Articles | Volume 11, issue 1
https://doi.org/10.5194/gi-11-149-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-11-149-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Swarm Langmuir probes' data quality validation and future improvements
Filomena Catapano
CORRESPONDING AUTHOR
Serco c/o ESA, ESRIN, Earth Observation Directorate, Frascati, Italy
Stephan Buchert
Swedish Institute of Space Physics, Uppsala, Sweden
Enkelejda Qamili
Serco c/o ESA, ESRIN, Earth Observation Directorate, Frascati, Italy
Thomas Nilsson
Swedish Institute of Space Physics, Uppsala, Sweden
Jerome Bouffard
European Space Agency (ESA), Earth Observation Directorate, Frascati, Italy
Christian Siemes
Delft University of Technology, Delft, the Netherlands
Igino Coco
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy
Raffaella D'Amicis
National Institute for Astrophysics, Institute for Space Astrophysics and Planetology, Rome, Italy
Lars Tøffner-Clausen
DTU Space, Technical University of Denmark, Kongens Lyngby, Denmark
Lorenzo Trenchi
Serco c/o ESA, ESRIN, Earth Observation Directorate, Frascati, Italy
Poul Erik Holmdahl Olsen
DTU Space, Technical University of Denmark, Kongens Lyngby, Denmark
Anja Stromme
European Space Agency (ESA), Earth Observation Directorate, Frascati, Italy
Related authors
No articles found.
Stelios Tourgaidis, Dimitrios Baloukidis, Theodoros Sarris, Stephan Buchert, Panagiotis Pirnaris, and Konstantinos Papadakis
EGUsphere, https://doi.org/10.5194/egusphere-2025-4315, https://doi.org/10.5194/egusphere-2025-4315, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
The Lower Thermosphere-Ionosphere energy balance is driven by complex interactions between ions, neutrals and electrons. These processes are understood theoretically, but their estimates show large discrepancies between models. We calculate the storm-time energy budget according to the neutrals, ions and electrons using TIE-GCM using two different external drivers. Discrepancies between the model runs are discussed and the way forward to close the gaps in present knowledge is highlighted.
Julien Meloche, Melody Sandells, Henning Löwe, Nick Rutter, Richard Essery, Ghislain Picard, Randall K. Scharien, Alexandre Langlois, Matthias Jaggi, Josh King, Peter Toose, Jérôme Bouffard, Alessandro Di Bella, and Michele Scagliola
EGUsphere, https://doi.org/10.5194/egusphere-2024-1583, https://doi.org/10.5194/egusphere-2024-1583, 2024
Preprint archived
Short summary
Short summary
Sea ice thickness is essential for climate studies. Radar altimetry has provided sea ice thickness measurement, but uncertainty arises from interaction of the signal with the snow cover. Therefore, modelling the signal interaction with the snow is necessary to improve retrieval. A radar model was used to simulate the radar signal from the snow-covered sea ice. This work paved the way to improved physical algorithm to retrieve snow depth and sea ice thickness for radar altimeter missions.
Joachim Vogt, Octav Marghitu, Adrian Blagau, Leonie Pick, Nele Stachlys, Stephan Buchert, Theodoros Sarris, Stelios Tourgaidis, Thanasis Balafoutis, Dimitrios Baloukidis, and Panagiotis Pirnaris
Geosci. Instrum. Method. Data Syst., 12, 239–257, https://doi.org/10.5194/gi-12-239-2023, https://doi.org/10.5194/gi-12-239-2023, 2023
Short summary
Short summary
Motivated by recent community interest in a satellite mission to the atmospheric lower thermosphere and ionosphere (LTI) region (100–200 km altitude), the DIPCont project is concerned with the reconstruction quality of vertical profiles of key LTI variables using dual- and single-spacecraft observations. The report introduces the probabilistic DIPCont modeling framework, demonstrates its usage by means of a set of self-consistent parametric non-isothermal models, and discusses first results.
Florent Garnier, Sara Fleury, Gilles Garric, Jérôme Bouffard, Michel Tsamados, Antoine Laforge, Marion Bocquet, Renée Mie Fredensborg Hansen, and Frédérique Remy
The Cryosphere, 15, 5483–5512, https://doi.org/10.5194/tc-15-5483-2021, https://doi.org/10.5194/tc-15-5483-2021, 2021
Short summary
Short summary
Snow depth data are essential to monitor the impacts of climate change on sea ice volume variations and their impacts on the climate system. For that purpose, we present and assess the altimetric snow depth product, computed in both hemispheres from CryoSat-2 and SARAL satellite data. The use of these data instead of the common climatology reduces the sea ice thickness by about 30 cm over the 2013–2019 period. These data are also crucial to argue for the launch of the CRISTAL satellite mission.
Joshua Dreyer, Noora Partamies, Daniel Whiter, Pål G. Ellingsen, Lisa Baddeley, and Stephan C. Buchert
Ann. Geophys., 39, 277–288, https://doi.org/10.5194/angeo-39-277-2021, https://doi.org/10.5194/angeo-39-277-2021, 2021
Short summary
Short summary
Small-scale auroral features are still being discovered and are not well understood. Where aurorae are caused by particle precipitation, the newly reported fragmented aurora-like emissions (FAEs) seem to be locally generated in the ionosphere (hence,
aurora-like). We analyse data from multiple instruments located near Longyearbyen to derive their main characteristics. They seem to occur as two types in a narrow altitude region (individually or in regularly spaced groups).
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Sharon Aol, Stephan Buchert, Edward Jurua, and Marco Milla
Ann. Geophys., 38, 1063–1080, https://doi.org/10.5194/angeo-38-1063-2020, https://doi.org/10.5194/angeo-38-1063-2020, 2020
Short summary
Short summary
Ionospheric irregularities are a common phenomenon in the low-latitude ionosphere. In this paper, we compared simultaneous observations of plasma plumes by the JULIA radar, ionogram spread F generated from ionosonde observations installed at the Jicamarca Radio Observatory, and irregularities observed in situ by Swarm to determine whether Swarm in situ observations can be used as indicators of the presence of plasma plumes and spread F on the ground.
Stephan C. Buchert
Ann. Geophys., 38, 1019–1030, https://doi.org/10.5194/angeo-38-1019-2020, https://doi.org/10.5194/angeo-38-1019-2020, 2020
Short summary
Short summary
Winds in the Earth's upper atmosphere cause magnetic and electric variations both at the ground and in space all over the Earth. According to the model of entangled dynamos the true cause is wind differences between regions in the Northern and Southern Hemispheres that are connected by the Earth's dipole-like magnetic field. The power produced in the southern dynamo heats the northern upper atmosphere and vice versa. The dynamos exist owing to this entanglement, an analogy to quantum mechanics.
Cited articles
Abe, T. and Oyama, K.-i.:
Langmuir Probe,
in: An Introduction to Space Instrumentation,
edited by: Oyama, K. and Cheng, C. Z.,
TERRAPUB, Japan, 63–75, https://doi.org/10.5047/aisi.010, 2013. a
Archer, W. E., Gallardo-Lacourt, B., Perry, G. W., St.-Maurice, J. P., Buchert, S. C., and Donovan, E.:
Steve: The Optical Signature of Intense Subauroral Ion Drifts,
Geophys. Res. Lett.,
46, 6279–6286, https://doi.org/10.1029/2019GL082687, 2019. a, b, c, d
Bilitza, D.: IRI the International Standard for the Ionosphere, Adv. Radio Sci., 16, 1–11, https://doi.org/10.5194/ars-16-1-2018, 2018. a
Boyd, R. L. F.:
An Introduction to Langmuir Probes for Space Research,
in: Introduction to Solar Terrestrial Relations,
edited by: Ortner, J. and Maseland, H.,
Astrophysics and Space Science Library,
Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-010-3590-3_39, pp. 455–465, 1965. a
Buchert, S. and Nilsson, T.:
Swarm level 1b Plasma processor algorithm, ESA,
https://earth.esa.int/eogateway/documents/20142/37627/swarm-level-1b-plasma-processor-algorithm.pdf/bae64759-b901-d961-4d18-0a5b317f8c12 (last access: 31 July 2021),
, 2018. a
Coffey, V. N., Wright, K. H., Minow, J. I., Schneider, T. A., Vaughn, J. A., Craven, P. D., Chandler, M. O., Koontz, S. L., Parker, L. N., and Bui, T. H.:
Validation of the Plasma Densities and Temperatures From the ISS Floating Potential Measurement Unit,
IEEE T. Plasma Sci.,
36, 2301–2308, https://doi.org/10.1109/TPS.2008.2004271, 2008. a
Covington, A.:
Micro-Wave Solar Noise Observations During the Partial Eclipse of November 23, 1946,
Nature,
159, 405–406, https://doi.org/10.1038/159405a0, 1947. a
Covington, A. E.:
Solar Noise Observations on 10.7 Centimeters,
Proceedings of the IRE,
36, 454–457, https://doi.org/10.1109/JRPROC.1948.234598, 1948. a
De Michelis, P., Consolini, G., Pignalberi, A., Tozzi, R., Coco, I., Giannattasio, F., Pezzopane, M., and Balasis, G.:
Looking for a proxy of the ionospheric turbulence with Swarm data,
Sci. Rep.-UK,
11, 2045–2322, https://doi.org/10.1038/s41598-021-84985-1, 2021. a, b
DTU:
Swarm L1B processor algorithms,
https://earth.esa.int/eogateway/documents/20142/37627/swarm-level-1b-processor-algorithms.pdf/e0606842-41ca-fa48-0a40-05a0d4824501?version=1.0 (last access: 31 July 2021),
National Space Institute, Technical University of Denmark (DTU), 2019a. a
ENS-Technology:
On Titanium Plating, ENS Technology,
https://www.enstechnology.com/specialty-plating/exotic-metal/titanium-plating (last access: 31 July 2021),
2022. a
Eriksson, A. I., Boström, R., Gill, R., Åhlén, L., Jansson, S.-E., Wahlund, J.-E., André, M., Mälkki, A., Holtet, J. A., Lybekk, B., Pedersen, A., Blomberg, L. G., and The LAP Team:
RPC-LAP: The Rosetta Langmuir Probe Instrument,
Space Sci. Rev.,
128, 729–744, https://doi.org/10.1007/s11214-006-9003-3, 2007. a, b
European Space Agency:
Swarm Publications, ESA,
https://earth.esa.int/eogateway/missions/swarm/publications (last access: 31 July 2021),
2021b. a
ESA:
Swarm preliminary plasma dataset user note, ESA,
https://earth.esa.int/eogateway/documents/20142/37627/swarm-preliminary-plasma-dataset-user-note.pdf/6e8c356f-16d9-5145-1cc9-a9c5736653ab (last access: 31 July 2021), 2015. a
ESA:
Swarm L1B baseline evolution, ESA,
https://earth.esa.int/documents/10174/1514862/Swarm-Level-1B-baseline-evolutions (last access: 31 July 2021), 2018. a
ESA:
Summary and recommendations report, ESA,
https://earth.esa.int/eogateway/documents/20142/1479677/Swarm-DQW9-Summary-Recommendations-Report.pdf (last access: 31 July 2021), 2019. a
ESA:
Swarm data gaps recovered, ESA,
https://earth.esa.int/documents/10174/1583357/Swarm-data-gaps-recovered.pdf (last access: 31 July 2021), 2020a. a
ESA:
Swarm L1B and L2 operational processors, ESA,
https://earth.esa.int/documents/10174/1514862/Swarm-L1B-and-L2-operational-processors.pdf (last access: 31 July 2021), 2020b. a
Flury, J., Rummel, R., Reigber, C., Rothacher, M., Boedecker, G., and Schreiber, U.:
CHAMP Mission 5 Years in Orbit,
Springer, Berlin, Heidelberg, 2006. a
Hatch, S. M., Haaland, S., Laundal, K. M., Moretto, T., Yau, A. W., Bjoland, L., Reistad, J. P., Ohma, A., and Oksavik, K.:
Seasonal and Hemispheric Asymmetries of F Region Polar Cap Plasma Density: Swarm and CHAMP Observations,
J. Geophys. Res.-Space,
125, e2020JA028084, https://doi.org/10.1029/2020JA028084, 2020. a
Heelis, R. A. and Maute, A.:
Challenges to Understanding the Earth's Ionosphere and Thermosphere,
J. Geophys. Res.-Space,
125, e2019JA027497, https://doi.org/10.1029/2019JA027497, 2020. a, b
IRF:
Faceplate plasma density, ESA,
https://swarm-diss.eo.esa.int/#swarm%2FAdvanced%2FPlasma_Data%2F16_Hz_Faceplate_plasma_density (last access: 31 July 2021), 2017. a
Jin, Y. and Xiong, C.:
Interhemispheric Asymmetry of Large-Scale Electron Density Gradients in the Polar Cap Ionosphere: UT and Seasonal Variations,
J. Geophys. Res.-Space,
125, e2019JA027601, https://doi.org/10.1029/2019JA027601, 2020. a, b
Jin, Y., Xiong, C., Clausen, L., Spicher, A., Kotova, D., Brask, S., Kervalishvili, G., Stolle, C., and Miloch, W.:
Ionospheric Plasma Irregularities Based on In Situ Measurements From the Swarm Satellites,
J. Geophys. Res.-Space,
125, e2020JA028103, https://doi.org/10.1029/2020JA028103, 2020. a
Knudsen, D. J., Burchill, J. K., Buchert, S. C., Eriksson, A. I., Gill, R., Wahlund, J.-E., Åhlen, L., Smith, M., and Moffat, B.:
Thermal ion imagers and Langmuir probes in the Swarm electric field instruments,
J. Geophys. Res.-Space,
122, 2655–2673, https://doi.org/10.1002/2016JA022571, 2017. a, b, c, d, e
Lebreton, J. P., Stverak, S., Travnicek, P., Maksimovic, M., Klinge, D., Merikallio, S., Lagoutte, D., Poirier, B., Blelly, P. L., Kozacek, Z., and Salaquarda, M.:
The ISL Langmuir Probe Experiment Processing Onboard DEMETER: Scientific Objectives, Description and First Results,
Planet. Space Sci.,
54, 472–486, https://doi.org/10.1016/j.pss.2005.10.017, 2006. a, b
Liu, J., Guan, Y., Zhang, X., and Shen, X.:
The data comparison of electron density between CSES and DEMETER satellite, Swarm constellation and IRI model,
Earth and Space Science,
8, e2020EA001475, https://doi.org/10.1029/2020EA001475, 2020. a
Liu, L. and Chen, Y.:
Statistical analysis of solar activity variations of total electron content derived at Jet Propulsion Laboratory from GPS observations,
J. Geophys. Res.-Space,
114, https://doi.org/10.1029/2009JA014533, 2009. a
Lomidze, L., Knudsen, D. J., Burchill, J., Kouznetsov, A., and Buchert, S. C.:
Calibration and Validation of Swarm Plasma Densities and Electron Temperatures Using Ground-Based Radars and Satellite Radio Occultation Measurements,
Radio Sci.,
53, 15–36, https://doi.org/10.1002/2017RS006415, 2018. a, b, c, d
MacDonald, E. A., Donovan, E., Nishimura, Y., Case, N. A., Gillies, D. M., Gallardo-Lacourt, B., Archer, W. E., Spanswick, E. L., Bourassa, N., Connors, M., Heavner, M., Jackel, B., Kosar, B., Knudsen, D. J., Ratzlaff, C., and Schofield, I.:
New science in plain sight: Citizen scientists lead to the discovery of optical structure in the upper atmosphere,
Science Advances,
4, 3, https://doi.org/10.1126/sciadv.aaq0030, 2018. a
Noja, M., Stolle, C., Park, J., and Lühr, H.:
Long-term analysis of ionospheric polar patches based on CHAMP TEC data,
Radio Sci.,
48, 289–301, https://doi.org/10.1002/rds.20033, 2013. a
Olsen, N., Friis-Christensen, E., Floberghagen, R., Alken, P., Beggan, C. D., Chulliat, A., Doornbos, E., da Encarnação, J. T., Hamilton, B., Hulot, G., van den IJssel, J., Kuvshinov, A., Lesur, V., Lühr, H., Macmillan, S., Maus, S., Noja, M., Olsen, P. E. H., Park, J., Plank, G., Püthe, C., Rauberg, J., Ritter, P., Rother, M., Sabaka, T. J., Schachtschneider, R., Sirol, O., Stolle, C., Thébault, E., Thomson, A. W. P., Tøffner-Clausen, L., Velímský, J., Vigneron, P., and Visser, P. N.:
The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm data products,
Earth Planets Space,
65, 1880–5981, https://doi.org/10.5047/eps.2013.07.001, 2013. a
Oyama, K.:
DC Langmuir Probe for Measurement of Space Plasma: A Brief Review,
Journal of Astronomy and Space Sciences,
32, 2, https://doi.org/10.5140/JASS.2015.32.3.167, 2015. a
Pezzopane, M. and Pignalberi, A.:
The ESA Swarm mission to help ionospheric modeling: a new NeQuick topside formulation for mid-latitude regions,
Sci. Rep.-UK,
9, 12253, https://doi.org/10.1038/s41598-019-48440-6, 2019.
a
Pignalberi, A., Pezzopane, M., Tozzi, R., De Michelis, P., and Coco, I.:
Comparison between IRI and preliminary Swarm Langmuir probe measurements during the St. Patrick storm period,
Earth Planets Space,
68, 93, https://doi.org/10.1186/s40623-016-0466-5, 2016. a
Prölss, G.:
Physics of the Earth's Space Environment,
Springer, Berlin, Heidelberg, 2004. a
Singh, A. K., Haralambous, H., Oikonomou, C., and Leontiou, T.:
A topside investigation over a mid-latitude digisonde station in Cyprus,
Adv. Space Res.,
67, 739–748, https://doi.org/10.1016/j.asr.2020.10.009, 2021. a
Smirnov, A., Shprits, Y., Zhelavskaya, I., Lühr, H., Xiong, C., Goss, A., Prol, F. S., Schmidt, M., Hoque, M., Pedatella, N., and Szabó-Roberts, M.:
Intercalibration of the Plasma Density Measurements in Earth's Topside Ionosphere,
J. Geophys. Res.-Space,
126, e2021JA029334, https://doi.org/10.1029/2021JA029334, 2021. a
Tapping, K. F.:
The 10.7 cm solar radio flux (F10.7),
Space Weather,
11, 394–406, https://doi.org/10.1002/swe.20064, 2013. a
Vaishnav, R., Jacobi, C., and Berdermann, J.: Long-term trends in the ionospheric response to solar extreme-ultraviolet variations, Ann. Geophys., 37, 1141–1159, https://doi.org/10.5194/angeo-37-1141-2019, 2019. a
Wang, X., Hsu, H.-W., and Horányi, M.:
Identification of when a Langmuir probe is in the sheath of a spacecraft: The effects of secondary electron emission from the probe,
J. Geophys. Res.-Space,
120, 2428–2437, https://doi.org/10.1002/2014JA020624, 2015. a
Xiong, C., Park, J., Lühr, H., Stolle, C., and Ma, S. Y.: Comparing plasma bubble occurrence rates at CHAMP and GRACE altitudes during high and low solar activity, Ann. Geophys., 28, 1647–1658, https://doi.org/10.5194/angeo-28-1647-2010, 2010. a
Xiong, C., Xu, J.-S., Stolle, C., van den Ijssel, J., Yin, F., Kervalishvili, G. N., and Zangerl, F.:
On the Occurrence of GPS Signal Amplitude Degradation for Receivers on Board LEO Satellites,
Space Weather,
18, e2019SW002398, https://doi.org/10.1029/2019SW002398, 2020. a
Yang, T.-Y., Park, J., Kwak, Y.-S., Oyama, K.-I., Minow, J. I., and Lee, J.:
Morning Overshoot of Electron Temperature as Observed by the Swarm Constellation and the International Space Station,
J. Geophys. Res.-Space,
125, e2019JA027299, https://doi.org/10.1029/2019JA027299, 2020. a
Short summary
The quality control and validation activities performed by the Swarm data quality team reveal the good-quality LPs. The analysis demonstrated that the current baseline plasma data products are improved with respect to previous baseline. The LPs have captured the ionospheric plasma variability over more than half of a solar cycle, revealing the data quality dependence on the solar activity. The quality of the LP data will further improve promotion of their application to a broad range of studies.
The quality control and validation activities performed by the Swarm data quality team reveal...