Articles | Volume 13, issue 1
https://doi.org/10.5194/gi-13-1-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-13-1-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Gas equilibrium membrane inlet mass spectrometry (GE-MIMS) for water at high pressure
Matthias S. Brennwald
CORRESPONDING AUTHOR
Department of Water Resources and Drinking Water, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
Antonio P. Rinaldi
Institute of Geophysics, Department of Earth Sciences, Swiss Federal Institute of Technology in Zurich, Zurich, Switzerland
Jocelyn Gisiger
Solexpers AG, Mönchaltdorf, Switzerland
Alba Zappone
Institute of Geophysics, Department of Earth Sciences, Swiss Federal Institute of Technology in Zurich, Zurich, Switzerland
Rolf Kipfer
Department of Water Resources and Drinking Water, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
Institute of Geochemsitry and Petrology, Department of Earth Sciences, Swiss Federal Institute of Technology in Zurich, Zurich, Switzerland
Related authors
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Tom Schaber, Mohammedreza Jalali, Alberto Ceccato, Alba Simona Zappone, Giacomo Pozzi, Valentin Gischig, Marian Hertrich, Men-Andrin Meier, Timo Seemann, Hannes Claes, Yves Guglielmi, Domenico Giardini, Stefan Wiemer, Massimo Cocco, and Florian Amann
EGUsphere, https://doi.org/10.5194/egusphere-2025-4733, https://doi.org/10.5194/egusphere-2025-4733, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
We studied a deep fault zone in Switzerland to gain a better understanding of how water moves through rocks and how this affects earthquake activity. Using field and laboratory tests, we found that water flow is strongly controlled by open fractures and changes significantly with scale. Small samples underestimate flow compared to larger tests. Our results show that faults are highly variable, highlighting the need for site-specific studies when assessing risks or planning experiments.
Valentin Samuel Gischig, Antonio Pio Rinaldi, Andres Alcolea, Falko Bethman, Marco Broccardo, Kai Erich Norbert Bröker, Raymi Castilla, Federico Ciardo, Victor Clasen Repollés, Virginie Durand, Nima Gholizadeh Doonechaly, Marian Hertrich, Rebecca Hochreutener, Philipp Kästli, Dimitrios Karvounis, Xiaodong Ma, Men-Andrin Meier, Peter Meier, Maria Mesimeri, Arnaud Mignan, Anne Obermann, Katrin Plenkers, Martina Rosskopf, Francisco Serbeto, Paul Antony Selvadurai, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Jordan Aaron, Hansruedi Maurer, and Domenico Giardini
EGUsphere, https://doi.org/10.5194/egusphere-2024-3882, https://doi.org/10.5194/egusphere-2024-3882, 2025
Short summary
Short summary
Induced earthquakes present a major obstacle for developing geoenergy resources. These occur during hydraulic stimulations that enhance fluid pathways in the rock. In the Bedretto Underground Laboratory, hydraulic stimulations are investigated in a downscaled manner. A workflow to analyse the hazard of induced earthquakes is applied at different stages of the test program. The hazard estimates illustrate the difficulty to reduce the uncertainty owing to the variable seismogenic responses.
Peter Achtziger-Zupančič, Alberto Ceccato, Alba Simona Zappone, Giacomo Pozzi, Alexis Shakas, Florian Amann, Whitney Maria Behr, Daniel Escallon Botero, Domenico Giardini, Marian Hertrich, Mohammadreza Jalali, Xiaodong Ma, Men-Andrin Meier, Julian Osten, Stefan Wiemer, and Massimo Cocco
Solid Earth, 15, 1087–1112, https://doi.org/10.5194/se-15-1087-2024, https://doi.org/10.5194/se-15-1087-2024, 2024
Short summary
Short summary
We detail the selection and characterization of a fault zone for earthquake experiments in the Fault Activation and Earthquake Ruptures (FEAR) project at the Bedretto Lab. FEAR, which studies earthquake processes, overcame data collection challenges near faults. The fault zone in Rotondo granite was selected based on geometry, monitorability, and hydro-mechanical properties. Remote sensing, borehole logging, and geological mapping were used to create a 3D model for precise monitoring.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Viktor J. Bruckman, Gregor Giebel, Christopher Juhlin, Sonja Martens, Antonio P. Rinaldi, and Michael Kühn
Adv. Geosci., 56, 13–18, https://doi.org/10.5194/adgeo-56-13-2021, https://doi.org/10.5194/adgeo-56-13-2021, 2021
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Cited articles
Aeschbach-Hertig, W. and Solomon, D. K.: Noble Gas Thermometry in Groundwater Hydrology, Springer Berlin Heidelberg, Berlin, Heidelberg, 81–122, https://doi.org/10.1007/978-3-642-28836-4_5, 2013. a
Batlle-Aguilar, J., Banks, E. W., Batelaan, O., Kipfer, R., Brennwald, M. S., and Cook, P. G.: Groundwater residence time and aquifer recharge in multilayered, semi-confined and faulted aquifer systems using environmental tracers, J. Hydrol., 546, 150–165, https://doi.org/10.1016/j.jhydrol.2016.12.036, 2017. a
Berndt, C., Hensen, C., Mortera-Gutierrez, C., Sarkar, S., Geilert, S., Schmidt, M., Liebetrau, V., Kipfer, R., Scholz, R., Doll, M., Muff, S., Karstens, J., Planke, S., Petersen, S., Böttner, C., Chi, W.-C., Moser, M., Behrendt, R., Fiskal, A., Lever, M. A., Su, C.-C., Deng, L., Brennwald, M. S., and Lizarralde, D.: Rifting under steam – How rift magmatism triggers methane venting from sedimentary basins, Geology, 44, 767–770, https://doi.org/10.1130/G38049.1, 2016. a
Brennwald, M. S., Tomonaga, Y., and Kipfer, R.: Deconvolution and compensation of mass spectrometric overlap interferences with the miniRUEDI portable mass spectrometer, MethodsX, 7, 101038, https://doi.org/10.1016/j.mex.2020.101038, 2020. a
Brennwald, M. S., Peel, M., Blanc, T., Tomonaga, Y., Kipfer, R., Brunner, P., and Hunkeler, D.: New Experimental Tools to Use Noble Gases as Artificial Tracers for Groundwater Flow, Frontiers Water, 4, 925294, https://doi.org/10.3389/frwa.2022.925294, 2022. a
Cassar, N., Barnett, B. A., Bender, M. L., Kaiser, J., Hamme, R. C., and Tilbrook, B.: Continuous High-Frequency Dissolved O2/Ar Measurements by Equilibrator Inlet Mass Spectrometry, Anal. Chem., 81, 1855–1864, https://doi.org/10.1021/ac802300u, 2009. a
Chatton, E., Labasque, T., de La Bernardie, J., Guihéneuf, N., Bour, O., and Aquilina, L.: Field Continuous Measurement of Dissolved Gases with a CF-MIMS: Applications to the Physics and Biogeochemistry of Groundwater Flow, Environ. Sci. Technol., 51, 846–854, https://doi.org/10.1021/acs.est.6b03706, 2017. a
Engelhardt, E.: Stories of Noble Gases in Low Permeable Sediments, Hydrothermal Systems, and Groundwater in the Sea, Doctoral thesis, ETH Zurich, Zurich, https://doi.org/10.3929/ethz-b-000599686, 2023. a
Gentz, T. and Schlüter, M.: Underwater cryotrap-membrane inlet system (CT-MIS) for improved in situ analysis of gases, Limnol. Oceanogr., 10, 317–328, https://doi.org/10.4319/lom.2012.10.317, 2012. a
Giroud, S., Tomonaga, Y., Brennwald, M. S., Takahata, N., Shibata, T., Sano, Y., and Kipfer, R.: New experimental approaches enabling the continuous monitoring of gas species in hydrothermal fluids, Frontiers Water, 4, https://doi.org/10.3389/frwa.2022.1032094, 2023. a
Kipfer, R., Aeschbach-Hertig, W., Peeters, F., and Stute, M.: Noble gases in lakes and ground waters, in: Noble gases in geochemistry and cosmochemistry, edited by: Porcelli, D., Ballentine, C., and Wieler, R., vol. 47 of Rev. Mineral. Geochem., Mineralogical Society of America, Geochemical Society, 615–700, https://doi.org/10.2138/rmg.2002.47.14, 2002. a
Knapp, J., Osenbrück, K., Brennwald, M. S., and Cirpka, O. A.: In-situ mass spectrometry improves the estimation of stream reaeration from gas-tracer tests, Sci. Total Environ., 655, 1062–1070, https://doi.org/10.1016/j.scitotenv.2018.11.300, 2019. a
Kotiaho, T.: On-site environmental and in situ process analysis by mass spectrometry, J. Mass Spectrom., 31, 1–15, https://doi.org/10.1002/(SICI)1096-9888(199601)31:1<1::AID-JMS295>3.0.CO;2-J, 1996. a
Lightfoot, A. K., Brennwald, M. S., Prommer, H., Stopelli, E., Berg, M., Glodowska, M., Schneider, M., and Kipfer, R.: Noble gas constraints on the fate of arsenic in groundwater, Water Res., 214, 118199, https://doi.org/10.1016/j.watres.2022.118199, 2022a. a
Lightfoot, A. K., Stopelli, E., Berg, M., Brennwald, M., and Kipfer, R.: Noble gases in aquitard provide insight into underlying subsurface stratigraphy and free gas formation, Vadose Zone J., 22, e20232, https://doi.org/10.1002/vzj2.20232, 2022b. a
Luis, P., ed.: Fundamental Modelling of Membrane Systems, Elsevier, https://doi.org/10.1016/C2016-0-02489-0, 2018. a, b
Mächler, L.: Quantification of oxygen turnover in groundwater by continuous on-site gas concentration measurements, PhD thesis, ETH Zürich, https://doi.org/10.3929/ethz-a-009777572, 2012. a
Manning, C. C., Stanley, R. H. R., and Lott, D. E. I.: Continuous Measurements of Dissolved Ne, Ar, Kr, and Xe Ratios with a Field-Deployable Gas Equilibration Mass Spectrometer, Anal. Chem., 88, 3040–3048, https://doi.org/10.1021/acs.analchem.5b03102, 2016. a
Marion, C.: Measuring dissolved gases in tree xylem sap, Master's thesis, ETH Zurich, https://www.research-collection.ethz.ch/handle/20.500.11850/607722 (last access: 11 January 2024), 2022. a
Moeck, C., Radny, D., Popp, A., Brennwald, M. S., Stoll, S., Auckenthaler, A., Berg, M., and Schirmer, M.: Characterization of a managed aquifer recharge system using multiple tracers, Sci. Total Environ., 609, 701–714, https://doi.org/10.1016/j.scitotenv.2017.07.211, 2017. a
Moeck, C., Popp, A. L., Brennwald, M. S., Kipfer, R., and Schirmer, M.: Combined method of 3H 3He apparent age and on-site helium analysis to identify groundwater flow processes and transport of perchloroethylene (PCE) in an urban area, J. Contam. Hydrol., 238, 103773, https://doi.org/10.1016/j.jconhyd.2021.103773, 2021. a
Mächler, L., Brennwald, M. S., and Kipfer, R.: Membrane Inlet Mass Spectrometer for the Quasi-Continuous On-Site Analysis of Dissolved Gases in Groundwater, Environ. Sci. Technol., 46, 8288–8296, https://doi.org/10.1021/es3004409, 2012. a, b, c
Mächler, L., Brennwald, M. S., and Kipfer, R.: Argon Concentration Time-Series As a Tool to Study Gas Dynamics in the Hyporheic Zone, Environ. Sci. Technol., 47, 7060–7066, https://doi.org/10.1021/es305309b, 2013a. a
Mächler, L., Peter, S., Brennwald, M. S., and Kipfer, R.: Excess air formation as a mechanism for delivering oxygen to groundwater, Water Resour. Res., 49, 6847–6856, https://doi.org/10.1002/wrcr.20547, 2013b. a
Popp, A., Scheidegger, A., Moeck, C., Brennwald, M. S., and Kipfer, R.: Integrating Bayesian Groundwater Mixing Modeling With On‐Site Helium Analysis to Identify Unknown Water Sources, Water Resour. Res., 55, 10602–10615, https://doi.org/10.1029/2019WR025677, 2019. a, b
Popp, A., Manning, C., Brennwald, M. S., and Kipfer, R.: A New in Situ Method for Tracing Denitrification in Riparian Groundwater, Environ. Sci. Technol., 54, 1562–1572, https://doi.org/10.1021/acs.est.9b05393, 2020. a, b
Roques, C., Weber, U. W., Brixel, B., Krietsch, H., Dutler, N., Brennwald, M. S., Villiger, L., Doetsch, J., Jalali, M., Gischig, V., Amann, F., Valley, B., Klepikova, M., and Kipfer, R.: In situ observation of helium and argon release during fluid-pressure-triggered rock deformation, Nat. Sci. Rep., 10, p7347, https://doi.org/10.1038/s41598-020-63458-x, 2020. a
Schilling, O. S., Parajuli, A., Tremblay Otis, C., Müller, T. U., Antolinez Quijano, W., Tremblay, Y., Brennwald, M. S., Nadeau, D. F., Jutras, S., Kipfer, R., and Therrien, R.: Quantifying Groundwater Recharge Dynamics and Unsaturated Zone Processes in Snow-Dominated Catchments via On-Site Dissolved Gas Analysis, Water Resour. Res., 57, e2020WR028479, https://doi.org/doi.org/10.1029/2020WR028479, 2021. a
Schlüter, M. and Gentz, T.: Application of membrane inlet mass spectrometry for online and in situ analysis of methane in aquatic environments, J. Am. Soc. Mass Spectr., 19, 1395–1402, https://doi.org/10.1016/j.jasms.2008.07.021, 2008. a
Schmidt, M., Linke, P., Sommer, S., Esser, D., and Cherednichenko, S.: Natural CO2 Seeps Offshore Panarea: A Test Site for Subsea CO2 Leak Detection Technology, Mar. Technol. Soc. J., 49, 19–30, https://doi.org/10.4031/MTSJ.49.1.3, 2015. a
Sommer, S., Schmidt, M., and Linke, P.: Continuous inline mapping of a dissolved methane plume at a blowout site in the Central North Sea UK using a membrane inlet mass spectrometer – Water column stratification impedes immediate methane release into the atmosphere, Mar. Petrol. Geol., 68, 766–775, https://doi.org/10.1016/j.marpetgeo.2015.08.020, 2015. a
Tomonaga, Y., Grioud, N., Brennwald, M. S., Horstmann, E., Diomidis, N., Kipfer, R., and Wersin, P.: On-line monitoring of the gas composition in the Full-scale Emplacement experiment at Mont Terri (Switzerland), Appl. Geochem., 100, 234–243, https://doi.org/10.1016/j.apgeochem.2018.11.015, 2019. a
Tyroller, L., Brennwald, M. S., Busemann, H., Maden, C., Baur, H., and Kipfer, R.: Negligible fractionation of Kr and Xe isotopes by molecular diffusion in water, Earth Planet. Sc. Lett., 492, 73–78, https://doi.org/10.1016/j.epsl.2018.03.047, 2018. a
Visser, A., Singleton, M. J., Hillegonds, D. J., Velsko, C. A., Moran, J. E., and Esser, B. K.: A membrane inlet mass spectrometry system for noble gases at natural abundances in gas and water samples, Rapid Commun. Mass Sp., 27, 2472–2482, https://doi.org/10.1002/rcm.6704, 2013. a
Weber, U., Cook, P., Brennwald, M. S., Kipfer, R., and Stieglitz, T.: A Novel Approach To Quantify Air–Water Gas Exchange in Shallow Surface Waters Using High-Resolution Time Series of Dissolved Atmospheric Gases, Environ. Sci. Technol., 53, 1463–1470, https://doi.org/10.1021/acs.est.8b05318, 2018. a
Weber, U., Rinaldi, A., Roques, C., Zappone, A., Bernasconi, S., Jaggi, M., Wenning, Q., Schefer, S., Brennwald, M. S., and Kipfer, R.: Geochemical Monitoring of a CO2 Injection into a Caprock Analogue, in: Goldschmidt Conference 2021, virtual conference, p. 7347, https://doi.org/10.7185/gold2021.7347, 2021. a
Weber, U. W., Rinaldi, A. P., Roques, C., Wenning, Q. C., Bernasconi, S. M., Brennwald, M. S., Jaggi, M., Nussbaum, C., Schefer, S., Mazzotti, M., Wiemer, S., Giardini, D., Zappone, A., and Kipfer, R.: In-situ experiment reveals CO2 enriched fluid migration in faulted caprock, Sci. Rep., 13, 17006, https://doi.org/10.1038/s41598-023-43231-6, 2023. a, b, c
Zappone, A., P., R. A., Grab, M., Wenning, Q. C., Roques, C., Madonna, C., Obermann, A. C., Bernasconi, S. M., Brennwald, M. S., Kipfer, R., Soom, F., Cook, P., Guglielmi, Y., Nussbaum, C., Giardini, D., Mazzotti, M., and Wiemer, S.: Fault sealing and caprock integrity for CO2 storage: an in situ injection experiment, Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, 2021. a, b
Short summary
The gas equilibrium membrane inlet mass spectrometry (GE-MIMS) method for dissolved-gas quantification was expanded to work in water at high pressures.
The gas equilibrium membrane inlet mass spectrometry (GE-MIMS) method for dissolved-gas...