Articles | Volume 5, issue 2
https://doi.org/10.5194/gi-5-451-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gi-5-451-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The Niwot Ridge Subalpine Forest US-NR1 AmeriFlux site – Part 1: Data acquisition and site record-keeping
Department of Geography, University of Colorado, Boulder, Colorado, USA
National Center for Atmospheric Research, Boulder, Colorado, USA
Gordon D. Maclean
National Center for Atmospheric Research, Boulder, Colorado, USA
Peter D. Blanken
Department of Geography, University of Colorado, Boulder, Colorado, USA
Steven P. Oncley
National Center for Atmospheric Research, Boulder, Colorado, USA
Steven R. Semmer
National Center for Atmospheric Research, Boulder, Colorado, USA
Russell K. Monson
School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
Related authors
Stephanie G. Stettz, Nicholas C. Parazoo, A. Anthony Bloom, Peter D. Blanken, David R. Bowling, Sean P. Burns, Cédric Bacour, Fabienne Maignan, Brett Raczka, Alexander J. Norton, Ian Baker, Mathew Williams, Mingjie Shi, Yongguang Zhang, and Bo Qiu
Biogeosciences, 19, 541–558, https://doi.org/10.5194/bg-19-541-2022, https://doi.org/10.5194/bg-19-541-2022, 2022
Short summary
Short summary
Uncertainty in the response of photosynthesis to temperature poses a major challenge to predicting the response of forests to climate change. In this paper, we study how photosynthesis in a mountainous evergreen forest is limited by temperature. This study highlights that cold temperature is a key factor that controls spring photosynthesis. Including the cold-temperature limitation in an ecosystem model improved its ability to simulate spring photosynthesis.
Rui Cheng, Troy S. Magney, Debsunder Dutta, David R. Bowling, Barry A. Logan, Sean P. Burns, Peter D. Blanken, Katja Grossmann, Sophia Lopez, Andrew D. Richardson, Jochen Stutz, and Christian Frankenberg
Biogeosciences, 17, 4523–4544, https://doi.org/10.5194/bg-17-4523-2020, https://doi.org/10.5194/bg-17-4523-2020, 2020
Short summary
Short summary
We measured reflected sunlight from an evergreen canopy for a year to detect changes in pigments that play an important role in regulating the seasonality of photosynthesis. Results show a strong mechanistic link between spectral reflectance features and pigment content, which is validated using a biophysical model. Our results show spectrally where, why, and when spectral features change over the course of the season and show promise for estimating photosynthesis remotely.
Nicholas C. Parazoo, Troy Magney, Alex Norton, Brett Raczka, Cédric Bacour, Fabienne Maignan, Ian Baker, Yongguang Zhang, Bo Qiu, Mingjie Shi, Natasha MacBean, Dave R. Bowling, Sean P. Burns, Peter D. Blanken, Jochen Stutz, Katja Grossmann, and Christian Frankenberg
Biogeosciences, 17, 3733–3755, https://doi.org/10.5194/bg-17-3733-2020, https://doi.org/10.5194/bg-17-3733-2020, 2020
Short summary
Short summary
Satellite measurements of solar-induced chlorophyll fluorescence (SIF) provide a global measure of photosynthetic change. This enables scientists to better track carbon cycle responses to environmental change and tune biochemical processes in vegetation models for an improved simulation of future change. We use tower-instrumented SIF measurements and controlled model experiments to assess the state of the art in terrestrial biosphere SIF modeling and find a wide range of sensitivities to light.
Stefan Metzger, George Burba, Sean P. Burns, Peter D. Blanken, Jiahong Li, Hongyan Luo, and Rommel C. Zulueta
Atmos. Meas. Tech., 9, 1341–1359, https://doi.org/10.5194/amt-9-1341-2016, https://doi.org/10.5194/amt-9-1341-2016, 2016
Short summary
Short summary
Enclosed infrared gas analyzers utilize a gas sampling system, which can substantially increase spectral corrections for eddy covariance applications. Here, we show that a requirements-based design can reduce high-frequency attenuation for H2O by ≈ 3/4, with the remaining flux correction not exceeding 3 %. The resulting gas sampling system can be used across a wide range of ecoclimates and site layouts, and enables more automated and comparable eddy covariance data processing across sites.
S. P. Burns, P. D. Blanken, A. A. Turnipseed, J. Hu, and R. K. Monson
Biogeosciences, 12, 7349–7377, https://doi.org/10.5194/bg-12-7349-2015, https://doi.org/10.5194/bg-12-7349-2015, 2015
Short summary
Short summary
The effect of warm-season precipitation on
environmental conditions and ecosystem-scale fluxes at a
high-elevation subalpine forest site was investigated. As would be
expected (based on the surface energy balance), precipitation caused
an increase in latent heat flux (evapotranspiration) and a decrease in
sensible heat flux. The evaporative component of evapotranspiration
was, on average, estimated to be around 6% in dry conditions and
between 15-25% in partially wet conditions.
S. J. Burns and S. P. Burns
Solid Earth Discuss., https://doi.org/10.5194/sed-6-487-2014, https://doi.org/10.5194/sed-6-487-2014, 2014
Revised manuscript not accepted
Stephanie G. Stettz, Nicholas C. Parazoo, A. Anthony Bloom, Peter D. Blanken, David R. Bowling, Sean P. Burns, Cédric Bacour, Fabienne Maignan, Brett Raczka, Alexander J. Norton, Ian Baker, Mathew Williams, Mingjie Shi, Yongguang Zhang, and Bo Qiu
Biogeosciences, 19, 541–558, https://doi.org/10.5194/bg-19-541-2022, https://doi.org/10.5194/bg-19-541-2022, 2022
Short summary
Short summary
Uncertainty in the response of photosynthesis to temperature poses a major challenge to predicting the response of forests to climate change. In this paper, we study how photosynthesis in a mountainous evergreen forest is limited by temperature. This study highlights that cold temperature is a key factor that controls spring photosynthesis. Including the cold-temperature limitation in an ecosystem model improved its ability to simulate spring photosynthesis.
Rui Cheng, Troy S. Magney, Debsunder Dutta, David R. Bowling, Barry A. Logan, Sean P. Burns, Peter D. Blanken, Katja Grossmann, Sophia Lopez, Andrew D. Richardson, Jochen Stutz, and Christian Frankenberg
Biogeosciences, 17, 4523–4544, https://doi.org/10.5194/bg-17-4523-2020, https://doi.org/10.5194/bg-17-4523-2020, 2020
Short summary
Short summary
We measured reflected sunlight from an evergreen canopy for a year to detect changes in pigments that play an important role in regulating the seasonality of photosynthesis. Results show a strong mechanistic link between spectral reflectance features and pigment content, which is validated using a biophysical model. Our results show spectrally where, why, and when spectral features change over the course of the season and show promise for estimating photosynthesis remotely.
Robert Menke, Nikola Vasiljević, Johannes Wagner, Steven P. Oncley, and Jakob Mann
Wind Energ. Sci., 5, 1059–1073, https://doi.org/10.5194/wes-5-1059-2020, https://doi.org/10.5194/wes-5-1059-2020, 2020
Short summary
Short summary
The estimation of wind resources in complex terrain is challenging as the wind conditions change significantly over short distances, different to flat terrain, where spatial changes are small. We demonstrate in this work that wind lidars can remotely map wind resources over large areas. This will have implications for the planning of wind energy projects and ultimately reduce uncertainties in wind resource estimations in complex terrain, making such areas more interesting for future development.
Nicholas C. Parazoo, Troy Magney, Alex Norton, Brett Raczka, Cédric Bacour, Fabienne Maignan, Ian Baker, Yongguang Zhang, Bo Qiu, Mingjie Shi, Natasha MacBean, Dave R. Bowling, Sean P. Burns, Peter D. Blanken, Jochen Stutz, Katja Grossmann, and Christian Frankenberg
Biogeosciences, 17, 3733–3755, https://doi.org/10.5194/bg-17-3733-2020, https://doi.org/10.5194/bg-17-3733-2020, 2020
Short summary
Short summary
Satellite measurements of solar-induced chlorophyll fluorescence (SIF) provide a global measure of photosynthetic change. This enables scientists to better track carbon cycle responses to environmental change and tune biochemical processes in vegetation models for an improved simulation of future change. We use tower-instrumented SIF measurements and controlled model experiments to assess the state of the art in terrestrial biosphere SIF modeling and find a wide range of sensitivities to light.
Timothy A. Bonin, Aditya Choukulkar, W. Alan Brewer, Scott P. Sandberg, Ann M. Weickmann, Yelena L. Pichugina, Robert M. Banta, Steven P. Oncley, and Daniel E. Wolfe
Atmos. Meas. Tech., 10, 3021–3039, https://doi.org/10.5194/amt-10-3021-2017, https://doi.org/10.5194/amt-10-3021-2017, 2017
Short summary
Short summary
Three different techniques for measuring turbulent quantities from a single Doppler lidar are evaluated against in situ observations for verification. A six-beam method generally produced the most accurate measurements of the turbulence quantities evaluated. Generally, turbulence kinetic energy can be accurately measured across all scales from a Doppler lidar. Individual velocity variances are measured less accurately, and velocity covariances are shown to be difficult to measure.
Laura Bianco, Katja Friedrich, James M. Wilczak, Duane Hazen, Daniel Wolfe, Ruben Delgado, Steven P. Oncley, and Julie K. Lundquist
Atmos. Meas. Tech., 10, 1707–1721, https://doi.org/10.5194/amt-10-1707-2017, https://doi.org/10.5194/amt-10-1707-2017, 2017
Short summary
Short summary
XPIA is a study held in 2015 at NOAA's Boulder Atmospheric Observatory facility, aimed at assessing remote-sensing capabilities for wind energy applications. We use well-defined reference systems to validate temperature retrieved by two microwave radiometers (MWRs) and virtual temperature measured by wind profiling radars with radio acoustic sounding systems (RASSs). Water vapor density and relative humidity by the MWRs were also compared with similar measurements from the reference systems.
Rob K. Newsom, W. Alan Brewer, James M. Wilczak, Daniel E. Wolfe, Steven P. Oncley, and Julie K. Lundquist
Atmos. Meas. Tech., 10, 1229–1240, https://doi.org/10.5194/amt-10-1229-2017, https://doi.org/10.5194/amt-10-1229-2017, 2017
Short summary
Short summary
Doppler lidars are remote sensing instruments that use infrared light to measure wind velocity in the lowest 2 to 3 km of the atmosphere. Quantifying the uncertainty in these measurements is crucial for applications ranging from wind resource assessment to model data assimilation. In this study, we evaluate three methods for estimating the random uncertainty by comparing the lidar wind measurements with nearly collocated in situ wind measurements at multiple levels on a tall tower.
Katherine McCaffrey, Paul T. Quelet, Aditya Choukulkar, James M. Wilczak, Daniel E. Wolfe, Steven P. Oncley, W. Alan Brewer, Mithu Debnath, Ryan Ashton, G. Valerio Iungo, and Julie K. Lundquist
Atmos. Meas. Tech., 10, 393–407, https://doi.org/10.5194/amt-10-393-2017, https://doi.org/10.5194/amt-10-393-2017, 2017
Short summary
Short summary
During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) field campaign, the wake and flow distortion from a 300-meter meteorological tower was identified using pairs of sonic anemometers mounted on opposite sides of the tower, as well as profiling and scanning lidars. Wind speed deficits up to 50% and TKE increases of 2 orders of magnitude were observed at wind directions in the wake, along with wind direction differences (flow deflection) outside of the wake.
Aditya Choukulkar, W. Alan Brewer, Scott P. Sandberg, Ann Weickmann, Timothy A. Bonin, R. Michael Hardesty, Julie K. Lundquist, Ruben Delgado, G. Valerio Iungo, Ryan Ashton, Mithu Debnath, Laura Bianco, James M. Wilczak, Steven Oncley, and Daniel Wolfe
Atmos. Meas. Tech., 10, 247–264, https://doi.org/10.5194/amt-10-247-2017, https://doi.org/10.5194/amt-10-247-2017, 2017
Short summary
Short summary
This paper discusses trade-offs among various wind measurement strategies using scanning Doppler lidars. It is found that the trade-off exists between being able to make highly precise point measurements versus covering large spatial extents. The highest measurement precision is achieved when multiple lidar systems make wind measurements at one point in space, while highest spatial coverage is achieved through using single lidar scanning measurements and using complex retrieval techniques.
Stefan Metzger, George Burba, Sean P. Burns, Peter D. Blanken, Jiahong Li, Hongyan Luo, and Rommel C. Zulueta
Atmos. Meas. Tech., 9, 1341–1359, https://doi.org/10.5194/amt-9-1341-2016, https://doi.org/10.5194/amt-9-1341-2016, 2016
Short summary
Short summary
Enclosed infrared gas analyzers utilize a gas sampling system, which can substantially increase spectral corrections for eddy covariance applications. Here, we show that a requirements-based design can reduce high-frequency attenuation for H2O by ≈ 3/4, with the remaining flux correction not exceeding 3 %. The resulting gas sampling system can be used across a wide range of ecoclimates and site layouts, and enables more automated and comparable eddy covariance data processing across sites.
S. P. Burns, P. D. Blanken, A. A. Turnipseed, J. Hu, and R. K. Monson
Biogeosciences, 12, 7349–7377, https://doi.org/10.5194/bg-12-7349-2015, https://doi.org/10.5194/bg-12-7349-2015, 2015
Short summary
Short summary
The effect of warm-season precipitation on
environmental conditions and ecosystem-scale fluxes at a
high-elevation subalpine forest site was investigated. As would be
expected (based on the surface energy balance), precipitation caused
an increase in latent heat flux (evapotranspiration) and a decrease in
sensible heat flux. The evaporative component of evapotranspiration
was, on average, estimated to be around 6% in dry conditions and
between 15-25% in partially wet conditions.
B. P. Guillod, B. Orlowsky, D. Miralles, A. J. Teuling, P. D. Blanken, N. Buchmann, P. Ciais, M. Ek, K. L. Findell, P. Gentine, B. R. Lintner, R. L. Scott, B. Van den Hurk, and S. I. Seneviratne
Atmos. Chem. Phys., 14, 8343–8367, https://doi.org/10.5194/acp-14-8343-2014, https://doi.org/10.5194/acp-14-8343-2014, 2014
S. J. Burns and S. P. Burns
Solid Earth Discuss., https://doi.org/10.5194/sed-6-487-2014, https://doi.org/10.5194/sed-6-487-2014, 2014
Revised manuscript not accepted
W. Yuan, S. Liu, W. Cai, W. Dong, J. Chen, A. Arain, P. D. Blanken, A. Cescatti, G. Wohlfahrt, T. Georgiadis, L. Genesio, D. Gianelle, A. Grelle, G. Kiely, A. Knohl, D. Liu, M. Marek, L. Merbold, L. Montagnani, O. Panferov, M. Peltoniemi, S. Rambal, A. Raschi, A. Varlagin, and J. Xia
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-6-5475-2013, https://doi.org/10.5194/gmdd-6-5475-2013, 2013
Revised manuscript not accepted
Related subject area
Atmospheric instruments
Improving relative humidity measurements on Mars: new laboratory calibration measurements
Accuracies of field CO2–H2O data from open-path eddy-covariance flux systems: assessment based on atmospheric physics and biological environment
Intercomparison of photoacoustic and cavity attenuated phase shift instruments: laboratory calibration and field measurements
Evaluation of climate change impact on extreme temperature variability in the Blue Nile Basin, Ethiopia
Managing the transition from Vaisala RS92 to RS41 radiosondes within the Global Climate Observing System Reference Upper-Air Network (GRUAN): a progress report
Description of the Baseline Surface Radiation Network (BSRN) station at the Izaña Observatory (2009–2017): measurements and quality control/assurance procedures
Laboratory spectral calibration of the TanSat atmospheric carbon dioxide grating spectrometer
The World Optical Depth Research and Calibration Center (WORCC) quality assurance and quality control of GAW-PFR AOD measurements
In search of traceability: two decades of calibrated Brewer UV measurements in Sodankylä and Jokioinen
Fourier transform spectrometer measurements of column CO2 at Sodankylä, Finland
Comparison and application of wind retrieval algorithms for small unmanned aerial systems
Atmospheric muons: experimental aspects
Maria Hieta, Iina Jaakonaho, Jouni Polkko, Andreas Lorek, Stephen Garland, Jean-Pierre de Vera, Maria Genzer, and Ari-Matti Harri
Geosci. Instrum. Method. Data Syst., 13, 337–351, https://doi.org/10.5194/gi-13-337-2024, https://doi.org/10.5194/gi-13-337-2024, 2024
Short summary
Short summary
This paper describes new humidity measurements performed with the humidity instruments of the MSL, Mars 2020 and ExoMars missions. Special facilities are needed to create Martian conditions, and a measurement campaign was performed at the German Aerospace Center (DLR) to obtain datasets for REMS-H, MEDA HS and METEO-H instruments. The results from the campaign improved the humidity data we receive from MEDA HS/Perseverance and can further improve the existing Martian relative humidity data.
Xinhua Zhou, Tian Gao, Ning Zheng, Bai Yang, Yanlei Li, Fengyuan Yu, Tala Awada, and Jiaojun Zhu
Geosci. Instrum. Method. Data Syst., 11, 335–357, https://doi.org/10.5194/gi-11-335-2022, https://doi.org/10.5194/gi-11-335-2022, 2022
Short summary
Short summary
Overall accuracy of CO2/H2O data from open-path eddy-covariance systems is modeled for data analysis. The model is further formulated into CO2 and H2O accuracy equations for uses. Based on atmospheric physics and bio-environment, both equations are used to evaluate accuracy of ecosystem CO2/H2O data and, as rationales, to assess field CO2/H2O zero and span procedures for the systems. The procedures are assessed for measurement improvement. An impractical H2O span while cold is found unnecessary.
Jialuo Zhang, Jun Chen, Meng Wang, Mingxu Su, Wu Zhou, Ravi Varma, and Shengrong Lou
Geosci. Instrum. Method. Data Syst., 10, 245–255, https://doi.org/10.5194/gi-10-245-2021, https://doi.org/10.5194/gi-10-245-2021, 2021
Short summary
Short summary
Based on the intercomparison of photoacoustic and cavity attenuation phase shift instruments, this paper has corrected and calibrated the data of recent field measurements. It showed good agreement and close correlation in the optical properties measured from different optical methods, and the scattering coefficient plays a crucial role as the bridge in constructing correlation between both instruments.
Mostafa Abdel-Hameed Mohamed and Mohamed El-Sayed El-Mahdy
Geosci. Instrum. Method. Data Syst., 10, 45–54, https://doi.org/10.5194/gi-10-45-2021, https://doi.org/10.5194/gi-10-45-2021, 2021
Short summary
Short summary
The Blue Nile Basin is of vital importance for the whole Nile Basin. The investigation of the impact of climate change on this basin is essential. The Blue Nile Basin annual and monthly temperatures were investigated. Spatial and temporal patterns of changes in extreme temperatures are investigated using 10 meteorological stations' data for the period 1950–2018. The investigation showed that climate change increased temperatures in the basin.
Ruud J. Dirksen, Greg E. Bodeker, Peter W. Thorne, Andrea Merlone, Tony Reale, Junhong Wang, Dale F. Hurst, Belay B. Demoz, Tom D. Gardiner, Bruce Ingleby, Michael Sommer, Christoph von Rohden, and Thierry Leblanc
Geosci. Instrum. Method. Data Syst., 9, 337–355, https://doi.org/10.5194/gi-9-337-2020, https://doi.org/10.5194/gi-9-337-2020, 2020
Short summary
Short summary
This paper describes GRUAN's strategy for a network-wide change of the operational radiosonde from Vaisala RS92 to RS41. GRUAN's main goal is to provide long-term data records that are free of inhomogeneities due to instrumental effects, which requires proper change management. The approach is to fully characterize differences between the two radiosonde types using laboratory tests, twin soundings, and ancillary data, as well as by drawing from the various fields of expertise available in GRUAN.
Rosa Delia García, Emilio Cuevas, Ramón Ramos, Victoria Eugenia Cachorro, Alberto Redondas, and José A. Moreno-Ruiz
Geosci. Instrum. Method. Data Syst., 8, 77–96, https://doi.org/10.5194/gi-8-77-2019, https://doi.org/10.5194/gi-8-77-2019, 2019
Short summary
Short summary
IZA is a high-mountain station located in Tenerife (Canary Islands, Spain, at 28.3º N, 16.5º W; 2373 m a.s.l.) and is a representative site of the subtropical North Atlantic free troposphere. It contributes with basic-BSRN radiation measurements, such as, global shortwave radiation, direct radiation, diffuse radiation and longwave downward radiation and extended-BSRN measurements, including ultraviolet ranges, shortwave upward radiation and longwave upward radiation.
Zhongdong Yang, Yuquan Zhen, Zenshan Yin, Chao Lin, Yanmeng Bi, Wu Liu, Qian Wang, Long Wang, Songyan Gu, and Longfei Tian
Geosci. Instrum. Method. Data Syst., 7, 245–252, https://doi.org/10.5194/gi-7-245-2018, https://doi.org/10.5194/gi-7-245-2018, 2018
Short summary
Short summary
TanSat is a key satellite mission in the Chinese Earth Observation program and is designed to measure the global atmospheric column-averaged dry-air CO2 mole fraction. Several critical aspects of the spectrometer, including the spectral resolution, spectral dispersion, and the instrument line shape function of each channel were evaluated. The instrument line shape function of the spectrometer is notably symmetrical and perfectly consistent across all channels in the three bands.
Stelios Kazadzis, Natalia Kouremeti, Stephan Nyeki, Julian Gröbner, and Christoph Wehrli
Geosci. Instrum. Method. Data Syst., 7, 39–53, https://doi.org/10.5194/gi-7-39-2018, https://doi.org/10.5194/gi-7-39-2018, 2018
Short summary
Short summary
The World Optical Depth Research Calibration Center (WORCC) has been established after the recommendations of WMO for calibration of aerosol optical depth (AOD) -related sun photometers. WORCC is mandated to initiate homogenization activities among different AOD networks and to run a network (GAW-PFR) of sun photometers. To calibrate such instruments aiming at low measurement uncertainties the quality assurance, quality control and a basic hierarchy have to be defined and followed.
Anu Heikkilä, Jakke Sakari Mäkelä, Kaisa Lakkala, Outi Meinander, Jussi Kaurola, Tapani Koskela, Juha Matti Karhu, Tomi Karppinen, Esko Kyrö, and Gerrit de Leeuw
Geosci. Instrum. Method. Data Syst., 5, 531–540, https://doi.org/10.5194/gi-5-531-2016, https://doi.org/10.5194/gi-5-531-2016, 2016
Short summary
Short summary
Lamp measurements used for the UV irradiance calibration of two Brewer spectrophotometers operated for 20 years in Jokioinen and Sodankylä, Finland, were examined. Temporal development of the responsivity after fixing the irradiance measurements into a specific scale was studied. Both long-term gradual decrease and abrupt changes in responsiveness were detected. Frequent-enough measurements of working standard lamps were found necessary to detect the short-term variations in responsiveness.
Rigel Kivi and Pauli Heikkinen
Geosci. Instrum. Method. Data Syst., 5, 271–279, https://doi.org/10.5194/gi-5-271-2016, https://doi.org/10.5194/gi-5-271-2016, 2016
Short summary
Short summary
Carbon dioxide is the most abundant greenhouse gas emitted due to human activities. Changes in atmospheric columns of carbon dioxide can be measured accurately using ground-based Fourier transform spectrometers, which are operating in the near-infrared spectral region. Our measurements at Sodankylä reveal a significant increase of column carbon dioxide since the start of the column measurements at Sodankylä in early 2009.
T. A. Bonin, P. B. Chilson, B. S. Zielke, P. M. Klein, and J. R. Leeman
Geosci. Instrum. Method. Data Syst., 2, 177–187, https://doi.org/10.5194/gi-2-177-2013, https://doi.org/10.5194/gi-2-177-2013, 2013
S. Cecchini and M. Spurio
Geosci. Instrum. Method. Data Syst., 1, 185–196, https://doi.org/10.5194/gi-1-185-2012, https://doi.org/10.5194/gi-1-185-2012, 2012
Cited articles
Aubinet, M., Grelle, A., Ibrom, A., Rannik, U., Moncrieff, J., Foken, T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, C., Clement, R., Elbers, J., Granier, A., Grunwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., and Vesala, T.: Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology, Adv. Ecol. Res., 30, 113–175, 2000.
Aubinet, M., Vesala, T., and Papale, D.: Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer Atmospheric Sciences, Dordrecht, the Netherlands, 438 pp., 2012.
Aubrecht, D. M., Helliker, B. R., Goulden, M. L., Roberts, D. A., Still, C. J., and Richardson, A. D.: Continuous, long-term, high-frequency thermal imaging of vegetation: Uncertainties and recommended best practices, Agr. Forest Meteorol., 228–229, 315–326, https://doi.org/10.1016/j.agrformet.2016.07.017, 2016.
Baldocchi, D.: Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems, Aust. J. Bot., 56, 1–26, 2008.
Baldocchi, D., Falge, E., Gu, L. H., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X. H., Malhi, Y., Meyers, T., Munger, W., Oechel, W., U, K. T. P., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, B. Am. Meteorol. Soc., 82, 2415–2434, 2001.
Behn, M., Hohreiter, V., and Muschinski, A.: A scalable datalogging system with serial interfaces and integrated GPS time stamping, J. Atmos. Ocean. Tech., 25, 1568–1578, 2008.
Bendat, J. S. and Piersol, A. G.: Engineering Applications of Correlation and Spectral Analysis, 2nd Edn., John Wiley & Sons, New York, NY, USA, 458 pp., 1993.
Beringer, J., Hutley, L. B., McHugh, I., Arndt, S. K., Campbell, D., Cleugh, H. A., Cleverly, J., Resco de Dios, V., Eamus, D., Evans, B., Ewenz, C., Grace, P., Griebel, A., Haverd, V., Hinko-Najera, N., Huete, A., Isaac, P., Kanniah, K., Leuning, R., Liddell, M. J., Macfarlane, C., Meyer, W., Moore, C., Pendall, E., Phillips, A., Phillips, R. L., Prober, S., Restrepo-Coupe, N., Rutledge, S., Schroder, I., Silberstein, R., Southall, P., Sun, M., Tapper, N. J., van Gorsel, E., Vote, C., Walker, J., and Wardlaw, T.: An introduction to the Australian and New Zealand flux tower network – OzFlux, Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-152, in press, 2016.
Billesbach, D. P., Fischer, M. L., Torn, M. S., and Berry, J. A.: A portable eddy covariance system for the measurement of ecosystem-atmosphere exchange of CO2, water vapor, and energy, J. Atmos. Ocean. Tech., 21, 639–650, 2004.
Blanken, P. D., Monson, R. K., Burns, S. P., and Turnipseed, A. A.: Data and Information for the US-NR1 Niwot Ridge Subalpine Forest AmeriFlux Site (LTER NWT1), AmeriFlux Management Project, Lawrence Berkeley National Laboratory, California, https://doi.org/10.17190/AMF/1246088, 1998-present.
Boden, T. A., Krassovski, M., and Yang, B.: The AmeriFlux data activity and data system: an evolving collection of data management techniques, tools, products and services, Geosci. Instrum. Method. Data Syst., 2, 165–176, https://doi.org/10.5194/gi-2-165-2013, 2013.
Burba, G.: Eddy Covariance Method for Scientific, Industrial, Agricultural, and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates, LI-COR Biosciences, Lincoln, Nebraska, USA, 331 pp., 2013.
Burns, S. P., Delany, A. C., Sun, J., Stephens, B. B., Oncley, S. P., Maclean, G. D., Semmer, S. R., Schröter, J., and Ruppert, J.: An evaluation of calibration techniques for in situ carbon dioxide measurements using a programmable portable trace-gas measuring system, J. Atmos. Ocean. Tech., 26, 291–316, https://doi.org/10.1175/2008JTECHA1080.1, 2009.
Burns, S. P., Molotch, N. P., Williams, M. W., Knowles, J. F., Seok, B., Monson, R. K., Turnipseed, A. A., and Blanken, P. D.: Snow temperature changes within a seasonal snowpack and their relationship to turbulent fluxes of sensible and latent heat, J. Hydrometeorol., 15, 117–142, https://doi.org/10.1175/JHM-D-13-026.1, 2013.
Burns, S. P., Metzger, S., Blanken, P. D., Burba, G. G., Swiatek, E., Li, J., Conrad, B., Luo, H., and Taylor, J.: A comparison of infrared gas analyzers above a subalpine forest in complex terrain, in: 17th Symposium on Meteorological Observation and Instrumentation, American Meteorological Society, 9–13 June 2014, Westminister, Colorado, paper 13, available at: https://ams.confex.com/ams/21Applied17SMOI/webprogram/ (last access: 26 September 2016), 2014.
Burns, S. P., Blanken, P. D., Turnipseed, A. A., Hu, J., and Monson, R. K.: The influence of warm-season precipitation on the diel cycle of the surface energy balance and carbon dioxide at a Colorado subalpine forest site, Biogeosciences, 12, 7349–7377, https://doi.org/10.5194/bg-12-7349-2015, 2015.
Burns, S. P., Maclean, G. D., Blanken, P. D., Oncley, S. P., Semmer, S. R., and Monson, R. K.: Interactive comment on "The Niwot Ridge Subalpine Forest US-NR1 AmeriFlux site – Part I: Data acquisition and site record-keeping", Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2016-17-AC3, 2016.
Burns, S. P., Blanken, P. D., Harpold, A. A., Weibel, D. E., Molotch, N. P., Moore, D. J. P., Williams, M. W., and Monson, R. K.: The Niwot Ridge Subalpine Forest US-NR1 AmeriFlux site – Part 2: Vegetation, soil, and topographic characteristics, Hydrol. Earth Syst. Sci., in preparation, 2017.
Businger, J. A., Dabberdt, W. F., Delany, A. C., Horst, T. W., Martin, C. L., Oncley, S. P., and Semmer, S. R.: The NCAR Atmosphere-Surface Turbulent Exchange Research (ASTER) facility, B. Am. Meteorol. Soc., 71, 1006–1011, 1990.
Campbell Scientific, Inc.: CR23X Micrologger Operators Manual (Revision 11/06), Logan, Utah, 374 pp., available at: https://www.campbellsci.com/cr23x (last access: 26 September 2016), 2006.
Campbell Scientific, Inc.: CPEC200 Closed-Path Eddy-Covariance System Instruction Manual (Revision 7/16), Logan, Utah, 114 pp., available at: https://www.campbellsci.com/cpec200, last access: 26 September 2016.
Ciais, P., Dolman, A. J., Bombelli, A., Duren, R., Peregon, A., Rayner, P. J., Miller, C., Gobron, N., Kinderman, G., Marland, G., Gruber, N., Chevallier, F., Andres, R. J., Balsamo, G., Bopp, L., Bréon, F.-M., Broquet, G., Dargaville, R., Battin, T. J., Borges, A., Bovensmann, H., Buchwitz, M., Butler, J., Canadell, J. G., Cook, R. B., DeFries, R., Engelen, R., Gurney, K. R., Heinze, C., Heimann, M., Held, A., Henry, M., Law, B., Luyssaert, S., Miller, J., Moriyama, T., Moulin, C., Myneni, R. B., Nussli, C., Obersteiner, M., Ojima, D., Pan, Y., Paris, J.-D., Piao, S. L., Poulter, B., Plummer, S., Quegan, S., Raymond, P., Reichstein, M., Rivier, L., Sabine, C., Schimel, D., Tarasova, O., Valentini, R., Wang, R., van der Werf, G., Wickland, D., Williams, M., and Zehner, C.: Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system, Biogeosciences, 11, 3547–3602, https://doi.org/10.5194/bg-11-3547-2014, 2014.
Emeis, S.: Measurement Methods in Atmospheric Sciences, Borntraeger Science Publishers, Stuttgart, Germany, 257 pp., 2010.
Foken, T., Leuning, R., Oncley, S., Mauder, M., and Aubinet, M.: Corrections and data quality control, in: Eddy Covariance: A Practical Guide to Measurement and Data Analysis, edited by: Aubinet, M., Vesala, T., and Papale, D., Springer Atmospheric Sciences, Dordrecht, the Netherlands, 85–131, 2012.
Gochis, D., Schumacher, R., Friedrich, K., Doesken, N., Kelsch, M., Sun, J., Ikeda, K., Lindsey, D., Wood, A., Dolan, B., Matrosov, S., Newman, A., Mahoney, K., Rutledge, S., Johnson, R., Kucera, P., Kennedy, P., Sempere-Torres, D., Steiner, M., Roberts, R., Wilson, J., Yu, W., Chandrasekar, V., Rasmussen, R., Anderson, A., and Brown, B.: The Great Colorado Flood of September 2013, B. Am. Meteorol. Soc., 96, 1461–1487, https://doi.org/10.1175/bams-d-13-00241.1, 2014.
Göckede, M., Foken, T., Aubinet, M., Aurela, M., Banza, J., Bernhofer, C., Bonnefond, J. M., Brunet, Y., Carrara, A., Clement, R., Dellwik, E., Elbers, J., Eugster, W., Fuhrer, J., Granier, A., Grünwald, T., Heinesch, B., Janssens, I. A., Knohl, A., Koeble, R., Laurila, T., Longdoz, B., Manca, G., Marek, M., Markkanen, T., Mateus, J., Matteucci, G., Mauder, M., Migliavacca, M., Minerbi, S., Moncrieff, J., Montagnani, L., Moors, E., Ourcival, J.-M., Papale, D., Pereira, J., Pilegaard, K., Pita, G., Rambal, S., Rebmann, C., Rodrigues, A., Rotenberg, E., Sanz, M. J., Sedlak, P., Seufert, G., Siebicke, L., Soussana, J. F., Valentini, R., Vesala, T., Verbeeck, H., and Yakir, D.: Quality control of CarboEurope flux data – Part 1: Coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems, Biogeosciences, 5, 433–450, https://doi.org/10.5194/bg-5-433-2008, 2008.
IEEE Std 1588TM-2002: IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems, IEEE Instrumentation and Measurement Society, The Institute of Electrical and Electronics Engineers, Inc., New York, NY, USA, 144 pp., https://doi.org/10.1109/IEEESTD.2002.94144, 2002.
Illingworth, A. J., Hogan, R. J., O'Connor, E. J., Bouniol, D., Delanoë, J., Donovan, D. P., Gaussiat, N., Goddard, J. W. F., Haeffelin, M., Baltink, H. K., Krasnov, O. A., Pelon, J., Pirioum, J.-M., Protat, A., Russchenberg, H. W. J., Seifert, A., Tompkins, A. M., van Zadelhoff, G.-J., Vinit, F., Willén, U., Wilson, D. R., and Wrench, C. L.: Cloudnet, B. Am. Meteorol. Soc., 88, 883–898, https://doi.org/10.1175/BAMS-88-6-883, 2007.
Kaimal, J. C. and Finnigan, J. J.: Atmospheric Boundary Layer Flows: Their Structure and Measurement, Oxford University Press, New York, 289 pp., 1994.
Kao, R. H., Gibson, C. M., Gallery, R. E., Meier, C. L., Barnett, D. T., Docherty, K. M., Blevins, K. K., Travers, P. D., Azuaje, E., Springer, Y. P., Thibault, K. M., McKenzie, V. J., Keller, M., Alves, L. F., Hinckley, E.-L. S., Parnell, J., and Schimel, D.: NEON terrestrial field observations: designing continental-scale, standardized sampling, Ecosphere, 3, 1–17, https://doi.org/10.1890/ES12-00196.1, 2012.
Keenan, T. F., Darby, B., Felts, E., Sonnentag, O., Friedl, M. A., Hufkens, K., O'Keefe, J., Klosterman, S., Munger, J. W., Toomey, M., and Richardson, A. D.: Tracking forest phenology and seasonal physiology using digital repeat photography: a critical assessment, Ecol. Appl., 24, 1478–1489, https://doi.org/10.1890/13-0652.1, 2014.
Keller, M., Schimel, D. S., Hargrove, W. W., and Hoffman, F. M.: A continental strategy for the National Ecological Observatory Network, Front. Ecol. Environ., 6, 282–284, https://doi.org/10.1890/1540-9295(2008)6[282:ACSFTN]2.0.CO;2, 2008.
Lombardi, M. A., Nelson, L. M., Novick, A. N., and Zhang, V. S.: Time and frequency measurements using the Global Positioning System, Cal. Lab. Int. J. Metrol., 8, 26–33, 2001.
Maclean, G. and Webster, C.: NCAR In-Situ Data Acquisition Software for Airborne and Surface Measurements, in: 16th Symposium on Meteorological Observation and Instrumentation, American Meteorological Society, 21–26 January 2012, New Orleans, Louisiana, paper 10.1, https://ams.confex.com/ams/92Annual/webprogram/ (last access: 26 September 2016), 2012.
Massman, W. J. and Lee, X.: Eddy covariance flux corrections and uncertainties in long term studies of carbon and energy exchanges, Agr. Forest Meteorol., 113, 121–144, 2002.
Matese, A., Alberti, G., Gioli, B., Toscano, P., Vaccari, F. P., and Zaldei, A.: Compact_Eddy: A compact, low consumption remotely controlled eddy covariance logging system, Comput. Electron. Agr., 64, 343–346, 2008.
Mauder, M., Foken, T., Clement, R., Elbers, J. A., Eugster, W., Grünwald, T., Heusinkveld, B., and Kolle, O.: Quality control of CarboEurope flux data – Part 2: Inter-comparison of eddy-covariance software, Biogeosciences, 5, 451–462, https://doi.org/10.5194/bg-5-451-2008, 2008.
Metzger, S., Burba, G., Burns, S. P., Blanken, P. D., Li, J. H., Luo, H. Y., and Zulueta, R. C.: Optimization of an enclosed gas analyzer sampling system for measuring eddy covariance fluxes of H2O and CO2, 9, Atmos. Meas. Tech., 1341–1359, https://doi.org/10.5194/amt-9-1341-2016, 2016.
Mills, D. L.: Adaptive hybrid clock discipline algorithm for the Network Time Protocol, IEEE/ACM T. Network., 6, 505–514, 1998.
Mills, D. L.: Computer Network Time Synchronization: The Network Time Protocol on Earth and in Space, 2nd Edn., CRC Press, Inc., Boca Raton, FL, USA, 494 pp., 2010.
Monson, R. K., Turnipseed, A. A., Sparks, J. P., Harley, P. C., Scott-Denton, L. E., Sparks, K., and Huxman, T. E.: Carbon sequestration in a high-elevation, subalpine forest, Global Change Biol., 8, 459–478, 2002.
Monson, R. K., Burns, S. P., Williams, M. W., Delany, A. C., Weintraub, M., and Lipson, D. A.: The contribution of beneath-snow soil respiration to total ecosystem respiration in a high-elevation, subalpine forest, Global Biogeochem. Cy., 20, GB3030, https://doi.org/10.1029/2005GB002684, 2006.
Oncley, S. P.: Flux parameterization techniques in the atmospheric surface layer, PhD thesis, University of California, Irvine, Irvine, CA, USA, 202 pp., 1989.
Oncley, S. P., Schwenz, K., Burns, S. P., Sun, J., and Monson, R. K.: A cable-borne tram for atmospheric measurements along transects, J. Atmos. Ocean. Tech., 26, 462–473, https://doi.org/10.1175/2008JTECHA1158.1, 2009.
Panofsky, H. A. and Brier, G. W.: Some Applications of Statistics to Meteorology, Earth and Mineral Sciences Continuing Education, College of Earth and Mineral Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA, 224 pp., 1968.
Papale, D.: Data gap filling, in: Eddy Covariance: A Practical Guide to Measurement and Data Analysis, edited by: Aubinet, M., Vesala, T., and Papale, D., Springer Atmospheric Sciences, Dordrecht, the Netherlands, 159–172, 2012.
Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T., and Yakir, D.: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation, Biogeosciences, 3, 571–583, https://doi.org/10.5194/bg-3-571-2006, 2006.
Papale, D., Agarwal, D. A., Baldocchi, D., Cook, R. B., Fisher, J. B., and van Ingen, C.: Database Maintenance, Data Sharing Policy, Collaboration, in: Eddy Covariance: A Practical Guide to Measurement and Data Analysis, edited by: Aubinet, M., Vesala, T., and Papale, D., Springer Atmospheric Sciences, Dordrecht, the Netherlands, 399–424, 2012.
Piersol, A.: Time delay estimation using phase data, IEEE T. Acoust. Speech Sig. Proc., 29, 471–477, https://doi.org/10.1109/TASSP.1981.1163555, 1981.
Rebmann, C., Heinesch, B., Queck, R., Ibrom, A., and Aubinet, M.: Data acquisition and flux calculations, in: Eddy Covariance: A Practical Guide to Measurement and Data Analysis, edited by: Aubinet, M., Vesala, T., and Papale, D., Springer Atmospheric Sciences, Dordrecht, the Netherlands, 59–832012.
Refan, M. H. and Valizadeh, H.: Computer network time synchronization using a low cost GPS engine, Iran. J. Elect. Electron. Eng., 8, 206–216, 2012.
Schween, J. H., Kuettner, J., Reinert, D., Reuder, J., and Wirth, V.: Definition of "banner clouds" based on time lapse movies, Atmos. Chem. Phys, 7, 2047–2055, https://doi.org/10.5194/acp-7-2047-2007, 2007.
Sun, J., Oncley, S. P., Burns, S. P., Stephens, B. B., Lenschow, D. H., Campos, T., Monson, R. K., Schimel, D. S., Sacks, W. J., De Wekker, S. F. J., Lai, C.-T., Lamb, B., Ojima, D., Ellsworth, P. Z., Sternberg, L. S. L., Zhong, S., Clements, C., Moore, D. J. P., Anderson, D. E., Watt, A. S., Hu, J., Tschudi, M., Aulenbach, S., Allwine, E., and Coons, T.: A multiscale and multidisciplinary investigation of ecosystem-atmosphere CO2 exchange over the Rocky Mountains of Colorado, B. Am. Meteorol. Soc., 91, 209–230, https://doi.org/10.1175/2009BAMS2733.1, 2010.
Tani, M., Yamamoto, S., Leclerc, M. Y., and Leuning, R.: Special issue on AsiaFlux: Foreword, Agr. Forest Meteorol., 148, 697–699, https://doi.org/10.1016/j.agrformet.2008.01.002, 2008.
Turnipseed, A. A., Blanken, P. D., Anderson, D. E., and Monson, R. K.: Energy budget above a high-elevation subalpine forest in complex topography, Agr. Forest Meteorol., 110, 177–201, 2002.
UCAR/NCAR – Earth Observing Laboratory: NCAR Integrated Suface Flux System (ISFS), Boulder, Colorado, https://doi.org/10.5065/D6ZC80XJ, 1990–present.
Unidata: NetCDF version 4.4.0 [software], UCAR/Unidata, Boulder, Colorado, https://doi.org/10.5065/D6H70CW6, 2016.
Van Atta, C. W.: Sampling Techniques in Turbulence Measurements, Annu. Rev. Fluid Mech., 6, 75–91, 1974.
van der Molen, M. K., Zeeman, M. J., Lebis, J., and Dolman, A. J.: EClog: A handheld eddy covariance logging system, Comput. Electron. Agr., 51, 110–114, 2006.
Short summary
The hardware and software used to collect eddy-covariance ecosystem
fluxes of carbon dioxide, heat, and water vapor at a high-elevation
subalpine forest site over 17 years are described. Over time,
software/hardware improvements have increased the system robustness,
leading to a successful 10 Hz data-collection rate of better than 99.98 %. We also provide philosophical concepts that shaped our data system design and are applicable to many different types of environmental data collection.
The hardware and software used to collect eddy-covariance ecosystem
fluxes of carbon dioxide,...