa, Nicolas André, Ali Varsani, Johannes Mieth, Stefano Orsini, Wolfgang Baumjohann, David Fischer, Yoshifumi Futaana, Richard Harrison, Harald Jeszenszky, Iwai Kazumasa, Gunter Laky, Herbert Lichtenegger, Anna Milillo, Yoshizumi Miyoshi, Rumi Nakamura, Ferdinand Plaschke, Ingo Richter, Sebastián Rojas Mata, Yoshifumi Saito, Daniel Schmid, Daikou Shiota, and Cyril Simon Wedlund
Ann. Geophys., 39, 811–831, https://doi.org/10.5194/angeo-39-811-2021, https://doi.org/10.5194/angeo-39-811-2021, 2021
Short summary
Short summary
On 15 October 2020, BepiColombo used Venus as a gravity assist to change its orbit to reach Mercury in late 2021. During this passage of Venus, the spacecraft entered into Venus's magnetotail at a distance of 70 Venus radii from the planet. We have studied the magnetic field and plasma data and find that Venus's magnetotail is highly active. This is caused by strong activity in the solar wind, where just before the flyby a coronal mass ejection interacted with the magnetophere of Venus.
Daniel Schmid, Yasuhito Narita, Ferdinand Plaschke, Martin Volwerk, Rumi Nakamura, and Wolfgang Baumjohann
Ann. Geophys., 39, 563–570, https://doi.org/10.5194/angeo-39-563-2021, https://doi.org/10.5194/angeo-39-563-2021, 2021
Short summary
Short summary
In this work we present the first analytical magnetosheath plasma flow model for the space environment around Mercury. The proposed model is relatively simple to implement and provides the possibility to trace the flow lines inside the Hermean magnetosheath. It can help to determine the the local plasma conditions of a spacecraft in the magnetosheath exclusively on the basis of the upstream solar wind parameters.
Martin Volwerk, David Mautner, Cyril Simon Wedlund, Charlotte Goetz, Ferdinand Plaschke, Tomas Karlsson, Daniel Schmid, Diana Rojas-Castillo, Owen W. Roberts, and Ali Varsani
Ann. Geophys., 39, 239–253, https://doi.org/10.5194/angeo-39-239-2021, https://doi.org/10.5194/angeo-39-239-2021, 2021
Short summary
Short summary
The magnetic field in the solar wind is not constant but varies in direction and strength. One of these variations shows a strong local reduction of the magnetic field strength and is called a magnetic hole. These holes are usually an indication that there is, or has been, a temperature difference in the plasma of the solar wind, with the temperature along the magnetic field lower than perpendicular. The MMS spacecraft data have been used to study the characteristics of these holes near Earth.
Yasuhito Narita, Ferdinand Plaschke, Werner Magnes, David Fischer, and Daniel Schmid
Geosci. Instrum. Method. Data Syst., 10, 13–24, https://doi.org/10.5194/gi-10-13-2021, https://doi.org/10.5194/gi-10-13-2021, 2021
Short summary
Short summary
The systematic error of calibrated fluxgate magnetometer data is studied for a spinning spacecraft. The major error comes from the offset uncertainty when the ambient magnetic field is low, while the error represents the combination of non-orthogonality, misalignment to spacecraft reference direction, and gain when the ambient field is high. The results are useful in developing future high-precision magnetometers and an error estimate in scientific studies using magnetometer data.
Cited articles
Angelopoulos, V.: The THEMIS mission, Space Sci. Rev., 141, 5–34,
https://doi.org/10.1007/s11214-008-9336-1, 2008. a
Auster, H. U., Glassmeier, K. H., Magnes, W., Aydogar, O., Constantinescu,
O. D., Fischer, D., Fornaçon, K. H., Georgescu, E., Harvey, P.,
Hillenmaier, O., Kroth, R., Ludlam, M., Narita, Y., Okrafka, K., Plaschke,
F., Richter, I., Schwarzl, H., Stoll, B., Valavanoglu, A., and Wiedemann, M.:
The THEMIS fluxgate magnetometer, Space Sci. Rev., 141, 235–264,
https://doi.org/10.1007/s11214-008-9365-9, 2008. a
Auster, U., Magnes, W., Delva, M., Valavanoglou, A., Leitner, S.,
Hillenmaier, O., Strauch, C., Brown, P., Whiteside, B., Bendyk, M.,
Hilgers, A., Kraft, S., Luntama, J. P., and Seon, J.: Space Weather
Magnetometer Set with Automated AC Spacecraft Field Correction for
GEO-KOMPSAT-2A, in: ESA Workshop on Aerospace EMS, Vol. 738, ESA
Special Publication, p. 37, 2016. a
Balogh, A.: Planetary Magnetic Field Measurements: Missions and
Instrumentation, Space Sci. Rev., 152, 23–97,
https://doi.org/10.1007/s11214-010-9643-1, 2010. a
Behannon, K. W., Acuna, M. H., Burlaga, L. F., Lepping, R. P., Ness,
N. F., and Neubauer, F. M.: Magnetic Field Experiment for Voyagers 1 and
2, Space Sci. Rev., 21, 235–257, https://doi.org/10.1007/BF00211541, 1977. a
Benkhoff, J., van Casteren, J., Hayakawa, H., Fujimoto, M., Laakso,
H., Novara, M., Ferri, P., Middleton, H. R., and Ziethe, R.:
BepiColombo–Comprehensive exploration of Mercury: Mission
overview and science goals, Planet. Space Sci., 58, 2–20,
https://doi.org/10.1016/j.pss.2009.09.020, 2010. a
Brown, P., Beek, T., Carr, C., O'Brien, H., Cupido, E., Oddy, T.,
and Horbury, T. S.: Magnetoresistive magnetometer for space science
applications, Meas. Sci. Technol., 23, 025902,
https://doi.org/10.1088/0957-0233/23/2/025902, 2012. a
Delva, M., Feldhofer, H., Schwingenschuh, K., and Mehlem, K.: A new multiple
sensor magnetic compatibility technique for magnetic field measurements in
space, in: International Symposium on Electromagnetic Compatibility, edited
by: Elettronica Italiana, A. E., EMC Europe, 523–528, 2002. a
Dougherty, M. K., Kellock, S., Southwood, D. J., Balogh, A., Smith,
E. J., Tsurutani, B. T., Gerlach, B., Glassmeier, K. H., Gleim, F.,
Russell, C. T., Erdos, G., Neubauer, F. M., and Cowley, S. W. H.:
The Cassini Magnetic Field Investigation, Space Sci. Rev., 114, 331–383,
https://doi.org/10.1007/s11214-004-1432-2, 2004. a
Escoubet, C. P., Schmidt, R., and Goldstein, M. L.: Cluster: Science and
Mission Overview, Space Sci. Rev., 79, 11–32, 1997. a
Georgescu, E., Auster, H. U., Takada, T., Gloag, J., Eichelberger,
H., Fornaçon, K. H., Brown, P., Carr, C. M., and Zhang, T. L.:
Modified gradiometer technique applied to Double Star (TC-1), Adv.
Space Res., 41, 1579–1584, https://doi.org/10.1016/j.asr.2008.01.014, 2008. a
Herčík, D., Auster, H.-U., Blum, J., Fornaçon, K.-H.,
Fujimoto, M., Gebauer, K., Güttler, C., Hillenmaier, O.,
Hördt, A., Liebert, E., Matsuoka, A., Nomura, R., Richter, I.,
Stoll, B., Weiss, B. P., and Glassmeier, K.-H.: The MASCOT
Magnetometer, Space Sci. Rev., 208, 433–449,
https://doi.org/10.1007/s11214-016-0236-5, 2017. a
Kato, M., Sasaki, S., and Takizawa, Y.: The Kaguya Mission Overview,
Space Sci. Rev., 154, 3–19, https://doi.org/10.1007/s11214-010-9678-3, 2010. a
Magnes, W., Hillenmaier, O., Auster, U., Brown, P., Kraft, S., Seon, J., Delva,
M., Valavanoglou, A., Leitner, S., Fischer, D., Narita, Y., Wilfinger, J.,
Strauch, C., Ludwig, J., Constantinescu, D., Fornaçon, K.-H., Gebauer,
K., Herčík, D., Richter, I., Eastwood, J., Luntama, J., Na, G.-W.,
Lee, C.-H., and Hilgers, A.: SOSMAG: Space Weather Magnetometer aboard
GEO-KOMPSAT-2A, Space Sci. Rev., 216, p. 119, https://doi.org/10.1007/s11214-020-00742-2, 2020. a, b, c, d
Mehlem, K.: Multiple magnetic dipole modeling and field prediction of
satellites, IEEE T. Magn., 14, 1064–1071,
https://doi.org/10.1109/TMAG.1978.1059983, 1978. a
Narvaez, P.: The Magnetostatic Cleanliness Program for the Cassini
Spacecraft, Space Sci. Rev., 114, 385–394, https://doi.org/10.1007/s11214-004-1433-1,
2004. a
Ness, N. F., Behannon, K. W., Lepping, R. P., and Schatten, K. H.: Use
of two magnetometers for magnetic field measurements on a spacecraft, J.
Geophys. Res., 76, 3564, https://doi.org/10.1029/JA076i016p03564, 1971. a, b, c
Ness, N. F., Behannon, K. W., Lepping, R. P., Whang, Y. C., and
Schatten, K. H.: Magnetic Field Observations near Venus: Preliminary
Results from Mariner 10, Science, 183, 1301–1306,
https://doi.org/10.1126/science.183.4131.1301, 1974. a, b
Neubauer, F. M.: Optimization of multimagnetometer systems on a spacecraft,
J. Geophys. Res., 80, 3235, https://doi.org/10.1029/JA080i022p03235, 1975. a, b
Oh, D., Kim, J., Lee, H., and Jang, K.-I.: Satellite-based In-situ
Monitoring of Space Weather: KSEM Mission and Data Application, J.
Astron. Space Sci., 35, 175–183, https://doi.org/10.5140/JASS.2018.35.3.175,
2018. a
Pope, S. A., Zhang, T. L., Balikhin, M. A., Delva, M., Hvizdos, L.,
Kudela, K., and Dimmock, A. P.: Exploring planetary magnetic
environments using magnetically unclean spacecraft: a systems approach to VEX
MAG data analysis, Ann. Geophys., 29, 639–647,
https://doi.org/10.5194/angeo-29-639-2011, 2011. a, b, c, d
Seon, J., Chae, K. S., Na, G. W., Seo, H. K., Shin, Y. C., Woo, J.,
Lee, C. H., Seol, W. H., Lee, C. A., Pak, S., Lee, H., Shin,
S. H., Larson, D. E., Hatch, K., Parks, G. K., Sample, J.,
McCarthy, M., Tindall, C., Jeon, Y. J., Choi, J. K., and Park,
J. Y.: Particle Detector (PD) Experiment of the Korea Space Environment
Monitor (KSEM) Aboard Geostationary Satellite GK2A, Space Sci. Rev., 216,
p. 13, https://doi.org/10.1007/s11214-020-0636-4, 2020. a
Song, P. and Russell, C. T.: Time Series Data Analyses in Space Physics,
Space Sci. Rev., 87, 387–463, https://doi.org/10.1023/A:1005035800454, 1999. a
Sonnerup, B. U. Ö. and Scheible, M.: Minimum and Maximum Variance
Analysis, in: Analysis methods for multi-spacecraft data, edited by:
Paschmann, G. and Daly, P., ISSI Sci. Rep. SR-001, ISSI, Bern,185–220,
1998. a
Titov, D. V., Svedhem, H., McCoy, D., Lebreton, J. P., Barabash, S.,
Bertaux, J. L., Drossart, P., Formisano, V., Haeusler, B.,
Korablev, O. I., Markiewicz, W., Neveance, D., Petzold, M.,
Piccioni, G., Zhang, T. L., Taylor, F. W., Lellouch, E., Koschny,
D., Witasse, O., Warhaut, M., Acomazzo, A., Rodrigues-Cannabal, J.,
Fabrega, J., Schirmann, T., Clochet, A., and Coradini, M.: Venus
Express: Scientific goals, instrumentation, and scenario of the mission,
Cosmic Res., 44, 334–348, https://doi.org/10.1134/S0010952506040071, 2006. a
Zhang, T. L., Baumjohann, W., Delva, M., Auster, H. U., Balogh, A.,
Russell, C. T., Barabash, S., Balikhin, M., Berghofer, G., Biernat,
H. K., Lammer, H., Lichtenegger, H., Magnes, W., Nakamura, R.,
Penz, T., Schwingenschuh, K., Vörös, Z., Zambelli, W.,
Fornacon, K. H., Glassmeier, K. H., Richter, I., Carr, C., Kudela,
K., Shi, J. K., Zhao, H., Motschmann, U., and Lebreton, J. P.:
Magnetic field investigation of the Venus plasma environment: Expected new
results from Venus Express, Planet. Space Sci., 54, 1336–1343,
https://doi.org/10.1016/j.pss.2006.04.018, 2006. a
Short summary
We propose a gradiometer-based technique for cleaning multi-sensor magnetic field data acquired on board spacecraft. The technique takes advantage on the fact that the maximum-variance direction of many AC disturbances on board spacecraft does not change over time. We apply the proposed technique to the SOSMAG instrument on board GeoKompsat-2A. We analyse the performance and limitations of the technique and discuss in detail how various disturbances are removed.
We propose a gradiometer-based technique for cleaning multi-sensor magnetic field data acquired...