Articles | Volume 5, issue 2
https://doi.org/10.5194/gi-5-493-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gi-5-493-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Auroral meridian scanning photometer calibration using Jupiter
Department of Physics and Astronomy, University of Calgary, Alberta, Canada
Craig Unick
Department of Physics and Astronomy, University of Calgary, Alberta, Canada
Fokke Creutzberg
Natural Resources Canada, Geological Survey, Geomagnetism Laboratory, Natural Resources Canada Geomagnetism Laboratory, Ottawa, Ontario, Canada
Greg Baker
Department of Physics and Astronomy, University of Calgary, Alberta, Canada
Eric Davis
Department of Physics and Astronomy, University of Calgary, Alberta, Canada
Eric F. Donovan
Department of Physics and Astronomy, University of Calgary, Alberta, Canada
Martin Connors
Department of Physics and Astronomy, Athabasca University, Alberta, Canada
Cody Wilson
Department of Physics and Astronomy, University of Calgary, Alberta, Canada
Jarrett Little
Department of Physics and Astronomy, University of Calgary, Alberta, Canada
M. Greffen
Department of Physics and Astronomy, University of Calgary, Alberta, Canada
Neil McGuffin
Department of Physics and Astronomy, University of Calgary, Alberta, Canada
Related authors
No articles found.
Peter Dalin, Hidehiko Suzuki, Nikolay Pertsev, Vladimir Perminov, Nikita Shevchuk, Egor Tsimerinov, Mark Zalcik, Jay Brausch, Tom McEwan, Iain McEachran, Martin Connors, Ian Schofield, Audrius Dubietis, Kazimieras Černis, Alexander Zadorozhny, Andrey Solodovnik, Daria Lifatova, Jesper Grønne, Ole Hansen, Holger Andersen, Dmitry Melnikov, Alexander Manevich, Nikolay Gusev, and Vitaly Romejko
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2021-28, https://doi.org/10.5194/angeo-2021-28, 2021
Revised manuscript not accepted
Short summary
Short summary
The 2020 summer season has revealed frequent occurrences of noctilucent clouds around the Northern hemisphere at middle latitudes (45–55° N). We have found that there has been a moderate decrease in the upper mesosphere temperature between 2016 and 2020 and no dramatic changes have been observed in temperature in the summer of 2020 at the middle latitude mesopause. At the same time, water vapor concentration has significantly increased in the zonal mean H2O value in the 2020 summer.
Cited articles
Akasofu, S. I.: Dynamic morphology of auroras, Space Sci. Rev., 4, 498–540, 1965.
Alekseeva, G. A., Arkharov, A. A., Galkin, V. D., Hagen-Thorn, E. I., Nikanorova, I. N., Novikov, V. V., Novopashenny, V. B., Pakhomov, V. P., Ruban, E. V., and Shchegolev, D. E.: The Pulkovo spectrophotometric catalog of bright stars in the range from 320 to 1080 nm, Baltic Astron., 5, 603–838, 1996.
Alekseeva, G. A., Arkharov, A. A., Galkin, V. D., Hagen-Thorn, E. I., Nikanorova, I. N., Novikov, V. V., Novopashenny, V. B., Pakhomov, V. P., Ruban, E. V., and Shchegolev, D. E.: The Pulkovo spectrophotometric catalog of bright stars in the range from 320 to 1080 nm – A supplement, Baltic Astron., 6, 481–496, 1997.
Baker, D. J.: Rayleigh, the unit for light radiance, Appl. Optics, 13, 2160–2163, 1974.
Baker, D. J. and Romick, G. J.: The rayleigh: interpretation of the unit in terms of column emission rate or apparent radiance expressed in SI units, Appl. Optics, 15, 1966–1968, 1976.
Blackwell, D., Ellis, R., Ibbetson, P. A., Petford, A. D., and Willis, R. B.: The continuum flux distribution for Arcturus, Mon. Notic. Roy. Astron. Soc., 171, 425–439, 1975.
Blanchard, G. T., Lyons, L. R., Samson, J. C., and Rich, F. J.: Locating the polar cap boundary from observations of 6300 Å auroral emission, J. Geophys. Res., 100, 7855–7862, 1995.
Blanchard, G. T., Lyons, L. R., and Samson, J. C.: Accuracy of using 6300 Å auroral emission to identify the magnetic separatrix on the nightside of Earth, J. Geophys. Res., 102, 9697–9703, https://doi.org/10.1029/96JA04000, 1997.
Bohlin, R. C.: HST Stellar Standards with 1 % Accuracy in Absolute Flux, in: The future of photometric, spectrophotometric, and polarimetric standardization, vol. CS-364, edited by: Sterken, C., ASP Conference Series, Blankenberge, Belgium, 315–333, 2007.
Bohlin, R. C.: HST Calspec flux standards: Sirius (and Vega), arXiv, 2014.
Brändström, B. U. E., Enell, C.-F., Widell, O., Hansson, T., Whiter, D., Mäkinen, S., Mikhaylova, D., Axelsson, K., Sigernes, F., Gulbrandsen, N., Schlatter, N. M., Gjendem, A. G., Cai, L., Reistad, J. P., Daae, M., Demissie, T. D., Andalsvik, Y. L., Roberts, O., Poluyanov, S., and Chernouss, S.: Results from the intercalibration of optical low light calibration sources 2011, Geosci. Instrum. Method. Data Syst., 1, 43–51, https://doi.org/10.5194/gi-1-43-2012, 2012.
Chapman, S.: A mechanical-optical method of reduction of pairs of auroral plates, Terr. Magnet. Atmos. Elect., 39, 299–303, 1934.
Colina, L., Bohlin, R., and Castelli, F.: Absolute flux calibrated spectrum of Vega, Tech. rep., Space Telescope Science Institute, 1996.
Dahlgren, H., Gustavsson, B., Lanchester, B. S., Ivchenko, N., Brändström, U., Whiter, D. K., Sergienko, T., Sandahl, I., and Marklund, G.: Energy and flux variations across thin auroral arcs, Ann. Geophys., 29, 1699–1712, https://doi.org/10.5194/angeo-29-1699-2011, 2011.
Donovan, E. F., Jackel, B. J., Strangeway, R. J., and Klumpar, D. M.: Energy Dependence of the Latitude of the 1–25 KeV Ion Isotropy Boundary, Sodankyla Geophys. Obs. Publ., 92, 11–14, 2003.
Downey, E. C.: XEphem, http://www.clearskyinstitute.com/xephem (last access: September 2016), 2015.
Duriscoe, D., Luginbuhl, C., and Moore, C.: Measuring Night-Sky Brightness with a Wide-Field CCD Camera, Publ. Astron. Soc. Pacific, 119, 192–213, https://doi.org/10.1086/512069, 2007.
Fuller, V. R.: Auroral observations at the Alaska agricultural college and school of mines, 1930–31 – Concluded, Terr. Magnet. Atmos. Elect., 37, 150–166, 1931.
Galand, M., Baumgardner, J., Pallamraju, D., Chakrabarti, S., Lovhaug, U. P., Lummerzheim, D., Lanchester, B. S., and Rees, M. H.: Spectral imaging of proton aurora and twilight at Tromsø, Norway, J. Geophys. Res., 109, 1–14, https://doi.org/10.1029/2003JA010033, 2004.
Gladstone, R., Mende, S., Frey, H., Geller, S., Immel, T., Lampton, M., Spann, J., Gerard, J.-C., Habraken, S., Renotte, E., Jamar, C., Rochus, P., and Lauche, H.: Stellar Calibration of the WIC and SI Imagers and the GEO Photometers on IMAGE/FUV, Trans. AGU, 81, F1034, 2000.
Griffin, R. and Lynas-Gray, A.: The effective temperature of Arcturus, Astron. J., 117, 2998–3006, 1999.
Grubbs, G. I., Michell, R., Samara, M., and Hampton, D.: A synthesis of star calibration techniques for ground-based narrowband EMCCD imagres used in auroral photometry, J. Geophys. Res.-Space Phys., 121, 5991–6002, https://doi.org/10.1002/2015JA022186, 2016.
Hayes, D. S.: Stellar absolute fluxes and energy distributions from 0.32 to 4.0 um, in: Calibration of Fundamental Stellar Quantities, International Astronomical Union, Como, Italy, 225–252, 1985.
Hunten, D., Roach, F., and Chamberlain, J.: A photometric unit for the airglow and aurora, J. Atmos. Terr. Phys., 8, 345–346, https://doi.org/10.1016/0021-9169(56)90111-8, 1956.
Johnston, S.: Autonomous meridian scanning photometer for auroral observations, Opt. Eng., 28, 20–24, 1989.
Karkoschka, E.: Methane, Ammonia, and Temperature Measurements of the Jovian Planets and Titan from CCD Spectrophotometry, Icarus, 133, 134–146, https://doi.org/10.1006/icar.1998.5913, 1998.
Kieffer, H. H. and Stone, T. C.: The Spectral Irradiance of the Moon, Astron. J., 129, 2887–2901, https://doi.org/10.1086/430185, 2005.
Kinsey, J. H.: Auroral Parallactic Measurements at Byrd Station, Antarctica, during 1963, J. Geophys. Res., 70, 579–596, 1963.
Knudsen, D. J., Donovan, E. F., Cogger, L. L., Jackel, B. J., and Shaw, W. D.: Width and structure of mesoscale optical auroral arcs, Geophys. Res. Lett., 28, 705–708, https://doi.org/10.1029/2000GL011969, 2001.
Lyons, L. R., Nagai, T., Blanchard, G. T., Samson, J. C., Yamamoto, T., Mukai, T., Nishida, A., and Kokubun, S.: Association between Geotail plasma flows and auroral poleward boundary intensifications observed by CANOPUS photometers, J. Geophys. Res., 104, 4485–4500, https://doi.org/10.1029/1998JA900140, 1999.
Mallama, A.: The magnitude and albedo of Mars, Icarus, 192, 404–416, https://doi.org/10.1016/j.icarus.2007.07.011, 2007.
Mallama, A.: Improved luminosity model and albedo for Saturn, Icarus, 218, 56–59, https://doi.org/10.1016/j.icarus.2011.11.035, 2012.
Olmo, F. J., Cazorla, A., Alados-Arboledas, L., López-Alvarez, M. A., Hernández-Andrés, J., and Romero, J.: Retrieval of the optical depth using an all-sky CCD camera, Appl. Optics, 47, H182–H189, 2008.
Patat, F., Moehler, S., O'Brien, K., Pompei, E., Bensby, T., Carraro, G., de Ugarte Postigo, A., Fox, A., Gavignaud, I., James, G., Korhonen, H., Ledoux, C., Randall, S., Sana, H., Smoker, J., Stefl, S., and Szeifert, T.: Optical atmospheric extinction over Cerro Paranal, Astron. Astrophys., 527, A91, https://doi.org/10.1051/0004-6361/201015537, 2011.
Rees, M. H. and Luckey, D.: Auroral Electron Energy Derived From Ratio of Spectroscopic Emissions, 1. Model Computations, J. Geophys. Res., 79, 5181–5186, https://doi.org/10.1029/JA079i034p05181, 1974.
Román, R., Antón, M., Cazorla, A., de Miguel, A., Olmo, F. J., Bilbao, J., and Alados-Arboledas, L.: Calibration of an all-sky camera for obtaining sky radiance at three wavelengths, Atmos. Meas. Tech., 5, 2013–2024, https://doi.org/10.5194/amt-5-2013-2012, 2012.
Rostoker, G., Samson, J. C., Creutzberg, F., Hughes, T. J., McDiarmid, D. R., McNamara, A. G., Jones, A. V., Wallis, D. D., and Cogger, L. L.: Canopus – A ground-based instrument array for remote sensing the high latitude ionosphere during the ISTP/GGS program, Space Sci. Rev., 71, 743–760, https://doi.org/10.1007/BF00751349, 1995.
Samson, J. C., Lyons, L. R., Newell, P. T., Creutzberg, F., and Xu, B.: Proton aurora and substorm intensifications, Geophys. Res. Lett., 19, 2167–2170, 1992.
Seidelmann, P. K.: The Explanatory Supplement to the Astronomical Almanac, 2nd Edn., University Science Books, Sausalito, California, 1992.
Seidelmann, P. K.: Explanatory Supplement to the Astronomical Almanac, 3rd Edn., University Science Books, Sausalito, California, 2005.
Sterken, C. and Manfroid, J.: Astronomical Photometry, Kluwer Academic Publishers, Dordrecht, Boston, 1992.
Stormer, C.: Preliminary report on the results of the aurora-polaris expedition to bossekop in the spring of 1913, Terr. Magnet. Atmos. Elect., 20, 1–12, 1915.
Strickland, D. J., Meier, R. R., Hecht, J. H., and Christensen, A. B.: Deducing Composition and Incident Electron Spectra From Ground-Based Auroral Optical Measurements: Theory and Model Results, J. Geophys. Res., 94, 13527–13539, https://doi.org/10.1029/JA094iA10p13527, 1989.
Thuillier, G., Hersé, M., Labs, D., Foujols, T., Peetermans, W., Gillotay, D., Simon, P. C., and Mandel, H.: The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions, Solar Physics, 214, 1–22, 2003.
Tomasi, C. and Petkov, B.: Calculations of relative optical air masses for various aerosol types and minor gases in Arctic and Antarctic atmospheres, J. Geophys. Res.-Atmos., 119, 1363–1385, https://doi.org/10.1002/2013JD020600, 2014.
Vargas, M., Benítez, P., Bajo, F., and Vivas, A.: Measurements of atmospheric extinction at a ground level observatory, Astrophys. Space Sci., 279, 261–269, https://doi.org/10.1023/A:1015184127925, 2002.
Wang, Z.: Absolute Calibration of ALIS Cameras, Master's thesis, Lulea University of Technology, Lulea, 2011.
Wang, Z., Wu, B., and Sergienko, T.: A Non-linearity Correction Method for Calibration of Optical Sensor at Low Level Light, AsiaSim, 2012, 126–134, https://doi.org/10.1007/978-3-642-34384-1_16, 2012.
Whiter, D., Lanchester, B. S., Gustavsson, B., Ivchenko, N., and Dahlgren, H.: Using multispectral optical observations to identify the acceleration mechanism responsible for flickering aurora, J. Geophys. Res., 115, A12315, https://doi.org/10.1029/2010JA015805, 2010.
Zesta, E., Lyons, L. R., and Donovan, E. F.: The auroral signature of earthward flow bursts observed in the magnetotail, Geophys. Res. Lett., 27, 3241–3244, 2000.
Zhang, H.-W. H.-H., Liu, X.-W., Yuan, H.-B., Zhao, H.-B., Yao, J.-S., and Xiang, M.-S.: Atmospheric extinction coefficients and night sky brightness at the Xuyi Observation Station, Res. Astron. Astrophys., 13, 490–500, https://doi.org/10.1088/1674-4527/13/4/010, 2013.
Short summary
In order to compare auroral observations, it is necessary to ensure that all instruments are properly calibrated. This can be difficult to achieve with different instruments operated for extended intervals at remote field sites under harsh conditions. Astronomical sources can be used for independent absolute calibration procedures. Under ideal conditions Jupiter is an excellent source, as it can provide more light than the brightest star. We use Jupiter to calibrate an auroral MSP network.
In order to compare auroral observations, it is necessary to ensure that all instruments are...