Articles | Volume 11, issue 2
https://doi.org/10.5194/gi-11-413-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-11-413-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Design and operation of a long-term monitoring system for spectral electrical impedance tomography (sEIT)
Maximilian Weigand
CORRESPONDING AUTHOR
Geophysics Section, Institute of Geosciences, University of Bonn,
Bonn, Germany
Egon Zimmermann
Electronic Systems (ZEA 2), Central Institute for Engineering,
Electronics, and Analytics, Forschungszentrum Jülich GmbH, Jülich, Germany
Valentin Michels
Geophysics Section, Institute of Geosciences, University of Bonn,
Bonn, Germany
Johan Alexander Huisman
Agrosphere (IBG 3), Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
Andreas Kemna
Geophysics Section, Institute of Geosciences, University of Bonn,
Bonn, Germany
Related authors
No articles found.
Salar Saeed Dogar, Cosimo Brogi, Dave O'Leary, Ixchel M. Hernández-Ochoa, Marco Donat, Harry Vereecken, and Johan Alexander Huisman
SOIL, 11, 655–679, https://doi.org/10.5194/soil-11-655-2025, https://doi.org/10.5194/soil-11-655-2025, 2025
Short summary
Short summary
Farmers need precise information about their fields to use water, fertilizers, and other resources efficiently. This study combines underground soil data and satellite images to create detailed field maps using advanced machine learning. By testing different ways of processing data, we ensured a balanced and accurate approach. The results help farmers manage their land more effectively, leading to better harvests and more sustainable farming practices.
Solomon Ehosioke, Sarah Garré, Johan Alexander Huisman, Egon Zimmermann, Mathieu Javaux, and Frédéric Nguyen
Biogeosciences, 22, 2853–2869, https://doi.org/10.5194/bg-22-2853-2025, https://doi.org/10.5194/bg-22-2853-2025, 2025
Short summary
Short summary
Understanding the electromagnetic properties of plant roots is useful to quantify plant properties and monitor plant physiological responses to changing environmental factors. We investigated the electrical properties of the primary roots of Brachypodium and maize plants during the uptake of fresh and saline water using spectral induced polarization. Our results indicate that salinity tolerance varies with the species and that Maize is more tolerant to salinity than Brachypodium.
Theresa Maierhofer, Adrian Flores Orozco, Nathalie Roser, Jonas K. Limbrock, Christin Hilbich, Clemens Moser, Andreas Kemna, Elisabetta Drigo, Umberto Morra di Cella, and Christian Hauck
The Cryosphere, 18, 3383–3414, https://doi.org/10.5194/tc-18-3383-2024, https://doi.org/10.5194/tc-18-3383-2024, 2024
Short summary
Short summary
In this study, we apply an electrical method in a high-mountain permafrost terrain in the Italian Alps, where long-term borehole temperature data are available for validation. In particular, we investigate the frequency dependence of the electrical properties for seasonal and annual variations along a 3-year monitoring period. We demonstrate that our method is capable of resolving temporal changes in the thermal state and the ice / water ratio associated with seasonal freeze–thaw processes.
Thomas Hermans, Pascal Goderniaux, Damien Jougnot, Jan H. Fleckenstein, Philip Brunner, Frédéric Nguyen, Niklas Linde, Johan Alexander Huisman, Olivier Bour, Jorge Lopez Alvis, Richard Hoffmann, Andrea Palacios, Anne-Karin Cooke, Álvaro Pardo-Álvarez, Lara Blazevic, Behzad Pouladi, Peleg Haruzi, Alejandro Fernandez Visentini, Guilherme E. H. Nogueira, Joel Tirado-Conde, Majken C. Looms, Meruyert Kenshilikova, Philippe Davy, and Tanguy Le Borgne
Hydrol. Earth Syst. Sci., 27, 255–287, https://doi.org/10.5194/hess-27-255-2023, https://doi.org/10.5194/hess-27-255-2023, 2023
Short summary
Short summary
Although invisible, groundwater plays an essential role for society as a source of drinking water or for ecosystems but is also facing important challenges in terms of contamination. Characterizing groundwater reservoirs with their spatial heterogeneity and their temporal evolution is therefore crucial for their sustainable management. In this paper, we review some important challenges and recent innovations in imaging and modeling the 4D nature of the hydrogeological systems.
Cosimo Brogi, Heye Reemt Bogena, Markus Köhli, Johan Alexander Huisman, Harrie-Jan Hendricks Franssen, and Olga Dombrowski
Geosci. Instrum. Method. Data Syst., 11, 451–469, https://doi.org/10.5194/gi-11-451-2022, https://doi.org/10.5194/gi-11-451-2022, 2022
Short summary
Short summary
Accurate monitoring of water in soil can improve irrigation efficiency, which is important considering climate change and the growing world population. Cosmic-ray neutrons sensors (CRNSs) are a promising tool in irrigation monitoring due to a larger sensed area and to lower maintenance than other ground-based sensors. Here, we analyse the feasibility of irrigation monitoring with CRNSs and the impact of the irrigated field dimensions, of the variations of water in soil, and of instrument design.
Theresa Maierhofer, Christian Hauck, Christin Hilbich, Andreas Kemna, and Adrián Flores-Orozco
The Cryosphere, 16, 1903–1925, https://doi.org/10.5194/tc-16-1903-2022, https://doi.org/10.5194/tc-16-1903-2022, 2022
Short summary
Short summary
We extend the application of electrical methods to characterize alpine permafrost using the so-called induced polarization (IP) effect associated with the storage of charges at the interface between liquid and solid phases. We investigate different field protocols to enhance data quality and conclude that with appropriate measurement and processing procedures, the characteristic dependence of the IP response of frozen rocks improves the assessment of thermal state and ice content in permafrost.
Cosimo Brogi, Johan A. Huisman, Lutz Weihermüller, Michael Herbst, and Harry Vereecken
SOIL, 7, 125–143, https://doi.org/10.5194/soil-7-125-2021, https://doi.org/10.5194/soil-7-125-2021, 2021
Short summary
Short summary
There is a need in agriculture for detailed soil maps that carry quantitative information. Geophysics-based soil maps have the potential to deliver such products, but their added value has not been fully investigated yet. In this study, we compare the use of a geophysics-based soil map with the use of two commonly available maps as input for crop growth simulations. The geophysics-based product results in better simulations, with improvements that depend on precipitation, soil, and crop type.
Jie Tian, Zhibo Han, Heye Reemt Bogena, Johan Alexander Huisman, Carsten Montzka, Baoqing Zhang, and Chansheng He
Hydrol. Earth Syst. Sci., 24, 4659–4674, https://doi.org/10.5194/hess-24-4659-2020, https://doi.org/10.5194/hess-24-4659-2020, 2020
Short summary
Short summary
Large-scale profile soil moisture (SM) is important for water resource management, but its estimation is a challenge. Thus, based on in situ SM observations in a cold mountain, a strong relationship between the surface SM and subsurface SM is found. Both the subsurface SM of 10–30 cm and the profile SM of 0–70 cm can be estimated from the surface SM of 0–10 cm accurately. By combing with the satellite product, we improve the large-scale profile SM estimation in the cold mountains finally.
Cited articles
Atekwana, E. and Slater, L.: Biogeophysics: A new frontier in Earth science
research, Rev. Geophys., 47, 1–30, https://doi.org/10.1029/2009RG000285, 2009. a
Bairlein, K., Bücker, M., Hördt, A., and Hinze, B.: Temperature
dependence of spectral induced polarization data: experimental results and
membrane polarization theory, Geophys. J. Int., 205,
440–453, https://doi.org/10.1093/gji/ggw027, 2016. a
Binley, A. and Kemna, A.: DC resistivity and induced polarization methods,
in: Hydrogeophysics, edited by: Rubin, Y. and Hubbard, S. S., 129–156, Springer
Netherlands, https://doi.org/10.1007/1-4020-3102-5_5, 2005. a
Binley, A. and Slater, L.: Resistivity and induced polarization: Theory and
applications to the near-surface earth, Cambridge University Press,
https://doi.org/10.1017/9781108685955, 2020. a, b
Binley, A., Kruschwitz, S., Lesmes, D., and Kettridge, N.: Exploiting the
temperature effects on low frequency electrical spectra of sandstone: A
comparison of effective diffusion path lengths, Geophysics, 75, A43–A46,
https://doi.org/10.1190/1.3483815, 2010. a
Cai, G., Vanderborght, J., Klotzsche, A., van der Kruk, J., Neumann, J.,
Hermes, N., and Vereecken, H.: Construction of minirhizotron facilities for
investigating root zone processes, Vadose Zone J., 15, 1–13,
https://doi.org/10.2136/vzj2016.05.0043, 2016. a, b, c, d
Cimpoiaşu, M., Kuras, O., Pridmore, T., and Mooney, S.: Potential of
geoelectrical methods to monitor root zone processes and structure: A review,
Geoderma, 365, 114232, https://doi.org/10.1016/j.geoderma.2020.114232, 2020. a
Commer, M., Newman, G., Williams, K., and Hubbard, S.: 3D induced-polarization
data inversion for complex resistivity, Geophysics, 76, F157–F171,
https://doi.org/10.1190/1.3560156, 2011. a, b
Everett, M.: Near-surface applied geophysics, Cambridge University Press,
https://doi.org/10.1007/s11001-014-9218-8, 2013. a
Flores Orozco, A., Williams, K., Long, P., Hubbard, S. S, and Kemna, A.: Using
complex resistivity imaging to infer biogeochemical processes associated with
bioremediation of an uranium-contaminated aquifer, J. Geophys.
Res., 116, 1–17, https://doi.org/10.1029/2010JG001591, 2011. a
Flores Orozco, A., Kemna, A., Oberdörster, C., Zschornack, L., Leven, C.,
Dietrich, P., and Weiss, H.: Delineation of subsurface hydrocarbon
contamination at a former hydrogenation plant using spectral induced
polarization imaging, J. Contam. Hydrol., 136, 131–144,
https://doi.org/10.1016/j.jconhyd.2012.06.001, 2012a. a
Flores Orozco, A., Kemna, A., and Zimmermann, E.: Data error quantification in
spectral induced polarization imaging, Geophysics, 77, E227–E237,
https://doi.org/10.1190/geo2010-0194.1, 2012b. a, b, c
Flores Orozco, A., Williams, K., and Kemna, A.: Time-lapse spectral induced
polarization imaging of stimulated uranium bioremediation, Near Surf.
Geophys., 11, 531–544, https://doi.org/10.3997/1873-0604.2013020, 2013. a, b
Flores Orozco, A., Gallistl, J., Bücker, M., and Williams, K.: Decay curve
analysis for data error quantification in time-domain induced polarization
imaging, Geophysics, 83, E75–E86, https://doi.org/10.1190/geo2016-0714.1, 2018. a
Flores-Orozco, A., Gallistl, J., Steiner, M., Brandstätter, C., and Fellner,
J.: Mapping biogeochemically active zones in landfills with induced
polarization imaging: The Heferlbach landfill, Waste Manage., 107,
121–132, https://doi.org/10.1016/j.wasman.2020.04.001, 2020. a
Flores Orozco, A., Aigner, L., and Gallistl, J.: Investigation of cable
effects in spectral induced polarization imaging at the field scale using
multicore and coaxial cables, Geophysics, 86, E59–E75,
https://doi.org/10.1190/geo2019-0552.1, 2021. a
Galetti, E. and Curtis, A.: Transdimensional electrical resistivity tomography,
J. Geophys. Res.: Solid Earth, 123, 6347–6377,
https://doi.org/10.1029/2017JB015418, 2018. a
Günther, T. and Martin, T.: Spectral two-dimensional inversion of
frequency-domain induced polarization data from a mining slag heap,
J. Appl. Geophy., 135, 436–448, https://doi.org/10.1016/j.jappgeo.2016.01.008,
2016. a, b, c
Hayashi, M.: Temperature-electrical conductivity relation of water for
environmental monitoring and geophysical data inversion, Environ.
Monitor. Assess., 96, 119–128,
2004. a
Hayley, K., Bentley, L., Gharibi, M., and Nightingale, M.: Low temperature
dependence of electrical resistivity: Implications for near surface
geophysical monitoring, Geophys. Res. Lett., 34, L18402,
https://doi.org/10.1029/2007GL031124, 2007. a
He, X., Chen, R., Yao, H., Shen, R., Zhao, X., and Xi, X.: Complex Impedance
Measurements System for High Impedance Sample, Environmental & Engineering Geophysical Society, pp. 427–432,
https://doi.org/10.4133/SAGEEP.29-073, 2016. a
Henke, H.: Elektromagnetische Felder: Theorie und Anwendung, Springer-Verlag, https://doi.org/10.1007/978-3-662-46918-7,
2015. a, b
Huisman, J., Zimmermann, E., Esser, O., Haegel, F., Treichel, A., and
Vereecken, H.: Evaluation of a novel correction procedure to remove
electrode impedance effects from broadband SIP measurements, J. Appl. Geophy., 466–473, https://doi.org/10.1016/j.jappgeo.2015.11.008, 2015. a
Karaoulis, M., Revil, A., Tsourlos, P., Werkema, D., and Minsley, B.: IP4DI: A
software for time-lapse 2D/3D DC-resistivity and induced polarization
tomography, Comput. Geosci., 54, 164–170,
https://doi.org/10.1016/j.cageo.2013.01.008, 2013. a
Katona, T., Gilfedder, B. S., Frei, S., Bücker, M., and Flores-Orozco, A.: High-resolution induced polarization imaging of biogeochemical carbon turnover hotspots in a peatland, Biogeosciences, 18, 4039–4058, https://doi.org/10.5194/bg-18-4039-2021, 2021. a
Kelter, M., Huisman, J., Zimmermann, E., and Vereecken, H.: Field evaluation of
broadband spectral electrical imaging for soil and aquifer characterization,
J. Appl. Geophy., 159, 484–496,
https://doi.org/10.1016/j.jappgeo.2018.09.029, 2018. a, b
Kemna, A., Binley, A., Cassiani, G., Niederleithinger, E., Revil, A., Slater,
L., Williams, K., Flores Orozco, A., Haegel, F., Hoerdt, A., Kruschwitz, S.,
Leroux, V., Titov, K., and Zimermann, E.: An overview of the spectral induced
polarization method for near-surface applications, Near Surf. Geophys.,
10, 453–468, https://doi.org/10.3997/1873-0604.2012027, 2012. a, b
Kemna, A., Huisman, J., Zimmermann, E., Martin, R., Zhao, Y., Treichel, A.,
Flores Orozco, A., and Fechner, T.: Broadband electrical impedance tomography
for subsurface characterization using improved corrections of electromagnetic
coupling and spectral regularization, in: Tomography of the Earth’s Crust:
From Geophysical Sounding to Real-Time Monitoring, pp. 1–20, Springer,
https://doi.org/10.1007/978-3-319-04205-3_1, 2014. a, b
Kessouri, P., Furman, A., Huisman, J., Martin, T., Mellage, A., Ntarlagiannis,
D., Bücker, M., Ehosioke, S., Fernandez, P., Flores-Orozco, A., Kemna, A.,
Nguyen, F., Pilawski, T., Saneiyan, S., Schmutz, M., Schwartz, N., Weigand,
M., Wu, Y., Zhang, C., and Placiencia-Gomez, E.: Induced polarization
applied to biogeophysics: recent advances and future prospects, Near Surf.
Geophys., 17, 595–621, https://doi.org/10.1002/nsg.12072, 2019. a, b
Koestel, J., Kemna, A., Javaux, M., Binley, A., and Vereecken, H.:
Quantitative imaging of solute transport in an unsaturated and undisturbed
soil monolith with 3-D ERT and TDR, Water Resour. Res., 44, W12411,
https://doi.org/10.1029/2007WR006755, 2008. a, b
LaBrecque, D. and Ward, S.: Two-dimensional cross-borehole resistivity model
fitting, Geotech. Environ. Geophys., 1, 51–57, 1990. a
LaBrecque, D., Miletto, M., Daily, W., Ramirez, A., and Owen, E.: The effects
of noise on Occam’s inversion of resistivity tomography data, Geophysics,
61, 538–538, https://doi.org/10.1190/1.1443980, 1996. a, b, c
Loke, M., Dahlin, T., and Rucker, D.: Smoothness-constrained time-lapse
inversion of data from 3D resistivity surveys, Near Surf. Geophys., 12,
5–24, https://doi.org/10.3997/1873-0604.2013025, 2014. a
Luecke, A., Puetz, T., and Schmidt, M.: TERENO data from station(s) SE_BDK_002 with
parameter(s) AirTemperature, Precipitation, Precipitation, Precipitation,
Precipitation, Precipitation, Radiation, SoilTemperature, SoilTemperature,
SoilTemperature, SoilTemperature, SoilTemperature, SoilTemperature,
SoilTemperature, SoilTemperature, SoilTemperature, SoilWaterContent,
SoilWaterContent, SoilWaterContent, SoilWaterContent, SoilWaterContent,
SoilWaterContent, SoilWaterContent, SoilWaterContent, SoilWaterContent for
time period 2017-01-01 to 2018-12-01, Tereno [data set],
https://hdl.handle.net/20.500.11952/TERENO.SE_BDK_002.1586168461263,
2020. a
Maurya, P., G., F., Christiansen, A., and Auken, E.: Field-scale comparison of
frequency- and time-domain spectral induced polarization, Geophys. J. Int., 214, 1441–1466, https://doi.org/10.1093/gji/ggy218, 2018. a
Mitchell, M. and Oldenburg, D.: Data quality control methodologies for large,
non-conventional DC resistivity datasets, J. Appl. Geophy., 135,
163–182, https://doi.org/10.1016/j.jappgeo.2016.09.018, 2016. a
Mudler, J., Hördt, A., Kreith, D., Sugand, M., Bazhin, K., Lebedeva, L.,
and Radić, T.: Broadband spectral induced polarization for the detection of Permafrost and an approach to ice content estimation – a case study from
Yakutia, Russia, The Cryosphere, 16, 4727–4744,
https://doi.org/10.5194/tc-16-4727-2022, 2022. a
Petiau, G.: Second Generation of Lead-lead Chloride Electrodes for Geophysical
Applications, Pure Appl. Geophys., 157, 357–382,
https://doi.org/10.1007/s000240050004, 2000. a
Radic, T.: New Modular Multi-channel Field Equipment for SIP Measurements up to
20 kHz, in: Near Surface Geoscience 2016 – 22nd European Meeting of
Environmental and Engineering Geophysics, 1, European Association of
Geoscientists & Engineers, https://doi.org/10.3997/2214-4609.201602003, 2016. a
Radic, T.: Most Accurate or Fastest Possible? The Multi-Frequency SIP
Excitation Enables a Choice, in: NSG2021 27th European Meeting of
Environmental and Engineering Geophysics, 1, pp. 1–5, European Association
of Geoscientists & Engineers, https://doi.org/10.3997/2214-4609.202120022, 2021. a
Rücker, C. and Günther, T.: The simulation of finite ERT electrodes using
the complete electrode model, Geophysics, 76, F227–F238,
https://doi.org/10.1190/1.3581356, 2011. a
Rücker, C., Günther, T., and Wagner, F.: pyGIMLi: An open-source
library for modelling and inversion in geophysics, Comput. Geosci.,
109, 106–123, https://doi.org/10.1016/j.cageo.2017.07.011, 2017. a
Schmutz, M., Ghorbani, A., Vaudelet, P., and Blondel, A.: Cable arrangement to
reduce electromagnetic coupling effects in spectral-induced polarization
studies, Geophysics, 79, A1–A5, https://doi.org/10.1190/geo2013-0301.1, 2014. a, b
Sen, P. and Goode, P.: Influence of temperature on electrical conductivity on
shaly sands, Geophysics, 57, 89–96, https://doi.org/10.1190/1.1443191, 1992. a
Slater, L. and Binley, A.: Advancing hydrological process understanding from
long-term resistivity monitoring systems, WIREs Water, 8, e1513,
https://doi.org/10.1002/wat2.1513, 2021. a
Sunde, E.: Earth conduction effects in communication system, Dover Publications, 1968. a
Wang, C., Binley, A., and Slater, L.: On negative induced polarization in
frequency domain measurements, Geophys. J. Int., 225,
342–353, https://doi.org/10.1093/gji/ggaa581, 2020a. a
Wang, H., Huisman, J., Zimmermann, E., and Vereecken, H.: Experimental design
to reduce inductive coupling in spectral electrical impedance tomography
(sEIT) measurements, Geophys. J. Int., 25, ggaa594,
https://doi.org/10.1093/gji/ggaa594, 2020b. a, b, c
Weigand, M. and Kemna, A.: Multi-frequency electrical impedance tomography as a non-invasive tool to characterize and monitor crop root systems, Biogeosciences, 14, 921–939, https://doi.org/10.5194/bg-14-921-2017, 2017. a
Weigand, M. and Kemna, A.: Imaging and functional characterization of crop root
systems using spectroscopic electrical impedance measurements, Plant
Soil, 435, 201–224, https://doi.org/10.1007/s11104-018-3867-3, 2019. a
Weigand, M., Flores Orozco, A., and Kemna, A.: Reconstruction quality of SIP
parameters in multi-frequency complex resistivity imaging, Near Surf. Geophys., 15, 187–199, https://doi.org/10.3997/1873-0604.2016050, 2017. a
Weigand, M., Zimmermann, E., Michels, V., Huisman, J. A., and Kemna, A.: Plot
scripts and required data for paper gi-2021-36: “Design and operation of a
long-term monitoring system for spectral electrical impedance tomography
(sEIT)” (v1.0), Zenodo [code and data set],
https://doi.org/10.5281/zenodo.7118678, 2022. a
Wilkinson, P., Meldrum, P., Chambers, J., Kuras, O., and Ogilvy, R.: Improved
strategies for the automatic selection of optimized sets of electrical
resistivity tomography measurement configurations, Geophys. J. Int., 167, 1119–1126, https://doi.org/10.1111/j.1365-246X.2006.03196.x, 2006. a
Williams, K., Kemna, A., Wilkins, M., Druhan, J., Arntzen, E., N’Guessan, A.,
Long, P., Hubbard, S., and Banfield, J.: Geophysical monitoring of coupled
microbial and geochemical processes during stimulated subsurface
bioremediation, Environ. Sci. Technol., 43, 6717–6723,
https://doi.org/10.1021/es900855j, 2009. a
Xi, X., Yang, H., He, X., Cui, Y., Chen, R., Yao, H., Dong, H., and Tan, S.:
Precision SIP measurements system for laboratory usage, Environmental & Engineering Geophysical Society, pp. 29–39,
https://doi.org/10.4133/SAGEEP.28-004, 2015. a
Xu, B. and Noel, M.: On the completeness of data sets with multielectrode
systems for electrical resistivity survey, Geophysical Prospecting, 41,
791–801, https://doi.org/10.1111/j.1365-2478.1993.tb00885.x, 1993. a, b
Zhao, Y., Zimmermann, E., Huisman, J., Treichel, A., Wolters, B., van Waasen,
S., and Kemna, A.: Broadband EIT borehole measurements with high phase
accuracy using numerical corrections of electromagnetic coupling effects,
Measur. Sci. Technol., 24, 085005,
https://doi.org/10.1088/0957-0233/24/8/085005, 2013. a, b, c
Zimmermann, E., Kemna, A., Berwix, J., Glaas, W., Münch, H., and Huisman, J.:
A high-accuracy impedance spectrometer for measuring sediments with low
polarizability, Measur. Sci. Technol., 19, 105603,
https://doi.org/10.1088/0957-0233/19/10/105603, 2008a. a
Zimmermann, E., Kemna, A., Berwix, J., Glaas, W., and Vereecken, H.: EIT
measurement system with high phase accuracy for the imaging of spectral
induced polarization properties of soils and sediments, Measur. Sci. Technol., 19, 094010, https://doi.org/10.1088/0957-0233/19/9/094010,
2008b. a, b, c, d
Zisser, N., Kemna, A., and Nover, G.: Dependence of spectral-induced
polarization response of sandstone on temperature and its relevance to
permeability estimation, J. Geophys. Res., 115, B09214,
https://doi.org/10.1029/2010JB007526, 2010. a
Short summary
The construction, operation and analysis of a spectral electrical
impedance tomography (sEIT) field monitoring setup with high spatial and temporal resolution are presented. Electromagnetic induction errors are corrected, allowing the recovery of images of in-phase conductivity and electrical polarisation of up to 1 kHz.
The construction, operation and analysis of a spectral electrical
impedance tomography (sEIT)...