Articles | Volume 12, issue 2
https://doi.org/10.5194/gi-12-111-2023
https://doi.org/10.5194/gi-12-111-2023
Research article
 | 
05 Jul 2023
Research article |  | 05 Jul 2023

Development of a power station unit in a distributed hybrid acquisition system of seismic and electrical methods based on the narrowband Internet of Things (NB-IoT)

Feng Guo, Qisheng Zhang, and Shenghui Liu

Related authors

Development of a new centralized data acquisition system for seismic exploration
Feng Guo, Qisheng Zhang, Qimao Zhang, Wenhao Li, Yueyun Luo, Yuefeng Niu, and Shuaiqing Qiao
Geosci. Instrum. Method. Data Syst., 9, 255–266, https://doi.org/10.5194/gi-9-255-2020,https://doi.org/10.5194/gi-9-255-2020, 2020
Short summary
Development of a new distributed hybrid seismic and electrical data acquisition station based on system-on-a-programmable-chip technology
Qisheng Zhang, Wenhao Li, Feng Guo, Zhenzhong Yuan, Shuaiqing Qiao, and Qimao Zhang
Geosci. Instrum. Method. Data Syst., 8, 241–249, https://doi.org/10.5194/gi-8-241-2019,https://doi.org/10.5194/gi-8-241-2019, 2019
Short summary
Development of a distributed hybrid seismic–electrical data acquisition system based on the Narrowband Internet of Things (NB-IoT) technology
Wenhao Li, Qisheng Zhang, Qimao Zhang, Feng Guo, Shuaiqing Qiao, Shiyang Liu, Yueyun Luo, Yuefeng Niu, and Xing Heng
Geosci. Instrum. Method. Data Syst., 8, 177–186, https://doi.org/10.5194/gi-8-177-2019,https://doi.org/10.5194/gi-8-177-2019, 2019
Short summary
Development of a New Centralized Data Acquisition System for Seismic Exploration
Feng Guo, Qisheng Zhang, Qimao Zhang, Wenhao Li, Yueyun Luo, Yuefeng Niu, and Shauiqing Qiao
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2018-48,https://doi.org/10.5194/gi-2018-48, 2019
Revised manuscript not accepted
Short summary

Related subject area

Ground-based instruments
Spectral observations at the Canary Island Long-Baseline Observatory (CILBO): calibration and datasets
Joe Zender, Detlef Koschny, Regina Rudawska, Salvatore Vicinanza, Stefan Loehle, Martin Eberhart, Arne Meindl, Hans Smit, Lionel Marraffa, Rico Landman, and Daphne Stam
Geosci. Instrum. Method. Data Syst., 12, 91–109, https://doi.org/10.5194/gi-12-91-2023,https://doi.org/10.5194/gi-12-91-2023, 2023
Short summary
Calculation of soil water content using dielectric-permittivity-based sensors – benefits of soil-specific calibration
Bartosz M. Zawilski, Franck Granouillac, Nicole Claverie, Baptiste Lemaire, Aurore Brut, and Tiphaine Tallec
Geosci. Instrum. Method. Data Syst., 12, 45–56, https://doi.org/10.5194/gi-12-45-2023,https://doi.org/10.5194/gi-12-45-2023, 2023
Short summary
The land–atmosphere feedback observatory: a new observational approach for characterizing land–atmosphere feedback
Florian Späth, Verena Rajtschan, Tobias K. D. Weber, Shehan Morandage, Diego Lange, Syed Saqlain Abbas, Andreas Behrendt, Joachim Ingwersen, Thilo Streck, and Volker Wulfmeyer
Geosci. Instrum. Method. Data Syst., 12, 25–44, https://doi.org/10.5194/gi-12-25-2023,https://doi.org/10.5194/gi-12-25-2023, 2023
Short summary
Design and construction of an automated and programmable resistivity meter for shallow subsurface investigation
Antenor Oliveira Cruz Júnior, Cosme Ferreira da Ponte-Neto, and André Wiermann
Geosci. Instrum. Method. Data Syst., 12, 15–23, https://doi.org/10.5194/gi-12-15-2023,https://doi.org/10.5194/gi-12-15-2023, 2023
Short summary
Feasibility of irrigation monitoring with cosmic-ray neutron sensors
Cosimo Brogi, Heye Reemt Bogena, Markus Köhli, Johan Alexander Huisman, Harrie-Jan Hendricks Franssen, and Olga Dombrowski
Geosci. Instrum. Method. Data Syst., 11, 451–469, https://doi.org/10.5194/gi-11-451-2022,https://doi.org/10.5194/gi-11-451-2022, 2022
Short summary

Cited articles

Cao, P., Song, K., Yang, J., and Ruan, F.: Design of a large remote seismic exploration data acquisition system, with the architecture of a distributed storage area network, J. Geophys. Eng., 8, 27–34, https://doi.org/10.1088/1742-2132/8/1/005, 2010. 
China Mobile: M5310-A NB-IoT communication module, http://iot.10086.cn/Uploads/file/product/20181109/M5310-A_20181109103230_35807.pdf (last access: 9 December 2022), 2018. 
Dean, T., O'Connell, K., and Quigley, J.: A review of nodal land seismic acquisition systems, Preview, 164, 34–39, https://doi.org/10.1071/pvv2013n164p34, 2013. 
De La Piedra, A., Braeken, A., and Touhafi, A.: Sensor systems based on FPGAs and their applications: A survey, Sensors, 12, 12235–12264, https://doi.org/10.3390/s120912235, 2012. 
Dong, Q. Y.: Implementation of battery management unit in MTEM system, MS thesis, University of Science and Technology of China, China, 71 pp., https://kns.cnki.net/KCMS/detail/detail.aspx?filename=1015589943.nh&dbname=CMFDTEMP (last access: 10 Feburary 2023), 2015. 
Download
Short summary
We propose a new type of power station unit with wireless data transmission capability, which was not supported by same type of instrument as on the market. Based on this, a novel distributed geophysical data acquisition architecture is also proposed. The proposed instrument loads more stations than the industry-leading LAUL-428 while providing additional wireless data transmission and narrowband Internet of Things remote control.