Articles | Volume 7, issue 3
https://doi.org/10.5194/gi-7-189-2018
https://doi.org/10.5194/gi-7-189-2018
Research article
 | 
03 Jul 2018
Research article |  | 03 Jul 2018

Background noise estimation of the geomagnetic signal

Xiuyi Yao, Suqin Zhang, Yuntian Teng, and Dongmei Yang

Related authors

Vibration error compensation algorithm in the development of laser interference absolute gravimeters
Qiong Wu, Yuntian Teng, Xiaomei Wang, Yanxiong Wu, and Yang Zhang
Geosci. Instrum. Method. Data Syst., 10, 113–122, https://doi.org/10.5194/gi-10-113-2021,https://doi.org/10.5194/gi-10-113-2021, 2021
Short summary

Related subject area

Electromagnetic
Developing a low-cost frequency-domain electromagnetic induction instrument
Gavin Wilson, Jacob Conrad, John Anderson, Andrei Swidinsky, and Jeffrey Shragge
Geosci. Instrum. Method. Data Syst., 11, 279–291, https://doi.org/10.5194/gi-11-279-2022,https://doi.org/10.5194/gi-11-279-2022, 2022
Short summary
Autonomous-underwater-vehicle-based marine multicomponent self-potential method: observation scheme and navigational correction
Zhongmin Zhu, Jinsong Shen, Chunhui Tao, Xianming Deng, Tao Wu, Zuofu Nie, Wenyi Wang, and Zhaoyang Su
Geosci. Instrum. Method. Data Syst., 10, 35–43, https://doi.org/10.5194/gi-10-35-2021,https://doi.org/10.5194/gi-10-35-2021, 2021
Short summary
A compact ocean bottom electromagnetic receiver and seismometer
Kai Chen, Ming Deng, Zhongliang Wu, Xianhu Luo, and Li Zhou
Geosci. Instrum. Method. Data Syst., 9, 213–222, https://doi.org/10.5194/gi-9-213-2020,https://doi.org/10.5194/gi-9-213-2020, 2020
Short summary
A full waveform current recorder for electrical prospecting
Kai Chen and Sheng Jin
Geosci. Instrum. Method. Data Syst., 8, 139–147, https://doi.org/10.5194/gi-8-139-2019,https://doi.org/10.5194/gi-8-139-2019, 2019
Short summary
A wireless monitoring system for a high-power borehole–ground electromagnetic transmitter
Shuangshuang Cheng, Ming Deng, Meng Wang, Sheng Jin, Qisheng Zhang, and Kai Chen
Geosci. Instrum. Method. Data Syst., 8, 13–19, https://doi.org/10.5194/gi-8-13-2019,https://doi.org/10.5194/gi-8-13-2019, 2019
Short summary

Cited articles

Campbell, W. H.: Introduction to Geomagnetic Field, Cambridge University Press, New York, 10–40, 1997. 
Chapman, S. and Bartels, J.: Geomagnetism, Oxford Clarendon Press, New York, 12–30, 1940. 
Cooley, J. W. and Tukey, J. W.: An Algorithm for the Machine Calculation of Complex Fourier Series, Math. Comput., 19, 297–301, https://doi.org/10.1090/S0025-5718-1965-0178586-1, 1965. 
Han, P., Huang, Q. H., and Xiu, J. G.: Principal component analysis of geomagnetic diurnal variation associated with earthquakes: case study of the M6.1 Iwate-kenNairiku Hokubu earthquake, Chinese J. Geophys.-Ch., 52, 1156–1563, https://doi.org/10.3969/j.issn.0001-5733.2009.06.001, 2009. 
Jiang, C., Zhong, G. P., Zhang, F. L., Zhang, G. S., and Wu, C. Z.: Study on noise characteristics of time series of geomagnetic observation on Jilin, Earthquake Research in Shanxi, 2, 8–10, https://doi.org/10.3969/j.issn.1000-6265.2013.02.003, 2013. 
Download
Short summary
A fast Fourier transform was applied to fit the geomagnetic diurnal variation. Fitting results showed that when the polynomial degree was greater than 160, the residual error was close to 0 nT. White noise is the main component of the residual error when the polynomial degree was greater than 160, so this method was adopted to calculate the background noise of the geomagnetic field. Spectrum analysis further demonstrated the necessity to remove background noise from geomagnetic data.