Articles | Volume 5, issue 1
https://doi.org/10.5194/gi-5-65-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gi-5-65-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A new high-precision and low-power GNSS receiver for long-term installations in remote areas
David H. Jones
British Antarctic Survey, High Cross, Madingley Road, Cambridge, UK
Carl Robinson
British Antarctic Survey, High Cross, Madingley Road, Cambridge, UK
British Antarctic Survey, High Cross, Madingley Road, Cambridge, UK
Related authors
D. H. Jones and G. H. Gudmundsson
Nat. Hazards Earth Syst. Sci., 15, 1243–1250, https://doi.org/10.5194/nhess-15-1243-2015, https://doi.org/10.5194/nhess-15-1243-2015, 2015
Short summary
Short summary
Icebergs are a natural hazard to maritime operations in polar regions. Iceberg populations are increasing, as is the demand for access to both Arctic and Antarctic seas. Soon the ability to reliably track icebergs may become a necessity for continued operational safety. In this paper we describe the design of a tracking sensor that can be deployed from an aircraft during surveys of Antarctic icebergs, and detail the results of its first deployment operation on iceberg B-31.
R. Anderson, D. H. Jones, and G. H. Gudmundsson
Nat. Hazards Earth Syst. Sci., 14, 917–927, https://doi.org/10.5194/nhess-14-917-2014, https://doi.org/10.5194/nhess-14-917-2014, 2014
Richard Parsons, Sainan Sun, G. Hilmar Gudmundsson, Jan Wuite, and Thomas Nagler
The Cryosphere, 18, 5789–5801, https://doi.org/10.5194/tc-18-5789-2024, https://doi.org/10.5194/tc-18-5789-2024, 2024
Short summary
Short summary
In 2022, multi-year landfast sea ice in Antarctica's Larsen B embayment disintegrated, after which time an increase in the rate at which Crane Glacier discharged ice into the ocean was observed. As the fast ice was joined to the glacier terminus, it could provide resistance against the glacier's flow, slowing down the rate of ice discharge. We used numerical modelling to quantify this resistive stress and found that the fast ice provided significant support to Crane prior to its disintegration.
Xianwei Wang, Hilmar Gudmundsson, and David Holland
EGUsphere, https://doi.org/10.5194/egusphere-2024-2790, https://doi.org/10.5194/egusphere-2024-2790, 2024
Short summary
Short summary
Understanding why iceberg calved during drifting in the ocean is important to understand the life cycle and the influence on the surrounding ocean of an iceberg. This study explains why iceberg A68a calved when approaching the South Georgia Island in late 2020 during its drifting in the Southern Ocean using satellite observation and modeling, which was caused by collision with seamount.
Brad Reed, J. A. Mattias Green, Adrian Jenkins, and G. Hilmar Gudmundsson
The Cryosphere, 18, 4567–4587, https://doi.org/10.5194/tc-18-4567-2024, https://doi.org/10.5194/tc-18-4567-2024, 2024
Short summary
Short summary
We use a numerical ice-flow model to simulate the response of a 1940s Pine Island Glacier to changes in melting beneath its ice shelf. A decadal period of warm forcing is sufficient to push the glacier into an unstable, irreversible retreat from its long-term position on a subglacial ridge to an upstream ice plain. This retreat can only be stopped when unrealistic cold forcing is applied. These results show that short warm anomalies can lead to quick and substantial increases in ice flux.
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024, https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Short summary
We conducted a comprehensive analysis of the stabilization and reinitialization techniques currently employed in ISSM and Úa for solving level-set equations, specifically those related to the dynamic representation of moving ice fronts within numerical ice sheet models. Our results demonstrate that the streamline upwind Petrov–Galerkin (SUPG) method outperforms the other approaches. We found that excessively frequent reinitialization can lead to exceptionally high errors in simulations.
Sebastian H. R. Rosier, G. Hilmar Gudmundsson, Adrian Jenkins, and Kaitlin A. Naughten
EGUsphere, https://doi.org/10.5194/egusphere-2024-1838, https://doi.org/10.5194/egusphere-2024-1838, 2024
Short summary
Short summary
Glaciers in the Amundsen Sea region of Antarctica have been retreating and losing mass, but their future contribution to global sea level rise remains highly uncertain. We use an ice sheet model and uncertainty quantification methods to evaluate the probable range of mass loss from this region for two future climate scenarios and find that the rate of ice loss until 2100 will likely remain similar to present-day observations, with little sensitivity to climate scenario over this short timeframe.
J. Rachel Carr, Emily A. Hill, and G. Hilmar Gudmundsson
The Cryosphere, 18, 2719–2737, https://doi.org/10.5194/tc-18-2719-2024, https://doi.org/10.5194/tc-18-2719-2024, 2024
Short summary
Short summary
The Greenland Ice Sheet is one of the world's largest glaciers and is melting quickly in response to climate change. It contains fast-flowing channels of ice that move ice from Greenland's centre to its coasts and allow Greenland to react quickly to climate warming. As a result, we want to predict how these glaciers will behave in the future, but there are lots of uncertainties. Here we assess the impacts of two main sources of uncertainties in glacier models.
Cristina Gerli, Sebastian Rosier, G. Hilmar Gudmundsson, and Sainan Sun
The Cryosphere, 18, 2677–2689, https://doi.org/10.5194/tc-18-2677-2024, https://doi.org/10.5194/tc-18-2677-2024, 2024
Short summary
Short summary
Recent efforts have focused on using AI and satellite imagery to track crevasses for assessing ice shelf damage and informing ice flow models. Our study reveals a weak connection between these observed products and damage maps inferred from ice flow models. While there is some improvement in crevasse-dense regions, this association remains limited. Directly mapping ice damage from satellite observations may not significantly improve the representation of these processes within ice flow models.
Ole Richter, Ralph Timmermann, G. Hilmar Gudmundsson, and Jan De Rydt
EGUsphere, https://doi.org/10.5194/egusphere-2024-648, https://doi.org/10.5194/egusphere-2024-648, 2024
Short summary
Short summary
The new coupled ice sheet-ocean model addresses challenges related to horizontal resolution through advanced mesh flexibility, enabled by the use of unstructured grids. We describe the new model, verify its functioning in an idealised setting and demonstrate its advantages in a global-ocean/Antarctic ice sheet domain. The results of this study comprise an important step towards improving predictions of the Antarctic contribution to sea level rise over centennial time scales.
Emily A. Hill, Benoît Urruty, Ronja Reese, Julius Garbe, Olivier Gagliardini, Gaël Durand, Fabien Gillet-Chaulet, G. Hilmar Gudmundsson, Ricarda Winkelmann, Mondher Chekki, David Chandler, and Petra M. Langebroek
The Cryosphere, 17, 3739–3759, https://doi.org/10.5194/tc-17-3739-2023, https://doi.org/10.5194/tc-17-3739-2023, 2023
Short summary
Short summary
The grounding lines of the Antarctic Ice Sheet could enter phases of irreversible retreat or advance. We use three ice sheet models to show that the present-day locations of Antarctic grounding lines are reversible with respect to a small perturbation away from their current position. This indicates that present-day retreat of the grounding lines is not yet irreversible or self-enhancing.
Ronja Reese, Julius Garbe, Emily A. Hill, Benoît Urruty, Kaitlin A. Naughten, Olivier Gagliardini, Gaël Durand, Fabien Gillet-Chaulet, G. Hilmar Gudmundsson, David Chandler, Petra M. Langebroek, and Ricarda Winkelmann
The Cryosphere, 17, 3761–3783, https://doi.org/10.5194/tc-17-3761-2023, https://doi.org/10.5194/tc-17-3761-2023, 2023
Short summary
Short summary
We use an ice sheet model to test where current climate conditions in Antarctica might lead. We find that present-day ocean and atmosphere conditions might commit an irreversible collapse of parts of West Antarctica which evolves over centuries to millennia. Importantly, this collapse is not irreversible yet.
Sebastian H. R. Rosier, Christopher Y. S. Bull, Wai L. Woo, and G. Hilmar Gudmundsson
The Cryosphere, 17, 499–518, https://doi.org/10.5194/tc-17-499-2023, https://doi.org/10.5194/tc-17-499-2023, 2023
Short summary
Short summary
Future ice loss from Antarctica could raise sea levels by several metres, and key to this is the rate at which the ocean melts the ice sheet from below. Existing methods for modelling this process are either computationally expensive or very simplified. We present a new approach using machine learning to mimic the melt rates calculated by an ocean model but in a fraction of the time. This approach may provide a powerful alternative to existing methods, without compromising on accuracy or speed.
Bertie W. J. Miles, Chris R. Stokes, Adrian Jenkins, Jim R. Jordan, Stewart S. R. Jamieson, and G. Hilmar Gudmundsson
The Cryosphere, 17, 445–456, https://doi.org/10.5194/tc-17-445-2023, https://doi.org/10.5194/tc-17-445-2023, 2023
Short summary
Short summary
Satellite observations have shown that the Shirase Glacier catchment in East Antarctica has been gaining mass over the past 2 decades, a trend largely attributed to increased snowfall. Our multi-decadal observations of Shirase Glacier show that ocean forcing has also contributed to some of this recent mass gain. This has been caused by strengthening easterly winds reducing the inflow of warm water underneath the Shirase ice tongue, causing the glacier to slow down and thicken.
Jowan M. Barnes and G. Hilmar Gudmundsson
The Cryosphere, 16, 4291–4304, https://doi.org/10.5194/tc-16-4291-2022, https://doi.org/10.5194/tc-16-4291-2022, 2022
Short summary
Short summary
Models must represent how glaciers slide along the bed, but there are many ways to do so. In this paper, several sliding laws are tested and found to affect different regions of the Antarctic Ice Sheet in different ways and at different speeds. However, the variability in ice volume loss due to sliding-law choices is low compared to other factors, so limited empirical knowledge of sliding does not prevent us from making predictions of how an ice sheet will evolve.
Tom Mitcham, G. Hilmar Gudmundsson, and Jonathan L. Bamber
The Cryosphere, 16, 883–901, https://doi.org/10.5194/tc-16-883-2022, https://doi.org/10.5194/tc-16-883-2022, 2022
Short summary
Short summary
We modelled the response of the Larsen C Ice Shelf (LCIS) and its tributary glaciers to the calving of the A68 iceberg and validated our results with observations. We found that the impact was limited, confirming that mostly passive ice was calved. Through further calving experiments we quantified the total buttressing provided by the LCIS and found that over 80 % of the buttressing capacity is generated in the first 5 km of the ice shelf downstream of the grounding line.
Emily A. Hill, Sebastian H. R. Rosier, G. Hilmar Gudmundsson, and Matthew Collins
The Cryosphere, 15, 4675–4702, https://doi.org/10.5194/tc-15-4675-2021, https://doi.org/10.5194/tc-15-4675-2021, 2021
Short summary
Short summary
Using an ice flow model and uncertainty quantification methods, we provide probabilistic projections of future sea level rise from the Filchner–Ronne region of Antarctica. We find that it is most likely that this region will contribute negatively to sea level rise over the next 300 years, largely as a result of increased surface mass balance. We identify parameters controlling ice shelf melt and snowfall contribute most to uncertainties in projections.
Jowan M. Barnes, Thiago Dias dos Santos, Daniel Goldberg, G. Hilmar Gudmundsson, Mathieu Morlighem, and Jan De Rydt
The Cryosphere, 15, 1975–2000, https://doi.org/10.5194/tc-15-1975-2021, https://doi.org/10.5194/tc-15-1975-2021, 2021
Short summary
Short summary
Some properties of ice flow models must be initialised using observed data before they can be used to produce reliable predictions of the future. Different models have different ways of doing this, and the process is generally seen as being specific to an individual model. We compare the methods used by three different models and show that they produce similar outputs. We also demonstrate that the outputs from one model can be used in other models without introducing large uncertainties.
Sebastian H. R. Rosier, Ronja Reese, Jonathan F. Donges, Jan De Rydt, G. Hilmar Gudmundsson, and Ricarda Winkelmann
The Cryosphere, 15, 1501–1516, https://doi.org/10.5194/tc-15-1501-2021, https://doi.org/10.5194/tc-15-1501-2021, 2021
Short summary
Short summary
Pine Island Glacier has contributed more to sea-level rise over the past decades than any other glacier in Antarctica. Ice-flow modelling studies have shown that it can undergo periods of rapid mass loss, but no study has shown that these future changes could cross a tipping point and therefore be effectively irreversible. Here, we assess the stability of Pine Island Glacier, quantifying the changes in ocean temperatures required to cross future tipping points using statistical methods.
Bertie W. J. Miles, Jim R. Jordan, Chris R. Stokes, Stewart S. R. Jamieson, G. Hilmar Gudmundsson, and Adrian Jenkins
The Cryosphere, 15, 663–676, https://doi.org/10.5194/tc-15-663-2021, https://doi.org/10.5194/tc-15-663-2021, 2021
Short summary
Short summary
We provide a historical overview of changes in Denman Glacier's flow speed, structure and calving events since the 1960s. Based on these observations, we perform a series of numerical modelling experiments to determine the likely cause of Denman's acceleration since the 1970s. We show that grounding line retreat, ice shelf thinning and the detachment of Denman's ice tongue from a pinning point are the most likely causes of the observed acceleration.
Jan De Rydt, Ronja Reese, Fernando S. Paolo, and G. Hilmar Gudmundsson
The Cryosphere, 15, 113–132, https://doi.org/10.5194/tc-15-113-2021, https://doi.org/10.5194/tc-15-113-2021, 2021
Short summary
Short summary
We used satellite observations and numerical simulations of Pine Island Glacier, West Antarctica, between 1996 and 2016 to show that the recent increase in its flow speed can only be reproduced by computer models if stringent assumptions are made about the material properties of the ice and its underlying bed. These assumptions are not commonly adopted in ice flow modelling, and our results therefore have implications for future simulations of Antarctic ice flow and sea level projections.
Kate Winter, Emily A. Hill, G. Hilmar Gudmundsson, and John Woodward
Earth Syst. Sci. Data, 12, 3453–3467, https://doi.org/10.5194/essd-12-3453-2020, https://doi.org/10.5194/essd-12-3453-2020, 2020
Short summary
Short summary
Satellite measurements of the English Coast in the Antarctic Peninsula reveal that glaciers are thinning and losing mass, but ice thickness data are required to assess these changes, in terms of ice flux and sea level contribution. Our ice-penetrating radar measurements reveal that low-elevation subglacial channels control fast-flowing ice streams, which release over 39 Gt of ice per year to floating ice shelves. This topography could make ice flows susceptible to future instability.
Stephen L. Cornford, Helene Seroussi, Xylar S. Asay-Davis, G. Hilmar Gudmundsson, Rob Arthern, Chris Borstad, Julia Christmann, Thiago Dias dos Santos, Johannes Feldmann, Daniel Goldberg, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, Gunter Leguy, William H. Lipscomb, Nacho Merino, Gaël Durand, Mathieu Morlighem, David Pollard, Martin Rückamp, C. Rosie Williams, and Hongju Yu
The Cryosphere, 14, 2283–2301, https://doi.org/10.5194/tc-14-2283-2020, https://doi.org/10.5194/tc-14-2283-2020, 2020
Short summary
Short summary
We present the results of the third Marine Ice Sheet Intercomparison Project (MISMIP+). MISMIP+ is one in a series of exercises that test numerical models of ice sheet flow in simple situations. This particular exercise concentrates on the response of ice sheet models to the thinning of their floating ice shelves, which is of interest because numerical models are currently used to model the response to contemporary and near-future thinning in Antarctic ice shelves.
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Reinhard Calov, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William H. Lipscomb, Malte Meinshausen, Esmond Ng, Sophie M. J. Nowicki, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020, https://doi.org/10.5194/esd-11-35-2020, 2020
Short summary
Short summary
We provide an estimate of the future sea level contribution of Antarctica from basal ice shelf melting up to the year 2100. The full uncertainty range in the warming-related forcing of basal melt is estimated and applied to 16 state-of-the-art ice sheet models using a linear response theory approach. The sea level contribution we obtain is very likely below 61 cm under unmitigated climate change until 2100 (RCP8.5) and very likely below 40 cm if the Paris Climate Agreement is kept.
Sebastian H. R. Rosier and G. Hilmar Gudmundsson
The Cryosphere, 14, 17–37, https://doi.org/10.5194/tc-14-17-2020, https://doi.org/10.5194/tc-14-17-2020, 2020
Short summary
Short summary
The flow of ice shelves is now known to be strongly affected by ocean tides, but the mechanism by which this happens is unclear. We use a viscoelastic model to try to reproduce observations of this behaviour on the Filchner–Ronne Ice Shelf in Antarctica. We find that tilting of the ice shelf explains the short-period behaviour, while tidally induced movement of the grounding line (the boundary between grounded and floating ice) explains the more complex long-period response.
Jan De Rydt, Gudmundur Hilmar Gudmundsson, Thomas Nagler, and Jan Wuite
The Cryosphere, 13, 2771–2787, https://doi.org/10.5194/tc-13-2771-2019, https://doi.org/10.5194/tc-13-2771-2019, 2019
Short summary
Short summary
Two large icebergs are about to break off from the Brunt Ice Shelf in Antarctica. Rifting started several years ago and is now approaching its final phase. Satellite data and computer simulations show that over the past 2 decades, growth of the ice shelf has caused a build-up of forces within the ice, which culminated in its fracture. These natural changes in geometry coincided with large variations in flow speed, a process that is thought to be relevant for all Antarctic ice shelf margins.
Emily A. Hill, G. Hilmar Gudmundsson, J. Rachel Carr, and Chris R. Stokes
The Cryosphere, 12, 3907–3921, https://doi.org/10.5194/tc-12-3907-2018, https://doi.org/10.5194/tc-12-3907-2018, 2018
Short summary
Short summary
Floating ice tongues in Greenland buttress inland ice, and their removal could accelerate ice flow. Petermann Glacier recently lost large sections of its ice tongue, but there was little glacier acceleration. Here, we assess the impact of future calving events on ice speeds. We find that removing the lower portions of the ice tongue does not accelerate flow. However, future iceberg calving closer to the grounding line could accelerate ice flow and increase ice discharge and sea level rise.
Edward C. King, Jan De Rydt, and G. Hilmar Gudmundsson
The Cryosphere, 12, 3361–3372, https://doi.org/10.5194/tc-12-3361-2018, https://doi.org/10.5194/tc-12-3361-2018, 2018
Short summary
Short summary
Ice shelves are thick sheets of ice floating on the ocean off the coasts of Antarctica and Greenland. They help regulate the flow of ice off the continent. Ice shelves undergo a natural cycle of seaward flow, fracture, iceberg production and regrowth. The Brunt Ice Shelf recently developed two large cracks. We used ground-penetrating radar to find out how the internal structure of the ice might influence the present crack development and the future stability of the ice shelf.
Ronja Reese, Ricarda Winkelmann, and G. Hilmar Gudmundsson
The Cryosphere, 12, 3229–3242, https://doi.org/10.5194/tc-12-3229-2018, https://doi.org/10.5194/tc-12-3229-2018, 2018
Short summary
Short summary
Accurately representing grounding-line flux is essential for modelling the evolution of the Antarctic Ice Sheet. Currently, in some large-scale ice-flow modelling studies a condition on ice flux across grounding lines is imposed using an analytically motivated parameterisation. Here we test this expression for Antarctic grounding lines and find that it provides inaccurate and partly unphysical estimates of ice flux for the highly buttressed ice streams.
Emily A. Hill, J. Rachel Carr, Chris R. Stokes, and G. Hilmar Gudmundsson
The Cryosphere, 12, 3243–3263, https://doi.org/10.5194/tc-12-3243-2018, https://doi.org/10.5194/tc-12-3243-2018, 2018
Short summary
Short summary
The dynamic behaviour (i.e. acceleration and retreat) of outlet glaciers in northern Greenland remains understudied. Here, we provide a new long-term (68-year) record of terminus change. Overall, recent retreat rates (1995–2015) are higher than the last 47 years. Despite region-wide retreat, we found disparities in dynamic behaviour depending on terminus type; grounded glaciers accelerated and thinned following retreat, while glaciers with floating ice tongues were insensitive to recent retreat.
Sebastian H. R. Rosier and G. Hilmar Gudmundsson
The Cryosphere, 12, 1699–1713, https://doi.org/10.5194/tc-12-1699-2018, https://doi.org/10.5194/tc-12-1699-2018, 2018
Short summary
Short summary
Ocean tides cause strong modulation of horizontal ice shelf flow, most notably at a fortnightly frequency that is absent in the vertical tidal forcing. We propose that tidal bending in the margins of the ice shelf produces sufficiently large stresses that the effective viscosity of ice in these regions is reduced during high and low tide. This effect can explain many features of the observed behaviour and implies that ice shelves in areas with strong tides move faster than they otherwise would.
Jan De Rydt, G. Hilmar Gudmundsson, Thomas Nagler, Jan Wuite, and Edward C. King
The Cryosphere, 12, 505–520, https://doi.org/10.5194/tc-12-505-2018, https://doi.org/10.5194/tc-12-505-2018, 2018
Short summary
Short summary
We provide an unprecedented view into the dynamics of two active rifts in the Brunt Ice Shelf through a unique set of field observations, novel satellite data products, and a state-of-the-art ice flow model. We describe the evolution of fracture width and length in great detail, pushing the boundaries of both spatial and temporal coverage, and provide a deeper insight into the process of iceberg formation, which exerts an important control over the mass balance of the Antarctic Ice Sheet.
Werner M. J. Lazeroms, Adrian Jenkins, G. Hilmar Gudmundsson, and Roderik S. W. van de Wal
The Cryosphere, 12, 49–70, https://doi.org/10.5194/tc-12-49-2018, https://doi.org/10.5194/tc-12-49-2018, 2018
Short summary
Short summary
Basal melting of ice shelves is a major factor in the decline of the Antarctic Ice Sheet, which can contribute significantly to sea-level rise. Here, we investigate a new basal melt model based on the dynamics of meltwater plumes. For the first time, this model is applied to all Antarctic ice shelves. The model results in a realistic melt-rate pattern given suitable data for the topography and ocean temperature, making it a promising tool for future simulations of the Antarctic Ice Sheet.
Sebastian H. R. Rosier, G. Hilmar Gudmundsson, Matt A. King, Keith W. Nicholls, Keith Makinson, and Hugh F. J. Corr
Earth Syst. Sci. Data, 9, 849–860, https://doi.org/10.5194/essd-9-849-2017, https://doi.org/10.5194/essd-9-849-2017, 2017
Short summary
Short summary
Tides can affect the flow of ice at hourly to yearly timescales. In some cases the ice responds at a different frequency than is found in the tidal forcing; for example, on Rutford Ice Stream the strongest response is at a fortnightly period. A new compilation of GPS data across the Ronne Ice Shelf and adjoining ice streams shows that this fortnightly modulation in ice flow is found across the entire region. Measurements of this kind can provide insights into ice rheology and basal processes.
Daniel Farinotti, Douglas J. Brinkerhoff, Garry K. C. Clarke, Johannes J. Fürst, Holger Frey, Prateek Gantayat, Fabien Gillet-Chaulet, Claire Girard, Matthias Huss, Paul W. Leclercq, Andreas Linsbauer, Horst Machguth, Carlos Martin, Fabien Maussion, Mathieu Morlighem, Cyrille Mosbeux, Ankur Pandit, Andrea Portmann, Antoine Rabatel, RAAJ Ramsankaran, Thomas J. Reerink, Olivier Sanchez, Peter A. Stentoft, Sangita Singh Kumari, Ward J. J. van Pelt, Brian Anderson, Toby Benham, Daniel Binder, Julian A. Dowdeswell, Andrea Fischer, Kay Helfricht, Stanislav Kutuzov, Ivan Lavrentiev, Robert McNabb, G. Hilmar Gudmundsson, Huilin Li, and Liss M. Andreassen
The Cryosphere, 11, 949–970, https://doi.org/10.5194/tc-11-949-2017, https://doi.org/10.5194/tc-11-949-2017, 2017
Short summary
Short summary
ITMIX – the Ice Thickness Models Intercomparison eXperiment – was the first coordinated performance assessment for models inferring glacier ice thickness from surface characteristics. Considering 17 different models and 21 different test cases, we show that although solutions of individual models can differ considerably, an ensemble average can yield uncertainties in the order of 10 ± 24 % the mean ice thickness. Ways forward for improving such estimates are sketched.
Xylar S. Asay-Davis, Stephen L. Cornford, Gaël Durand, Benjamin K. Galton-Fenzi, Rupert M. Gladstone, G. Hilmar Gudmundsson, Tore Hattermann, David M. Holland, Denise Holland, Paul R. Holland, Daniel F. Martin, Pierre Mathiot, Frank Pattyn, and Hélène Seroussi
Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, https://doi.org/10.5194/gmd-9-2471-2016, 2016
Short summary
Short summary
Coupled ice sheet–ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of ice sheets and glaciers, including assessing their contributions to sea level change. Here we describe the idealized experiments that make up three interrelated Model Intercomparison Projects (MIPs) for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities.
S. H. R. Rosier, G. H. Gudmundsson, and J. A. M. Green
The Cryosphere, 9, 1649–1661, https://doi.org/10.5194/tc-9-1649-2015, https://doi.org/10.5194/tc-9-1649-2015, 2015
Short summary
Short summary
We use a full-Stokes model to investigate the long period modulation of Rutford Ice Stream flow by the ocean tide. We find that using a nonlinear sliding law cannot fully explain the measurements and an additional mechanism, whereby tidally induced subglacial pressure variations are transmitted upstream from the grounding line, is also required to match the large amplitude and decay length scale of the observations.
D. H. Jones and G. H. Gudmundsson
Nat. Hazards Earth Syst. Sci., 15, 1243–1250, https://doi.org/10.5194/nhess-15-1243-2015, https://doi.org/10.5194/nhess-15-1243-2015, 2015
Short summary
Short summary
Icebergs are a natural hazard to maritime operations in polar regions. Iceberg populations are increasing, as is the demand for access to both Arctic and Antarctic seas. Soon the ability to reliably track icebergs may become a necessity for continued operational safety. In this paper we describe the design of a tracking sensor that can be deployed from an aircraft during surveys of Antarctic icebergs, and detail the results of its first deployment operation on iceberg B-31.
J. Wuite, H. Rott, M. Hetzenecker, D. Floricioiu, J. De Rydt, G. H. Gudmundsson, T. Nagler, and M. Kern
The Cryosphere, 9, 957–969, https://doi.org/10.5194/tc-9-957-2015, https://doi.org/10.5194/tc-9-957-2015, 2015
Short summary
Short summary
We present new analysis of satellite data showing the variability of glacier velocities in the Larsen B area, Antarctic Peninsula, back to 1995. Velocity data and estimates of ice thickness are used to derive ice discharge at different epochs. Velocities of the glaciers remain to date well above the velocities of the pre-collapse period. The response of individual glaciers differs, and velocities show significant temporal fluctuations, implying major variations in ice discharge and mass balance.
C. Martín, R. Mulvaney, G. H. Gudmundsson, and H. Corr
Clim. Past, 11, 547–557, https://doi.org/10.5194/cp-11-547-2015, https://doi.org/10.5194/cp-11-547-2015, 2015
S. H. R. Rosier, G. H. Gudmundsson, and J. A. M. Green
The Cryosphere, 8, 1763–1775, https://doi.org/10.5194/tc-8-1763-2014, https://doi.org/10.5194/tc-8-1763-2014, 2014
R. Anderson, D. H. Jones, and G. H. Gudmundsson
Nat. Hazards Earth Syst. Sci., 14, 917–927, https://doi.org/10.5194/nhess-14-917-2014, https://doi.org/10.5194/nhess-14-917-2014, 2014
G. H. Gudmundsson
The Cryosphere, 7, 647–655, https://doi.org/10.5194/tc-7-647-2013, https://doi.org/10.5194/tc-7-647-2013, 2013
J. De Rydt, G. H. Gudmundsson, H. F. J. Corr, and P. Christoffersen
The Cryosphere, 7, 407–417, https://doi.org/10.5194/tc-7-407-2013, https://doi.org/10.5194/tc-7-407-2013, 2013
G. H. Gudmundsson, J. Krug, G. Durand, L. Favier, and O. Gagliardini
The Cryosphere, 6, 1497–1505, https://doi.org/10.5194/tc-6-1497-2012, https://doi.org/10.5194/tc-6-1497-2012, 2012
Related subject area
Ground-based instruments
Development of an internet-of-things-based controlled-source ultrasonic audio frequency electromagnetic receiver
Distance of flight of cosmic-ray muons to study dynamics of the upper muosphere
A tool for estimating ground-based InSAR acquisition characteristics prior to monitoring installation and survey and its differences from satellite InSAR
An underground drip water monitoring network to characterize rainfall recharge of groundwater at different geologies, environments, and climates across Australia
Research and application of a flexible measuring array for deep displacement of landslides
A hydrate reservoir renovation device and its application in nitrogen bubble fracturing
Gas equilibrium membrane inlet mass spectrometry (GE-MIMS) for water at high pressure
Development of a power station unit in a distributed hybrid acquisition system of seismic and electrical methods based on the narrowband Internet of Things (NB-IoT)
Spectral observations at the Canary Island Long-Baseline Observatory (CILBO): calibration and datasets
Calculation of soil water content using dielectric-permittivity-based sensors – benefits of soil-specific calibration
The land–atmosphere feedback observatory: a new observational approach for characterizing land–atmosphere feedback
Design and construction of an automated and programmable resistivity meter for shallow subsurface investigation
Feasibility of irrigation monitoring with cosmic-ray neutron sensors
Design and operation of a long-term monitoring system for spectral electrical impedance tomography (sEIT)
Measurements of natural airflow within a Stevenson screen and its influence on air temperature and humidity records
The soil heat flux sensor functioning checks, imbalances' origins, and forgotten energies
Wind speed influences corrected Autocalibrated Soil Evapo-respiration Chamber (ASERC) evaporation measures
Assessing the feasibility of a directional cosmic-ray neutron sensing sensor for estimating soil moisture
Accounting for meteorological effects in the detector of the charged component of cosmic rays
Observation of the rock slope thermal regime, coupled with crackmeter stability monitoring: initial results from three different sites in Czechia (central Europe)
The impact and resolution of the GPS week number rollover of April 2019 on autonomous geophysical instrument platforms
Internet-of-things-based four-dimensional high-density electrical instrument for geophysical prospecting
Design and implementation of the detection software of a wireless microseismic acquisition station based on the Android platform
First evaluation of an absolute quantum gravimeter (AQG#B01) for future field experiments
A new borehole electromagnetic receiver developed for controlled-source electromagnetic methods
Daytime and nighttime aerosol optical depth implementation in CÆLIS
A geophone-based and low-cost data acquisition and analysis system designed for microtremor measurements
A monitoring system for spatiotemporal electrical self-potential measurements in cryospheric environments
Evaluating the suitability of the consumer low-cost Parrot Flower Power soil moisture sensor for scientific environmental applications
Development of a new distributed hybrid seismic and electrical data acquisition station based on system-on-a-programmable-chip technology
Development of a distributed hybrid seismic–electrical data acquisition system based on the Narrowband Internet of Things (NB-IoT) technology
A low-cost autonomous rover for polar science
Shallow geophysical techniques to investigate the groundwater table at the Great Pyramids of Giza, Egypt
Apsu: a wireless multichannel receiver system for surface nuclear magnetic resonance groundwater investigations
Development of high-precision distributed wireless microseismic acquisition stations
Links between annual surface temperature variation and land cover heterogeneity for a boreal forest as characterized by continuous, fibre-optic DTS monitoring
The development and test research of a multichannel synchronous transient electromagnetic receiver
Evaluating four gap-filling methods for eddy covariance measurements of evapotranspiration over hilly crop fields
Tri-axial square Helmholtz coil system at the Alibag Magnetic Observatory: upgraded to a magnetic sensor calibration facility
Intercomparison of cosmic-ray neutron sensors and water balance monitoring in an urban environment
Development of a full-waveform voltage and current recording device for multichannel transient electromagnetic transmitters
Making better sense of the mosaic of environmental measurement networks: a system-of-systems approach and quantitative assessment
Fog-based automatic true north detection for absolute magnetic declination measurement
Automated mineralogy based on micro-energy-dispersive X-ray fluorescence microscopy (µ-EDXRF) applied to plutonic rock thin sections in comparison to a mineral liberation analyzer
U.S. Geological Survey experience with the residual absolutes method
The magnetic observatory on Tatuoca, Belém, Brazil: history and recent developments
Several years of experience with automatic DI-flux systems: theory, validation and results
In situ vector calibration of magnetic observatories
A low-power data acquisition system for geomagnetic observatories and variometer stations
Method for processing XCP data with improved accuracy
Zucan Lin, Qisheng Zhang, Keyu Zhou, Xiyuan Zhang, Xinchang Wang, Hui Zhang, and Feng Liu
Geosci. Instrum. Method. Data Syst., 13, 325–336, https://doi.org/10.5194/gi-13-325-2024, https://doi.org/10.5194/gi-13-325-2024, 2024
Short summary
Short summary
This paper describes the development of a controlled-source ultra-audio frequency electromagnetic receiver based on remote wireless communication technology for use in geophysical prospecting. Our design successfully addresses several shortcomings of such instruments currently available on the market, including their weight, limitations in data acquisition frequency, and difficulty in connecting to the internet for remote monitoring.
Hiroyuki Tanaka
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2024-4, https://doi.org/10.5194/gi-2024-4, 2024
Revised manuscript accepted for GI
Short summary
Short summary
A new ground-based technique called "Distance of flight of cosmic-ray muons" for sensing the height of the layer of the Earth where cosmic-ray muons are generated called muopause which is closely related with the height of tropopause and lower stratosphere.
Charlotte Wolff, Marc-Henri Derron, Carlo Rivolta, and Michel Jaboyedoff
Geosci. Instrum. Method. Data Syst., 13, 225–248, https://doi.org/10.5194/gi-13-225-2024, https://doi.org/10.5194/gi-13-225-2024, 2024
Short summary
Short summary
The remote-sensing InSAR technique is vital for monitoring slope instabilities but requires understanding. This paper delves into differences between satellite and GB-InSAR. It offers a tool to determine the optimal GB-InSAR installation site, considering various technical, meteorological, and topographical factors. By generating detailed maps and simulating radar image characteristics, the tool eases the setup of monitoring campaigns for effective and accurate ground movement tracking.
Andy Baker, Margaret Shanafield, Wendy Timms, Martin Sogaard Andersen, Stacey Priestley, and Marilu Melo Zurita
Geosci. Instrum. Method. Data Syst., 13, 117–129, https://doi.org/10.5194/gi-13-117-2024, https://doi.org/10.5194/gi-13-117-2024, 2024
Short summary
Short summary
Much of the world relies on groundwater as a water resource, yet it is hard to know when and where rainfall replenishes our groundwater aquifers. Caves, mines, and tunnels that are situated above the groundwater table are unique observatories of water transiting from the land surface to the aquifer. This paper will show how networks of loggers deployed in these underground spaces across Australia have helped understand when, where, and how much rainfall is needed to replenish the groundwater.
Yang Li, Zhong Li, Qifeng Guo, Yimin Liu, and Daji Zhang
Geosci. Instrum. Method. Data Syst., 13, 97–105, https://doi.org/10.5194/gi-13-97-2024, https://doi.org/10.5194/gi-13-97-2024, 2024
Short summary
Short summary
We have developed a novel flexible measurement array for deep landslide displacement and measurement processes, which enables higher accuracy in full-hole multidimensional deformation measurement. It provides a more comprehensive monitoring tool for disaster prevention and reduction.
Jingsheng Lu, Yuanxin Yao, Dongliang Li, Jinhai Yang, Deqing Liang, Yiqun Zhang, Decai Lin, and Kunlin Ma
Geosci. Instrum. Method. Data Syst., 13, 75–83, https://doi.org/10.5194/gi-13-75-2024, https://doi.org/10.5194/gi-13-75-2024, 2024
Short summary
Short summary
Natural gas hydrate (GH) is a significant potential energy source. However, the gas production rate of past GH production tests is much lower than the requirement of commercial gas production. Reservoir stimulation technologies like hydraulic fracture provide one potential approach to enhance gas production from GH. This paper presents an experimental facility that was developed to analyze the hydraulic fracture mechanism in a synthesized hydrate-bearing sediments.
Matthias S. Brennwald, Antonio P. Rinaldi, Jocelyn Gisiger, Alba Zappone, and Rolf Kipfer
Geosci. Instrum. Method. Data Syst., 13, 1–8, https://doi.org/10.5194/gi-13-1-2024, https://doi.org/10.5194/gi-13-1-2024, 2024
Short summary
Short summary
The gas equilibrium membrane inlet mass spectrometry (GE-MIMS) method for dissolved-gas quantification was expanded to work in water at high pressures.
Feng Guo, Qisheng Zhang, and Shenghui Liu
Geosci. Instrum. Method. Data Syst., 12, 111–120, https://doi.org/10.5194/gi-12-111-2023, https://doi.org/10.5194/gi-12-111-2023, 2023
Short summary
Short summary
We propose a new type of power station unit with wireless data transmission capability, which was not supported by same type of instrument as on the market. Based on this, a novel distributed geophysical data acquisition architecture is also proposed. The proposed instrument loads more stations than the industry-leading LAUL-428 while providing additional wireless data transmission and narrowband Internet of Things remote control.
Joe Zender, Detlef Koschny, Regina Rudawska, Salvatore Vicinanza, Stefan Loehle, Martin Eberhart, Arne Meindl, Hans Smit, Lionel Marraffa, Rico Landman, and Daphne Stam
Geosci. Instrum. Method. Data Syst., 12, 91–109, https://doi.org/10.5194/gi-12-91-2023, https://doi.org/10.5194/gi-12-91-2023, 2023
Short summary
Short summary
The paper describes the ground-based camera equipment to obtain images from dust ablation phenomena (meteors) in the Earth's atmosphere. The meteors are observed from two locations, but one station is equipped with a camera containing a spectral grating, which allows following and determining the spectral information through the meteor ablation process. We describe the data merging, calibration, and processing to finally derive the meteor composition.
Bartosz M. Zawilski, Franck Granouillac, Nicole Claverie, Baptiste Lemaire, Aurore Brut, and Tiphaine Tallec
Geosci. Instrum. Method. Data Syst., 12, 45–56, https://doi.org/10.5194/gi-12-45-2023, https://doi.org/10.5194/gi-12-45-2023, 2023
Short summary
Short summary
In most cases, the soil water content (SWC) measurement is carried out using commercially available dielectric-permittivity-based probes such as time domain reflectometers or frequency domain reflectometers (FDR). However, these probes use transfer functions which may be inadequate in the soil concerned. Raw SWC measurement in clayey soil shows an important relative error. A simple protocol is presented, allowing for the recovery of an acceptable accuracy of the FDR SWC measurements.
Florian Späth, Verena Rajtschan, Tobias K. D. Weber, Shehan Morandage, Diego Lange, Syed Saqlain Abbas, Andreas Behrendt, Joachim Ingwersen, Thilo Streck, and Volker Wulfmeyer
Geosci. Instrum. Method. Data Syst., 12, 25–44, https://doi.org/10.5194/gi-12-25-2023, https://doi.org/10.5194/gi-12-25-2023, 2023
Short summary
Short summary
Important topics in land–atmosphere feedback research are water and energy balances and heterogeneities of fluxes at the land surface and in the atmosphere. To target these questions, the Land–Atmosphere Feedback Observatory (LAFO) has been installed in Germany. The instrumentation allows for comprehensive measurements from the bedrock to the troposphere. The LAFO observation strategy aims for simultaneous measurements in all three compartments: atmosphere, soil and land surface, and vegetation.
Antenor Oliveira Cruz Júnior, Cosme Ferreira da Ponte-Neto, and André Wiermann
Geosci. Instrum. Method. Data Syst., 12, 15–23, https://doi.org/10.5194/gi-12-15-2023, https://doi.org/10.5194/gi-12-15-2023, 2023
Short summary
Short summary
This project aims to demonstrate the viability of the development of a concept prototype that has, as a differential, free software and hardware used in its development and operation. It thus has unique characteristics compared with commercially available equipment for signal detection, providing strong rejection of spurious electrical noise, typical of urban areas. This project is important academic contribution to open-source instrumental research.
Cosimo Brogi, Heye Reemt Bogena, Markus Köhli, Johan Alexander Huisman, Harrie-Jan Hendricks Franssen, and Olga Dombrowski
Geosci. Instrum. Method. Data Syst., 11, 451–469, https://doi.org/10.5194/gi-11-451-2022, https://doi.org/10.5194/gi-11-451-2022, 2022
Short summary
Short summary
Accurate monitoring of water in soil can improve irrigation efficiency, which is important considering climate change and the growing world population. Cosmic-ray neutrons sensors (CRNSs) are a promising tool in irrigation monitoring due to a larger sensed area and to lower maintenance than other ground-based sensors. Here, we analyse the feasibility of irrigation monitoring with CRNSs and the impact of the irrigated field dimensions, of the variations of water in soil, and of instrument design.
Maximilian Weigand, Egon Zimmermann, Valentin Michels, Johan Alexander Huisman, and Andreas Kemna
Geosci. Instrum. Method. Data Syst., 11, 413–433, https://doi.org/10.5194/gi-11-413-2022, https://doi.org/10.5194/gi-11-413-2022, 2022
Short summary
Short summary
The construction, operation and analysis of a spectral electrical
impedance tomography (sEIT) field monitoring setup with high spatial and temporal resolution are presented. Electromagnetic induction errors are corrected, allowing the recovery of images of in-phase conductivity and electrical polarisation of up to 1 kHz.
Stephen Burt
Geosci. Instrum. Method. Data Syst., 11, 263–277, https://doi.org/10.5194/gi-11-263-2022, https://doi.org/10.5194/gi-11-263-2022, 2022
Short summary
Short summary
Most measurements of air temperature and humidity originate from Stevenson-type thermometer screens, which can produce erroneous measurements in light winds owing to insufficient ventilation of the in-screen sensors. A field experiment to measure airflow within a Stevenson screen found mean airflow to be only 0.2 m s−1, well below the 1 m s−1 minimum normally assumed, and only 7 % of 10 m mean wind speeds. Implications for air temperature and humidity measurement uncertainties are discussed.
Bartosz M. Zawilski
Geosci. Instrum. Method. Data Syst., 11, 223–234, https://doi.org/10.5194/gi-11-223-2022, https://doi.org/10.5194/gi-11-223-2022, 2022
Short summary
Short summary
Surface energy balance (SEB) closure check and important environmental variable monitoring require soil heat flux measurement. On the one hand every experimental technique has its possible errors and needs to be checked and corrected. On the other hand, SEB equation should include all sensed energy sources and sinks.
Bartosz M. Zawilski
Geosci. Instrum. Method. Data Syst., 11, 163–182, https://doi.org/10.5194/gi-11-163-2022, https://doi.org/10.5194/gi-11-163-2022, 2022
Short summary
Short summary
Soil evaporation is one of the most important water vapor sources on the Earth with multiple and severe consequences; however, there is a relative lack of instruments to measure it. This study describes a simple apparatus making the soil evaporation measurement accessible. The soil evaporation complexity is overcome by measuring the evaporation dynamic under different measurement conditions. A relatively simple measurement correction is then performed depending on the wind speed.
Till Francke, Maik Heistermann, Markus Köhli, Christian Budach, Martin Schrön, and Sascha E. Oswald
Geosci. Instrum. Method. Data Syst., 11, 75–92, https://doi.org/10.5194/gi-11-75-2022, https://doi.org/10.5194/gi-11-75-2022, 2022
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a non-invasive tool for measuring hydrogen pools like soil moisture, snow, or vegetation. This study presents a directional shielding approach, aiming to measure in specific directions only. The results show that non-directional neutron transport blurs the signal of the targeted direction. For typical instruments, this does not allow acceptable precision at a daily time resolution. However, the mere statistical distinction of two rates is feasible.
Maxim Philippov, Vladimir Makhmutov, Galina Bazilevskaya, Fedor Zagumennov, Vladimir Fomenko, Yuri Stozhkov, and Andrey Orlov
Geosci. Instrum. Method. Data Syst., 10, 219–226, https://doi.org/10.5194/gi-10-219-2021, https://doi.org/10.5194/gi-10-219-2021, 2021
Short summary
Short summary
This paper presents a brief description of the ground-based installation for the study of cosmic rays
CARPET. Today there is a network of such installations located in different parts of the world. For ground-based installations, meteorological effects must be considered as they affect the data. This paper shows a technique for eliminating barometric and temperature dependences based on data for 2019–2020.
Ondřej Racek, Jan Blahůt, and Filip Hartvich
Geosci. Instrum. Method. Data Syst., 10, 203–218, https://doi.org/10.5194/gi-10-203-2021, https://doi.org/10.5194/gi-10-203-2021, 2021
Short summary
Short summary
This paper is dedicated to description of universal, easy-to-modify, and affordable rock slope monitoring system. Using such a system, we are able to monitor environmental variables, the rock mass 3 m subsurface zone temperature profile, and spatiotemporal joint dynamics. We observe differences between three monitored sites. To further data analyses, longer time series are needed. The data will be further used for trend analyses and thermomechanical modelling.
Shane Coyle, C. Robert Clauer, Michael D. Hartinger, Zhonghua Xu, and Yuxiang Peng
Geosci. Instrum. Method. Data Syst., 10, 161–168, https://doi.org/10.5194/gi-10-161-2021, https://doi.org/10.5194/gi-10-161-2021, 2021
Short summary
Short summary
Global satellite navigation systems are commonly used for timing and synchronization of instrument platforms. These system clocks periodically
roll overfrom limitations in discrete counter math. Due to the rarity of these events (19.6 years for GPS), special consideration must be given to designing instruments intended for use in hard-to-reach locations like the Antarctic Plateau. A few
best practicesare presented to prevent total system failure from unexpected subsystem faults.
Keyu Zhou, Qisheng Zhang, Yongdong Liu, Zhen Wu, Zucan Lin, Bentian Zhao, Xingyuan Jiang, and Pengyu Li
Geosci. Instrum. Method. Data Syst., 10, 141–151, https://doi.org/10.5194/gi-10-141-2021, https://doi.org/10.5194/gi-10-141-2021, 2021
Short summary
Short summary
This paper describes the development of a new multifunctional four-dimensional high-density electrical instrument based on remote wireless communication technology, for use in shallow geophysical prospecting. We carried out a lot of tests. Our design successfully addresses a number of shortcomings of such instruments currently available on the market, including bulkiness, weight, limitations in data acquisition accuracy, and difficulty of connecting to the Internet for remote monitoring.
Qimao Zhang, Shuaiqing Qiao, Qisheng Zhang, and Shiyang Liu
Geosci. Instrum. Method. Data Syst., 10, 91–100, https://doi.org/10.5194/gi-10-91-2021, https://doi.org/10.5194/gi-10-91-2021, 2021
Short summary
Short summary
In order to meet the needs of geophysical exploration, the requirements of intelligent and convenient exploration instruments are realized. From the perspective of software, this research combines today's wireless transmission technology to integrate applications into mobile phones to realize remote control of field operations. It provides a new idea for geophysical exploration.
Anne-Karin Cooke, Cédric Champollion, and Nicolas Le Moigne
Geosci. Instrum. Method. Data Syst., 10, 65–79, https://doi.org/10.5194/gi-10-65-2021, https://doi.org/10.5194/gi-10-65-2021, 2021
Short summary
Short summary
Gravimetry studies the variations of the Earth’s gravity field which can be linked to mass changes studied in various disciplines of the Earth sciences. The gravitational attraction of the Earth is measured with gravimeters. Quantum gravimeters allow for continuous, high-frequency absolute gravity monitoring while remaining user-friendly and transportable. We assess the capacity of the AQG#B01, developed by Muquans, as a field gravimeter for hydrogeophysical applications.
Sixuan Song, Ming Deng, Kai Chen, Muer A, and Sheng Jin
Geosci. Instrum. Method. Data Syst., 10, 55–64, https://doi.org/10.5194/gi-10-55-2021, https://doi.org/10.5194/gi-10-55-2021, 2021
Short summary
Short summary
Current borehole receivers only measure a single parameter of the magnetic field component, which does not meet the special requirements of controlled-source electromagnetic (CSEM) methods. This study proposes a borehole electromagnetic receiver that realizes synchronous acquisition of the vertical electric field component and three-axis orthogonal magnetic field components. Results of the experiments show that our system functioned adequately and that high-quality CSEM signals were obtained.
Ramiro González, Carlos Toledano, Roberto Román, David Fuertes, Alberto Berjón, David Mateos, Carmen Guirado-Fuentes, Cristian Velasco-Merino, Juan Carlos Antuña-Sánchez, Abel Calle, Victoria E. Cachorro, and Ángel M. de Frutos
Geosci. Instrum. Method. Data Syst., 9, 417–433, https://doi.org/10.5194/gi-9-417-2020, https://doi.org/10.5194/gi-9-417-2020, 2020
Short summary
Short summary
Aerosol optical depth (AOD) is a parameter widely used in remote sensing for the characterization of atmospheric aerosol particles. AERONET was created by NASA for aerosol monitoring as well as satellite and model validation. The University of Valladolid (UVa) has managed an AERONET calibration center since 2006. The CÆLIS software tool, developed by UVa, was created to manage the data generated by AERONET photometers. The AOD algorithm in CÆLIS is developed and validated in this work.
Ozkan Kafadar
Geosci. Instrum. Method. Data Syst., 9, 365–373, https://doi.org/10.5194/gi-9-365-2020, https://doi.org/10.5194/gi-9-365-2020, 2020
Short summary
Short summary
In this paper, a low-cost, computer-aided, and geophone-based system designed to record, monitor, and analyze three-component microtremor data is presented. This system has several features such as a 200 Hz sampling frequency, text data format, and data analysis tools. The developed software undertakes many tasks such as communication between the external hardware and computer, transferring, monitoring, and recording the seismic data to a computer, and interpretation of the recorded data.
Maximilian Weigand, Florian M. Wagner, Jonas K. Limbrock, Christin Hilbich, Christian Hauck, and Andreas Kemna
Geosci. Instrum. Method. Data Syst., 9, 317–336, https://doi.org/10.5194/gi-9-317-2020, https://doi.org/10.5194/gi-9-317-2020, 2020
Short summary
Short summary
In times of global warming, permafrost is starting to degrade at alarming rates, requiring new and improved characterization approaches. We describe the design and test installation, as well as detailed data quality assessment, of a monitoring system used to capture natural electrical potentials in the subsurface. These self-potential signals are of great interest for the noninvasive investigation of water flow in the non-frozen or partially frozen subsurface.
Angelika Xaver, Luca Zappa, Gerhard Rab, Isabella Pfeil, Mariette Vreugdenhil, Drew Hemment, and Wouter Arnoud Dorigo
Geosci. Instrum. Method. Data Syst., 9, 117–139, https://doi.org/10.5194/gi-9-117-2020, https://doi.org/10.5194/gi-9-117-2020, 2020
Short summary
Short summary
Soil moisture plays a key role in the hydrological cycle and the climate system. Although soil moisture can be observed by the means of satellites, ground observations are still crucial for evaluating and improving these satellite products. In this study, we investigate the performance of a consumer low-cost soil moisture sensor in the lab and in the field. We demonstrate that this sensor can be used for scientific applications, for example to create a dataset valuable for satellite validation.
Qisheng Zhang, Wenhao Li, Feng Guo, Zhenzhong Yuan, Shuaiqing Qiao, and Qimao Zhang
Geosci. Instrum. Method. Data Syst., 8, 241–249, https://doi.org/10.5194/gi-8-241-2019, https://doi.org/10.5194/gi-8-241-2019, 2019
Short summary
Short summary
Complex and harsh exploration environments have put forward higher requirements for traditional geophysical exploration methods and instruments. In this study, a new distributed seismic and electrical hybrid acquisition station is developed and it can achieve high-precision hybrid acquisition of seismic and electrical data. The synchronization precision of the acquisition station is better than 200 ns and the maximum low-power data transmission speed is 16 Mbps along a 55 m cable.
Wenhao Li, Qisheng Zhang, Qimao Zhang, Feng Guo, Shuaiqing Qiao, Shiyang Liu, Yueyun Luo, Yuefeng Niu, and Xing Heng
Geosci. Instrum. Method. Data Syst., 8, 177–186, https://doi.org/10.5194/gi-8-177-2019, https://doi.org/10.5194/gi-8-177-2019, 2019
Short summary
Short summary
The nonuniqueness of geophysical inversions, which is based on a single geophysical method, is a long–standing problem in geophysical exploration. This paper developed a distributed, multi–channel, high–precision data acquisition system. It can achieve high–precision hybrid acquisition of seismic–electrical data and monitor the real–time quality of data acquisition processes using NB–IoT technology. The equivalent input noise is 0.5 μV and the synchronization accuracy is within 200 ns.
Andrew O. Hoffman, Hans Christian Steen-Larsen, Knut Christianson, and Christine Hvidberg
Geosci. Instrum. Method. Data Syst., 8, 149–159, https://doi.org/10.5194/gi-8-149-2019, https://doi.org/10.5194/gi-8-149-2019, 2019
Short summary
Short summary
We present the design considerations and deployment of an autonomous modular terrestrial rover for ice-sheet exploration that is inexpensive, easy to construct, and allows for instrumentation customization. The rover proved capable of driving over 20 km on a single charge with a drawbar pull of 250 N, which is sufficient to tow commercial ground-penetrating radars. Due to its low cost, low power requirements, and simple modular design, mass deployments of this rover design are practicable.
Sharafeldin M. Sharafeldin, Khalid S. Essa, Mohamed A. S. Youssef, Hakan Karsli, Zein E. Diab, and Nilgun Sayil
Geosci. Instrum. Method. Data Syst., 8, 29–43, https://doi.org/10.5194/gi-8-29-2019, https://doi.org/10.5194/gi-8-29-2019, 2019
Short summary
Short summary
Integrated geophysical techniques (ERT, SSR, and GPR) along the conducted profiles at the Great Pyramids of Giza have been successfully used to investigate the groundwater table and support hazard mitigation. The groundwater table elevation is 15 m under the Great Sphinx, which is safe, and at the Nazlet El-Samman it is 16–17 m.
Lichao Liu, Denys Grombacher, Esben Auken, and Jakob Juul Larsen
Geosci. Instrum. Method. Data Syst., 8, 1–11, https://doi.org/10.5194/gi-8-1-2019, https://doi.org/10.5194/gi-8-1-2019, 2019
Short summary
Short summary
This paper introcudes the design workflow and test approaches of a surface-NMR receiver. But the method and technqiues, for instance, signal loop, acqusition board, GPS synchronization, and Wi-Fi network, could also be employed in other geophysical instruments.
Shuaiqing Qiao, Hongmei Duan, Qisheng Zhang, Qimao Zhang, Shuhan Li, Shenghui Liu, Shiyang Liu, Yongqing Wang, Shichu Yan, Wenhao Li, and Feng Guo
Geosci. Instrum. Method. Data Syst., 7, 253–263, https://doi.org/10.5194/gi-7-253-2018, https://doi.org/10.5194/gi-7-253-2018, 2018
Short summary
Short summary
In this study, a high-precision distributed wireless microseismic acquisition system has been designed for oil and gas exploration. The system design, which was based on the ADS1274 chip manufactured by TI, made full use of the four channels of the chip to collect vibration signals in three directions and one electrical signal, respectively. Furthermore, the acquisition system used GPS and WIFI technologies to achieve distributed wireless acquisition.
Kazuyuki Saito, Go Iwahana, Hiroki Ikawa, Hirohiko Nagano, and Robert C. Busey
Geosci. Instrum. Method. Data Syst., 7, 223–234, https://doi.org/10.5194/gi-7-223-2018, https://doi.org/10.5194/gi-7-223-2018, 2018
Short summary
Short summary
A DTS system, using fibre-optic cables as a temperature sensor, measured surface and subsurface temperatures at a boreal forest underlain by permafrost in the interior of Alaska for 2 years every 30 min at 0.5-metre intervals along 2.7 km to monitor the daily and seasonal temperature changes, whose temperature ranges between −40 ºC in winter and 30 ºC in summer. This instrumentation illustrated characteristics of temperature variations and snow pack dynamics under different land cover types.
Fanqiang Lin, Xuben Wang, Kecheng Chen, Depan Hu, Song Gao, Xue Zou, and Cai Zeng
Geosci. Instrum. Method. Data Syst., 7, 209–221, https://doi.org/10.5194/gi-7-209-2018, https://doi.org/10.5194/gi-7-209-2018, 2018
Short summary
Short summary
The main purpose of this paper is to introduce a receiver system for the synchronous acquisition of multiple electromagnetic signals in transient electromagnetic prospecting to achieve multiparameter and multichannel synchronous reception. The reliability, practicability, and data validity of the receiver were verified by different kinds of testing. It can be used for the reception of pseudorandom signals and distributed 3-D data, which can improve geophysical exploration efficiency.
Nissaf Boudhina, Rim Zitouna-Chebbi, Insaf Mekki, Frédéric Jacob, Nétij Ben Mechlia, Moncef Masmoudi, and Laurent Prévot
Geosci. Instrum. Method. Data Syst., 7, 151–167, https://doi.org/10.5194/gi-7-151-2018, https://doi.org/10.5194/gi-7-151-2018, 2018
Short summary
Short summary
To provide reliable time series of evapotranspiration, we evaluated the performances of four different gap-filling methods when tailored to conditions of hilly crop fields. The tailoring consisted of splitting the time series beforehand on the basis of upslope and downslope winds. The obtained accuracies on evapotranspiration after gap filling were comparable to those previously reported over flat and mountainous terrains, and they were better with the most widely used gap-filling method.
Prasanna Mahavarkar, Jacob John, Vijay Dhapre, Varun Dongre, and Sachin Labde
Geosci. Instrum. Method. Data Syst., 7, 143–149, https://doi.org/10.5194/gi-7-143-2018, https://doi.org/10.5194/gi-7-143-2018, 2018
Short summary
Short summary
The authors have successfully recommissioned an unused tri-axial Helmholtz coil system. The system now serves as a national facility for calibrating magnetometers.
Martin Schrön, Steffen Zacharias, Gary Womack, Markus Köhli, Darin Desilets, Sascha E. Oswald, Jan Bumberger, Hannes Mollenhauer, Simon Kögler, Paul Remmler, Mandy Kasner, Astrid Denk, and Peter Dietrich
Geosci. Instrum. Method. Data Syst., 7, 83–99, https://doi.org/10.5194/gi-7-83-2018, https://doi.org/10.5194/gi-7-83-2018, 2018
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a unique technology to monitor water storages in complex environments, non-invasively, continuously, autonomuously, and representatively in large areas. However, neutron detector signals are not comparable per se: there is statistical noise, technical differences, and locational effects. We found out what it takes to make CRNS consistent in time and space to ensure reliable data quality. We further propose a method to correct for sealed areas in the footrint.
Xinyue Zhang, Qisheng Zhang, Meng Wang, Qiang Kong, Shengquan Zhang, Ruihao He, Shenghui Liu, Shuhan Li, and Zhenzhong Yuan
Geosci. Instrum. Method. Data Syst., 6, 495–503, https://doi.org/10.5194/gi-6-495-2017, https://doi.org/10.5194/gi-6-495-2017, 2017
Short summary
Short summary
We believe that our study full-waveform voltage and current recording device for MTEM transmitters makes a significant contribution to the literature because this full-waveform recording device can be used to monitor the high-power, full-waveform voltages and currents of MTEM transmitters. It has high precision, finer edge details, low noise, and other advantages. Hence, it can be used for real-time recording and transmission to the receiver for coherent demodulation.
Peter W. Thorne, Fabio Madonna, Joerg Schulz, Tim Oakley, Bruce Ingleby, Marco Rosoldi, Emanuele Tramutola, Antti Arola, Matthias Buschmann, Anna C. Mikalsen, Richard Davy, Corinne Voces, Karin Kreher, Martine De Maziere, and Gelsomina Pappalardo
Geosci. Instrum. Method. Data Syst., 6, 453–472, https://doi.org/10.5194/gi-6-453-2017, https://doi.org/10.5194/gi-6-453-2017, 2017
Short summary
Short summary
The term system-of-systems with respect to observational capabilities is frequently used, but what does it mean and how can it be assessed? Here, we define one possible interpretation of a system-of-systems architecture that is based upon demonstrable aspects of observing capabilities. We develop a set of assessment strands and then apply these to a set of atmospheric observational networks to decide which observations may be suitable for characterising satellite platforms in future work.
Alexandre Gonsette, Jean Rasson, Stephan Bracke, Antoine Poncelet, Olivier Hendrickx, and François Humbled
Geosci. Instrum. Method. Data Syst., 6, 439–446, https://doi.org/10.5194/gi-6-439-2017, https://doi.org/10.5194/gi-6-439-2017, 2017
Short summary
Short summary
Absolute magnetic measurements require the vertical and the geographic north as reference directions. We present here a novel system able to measure the direction of the magnetic field and of the vertical and true north. A design of a north seeker is proposed that takes into account sensor bias as well as misalignment errors. Different methods are derived from this model and measurement results are presented. A measurement test at high latitude is also shown.
Wilhelm Nikonow and Dieter Rammlmair
Geosci. Instrum. Method. Data Syst., 6, 429–437, https://doi.org/10.5194/gi-6-429-2017, https://doi.org/10.5194/gi-6-429-2017, 2017
Short summary
Short summary
This work describes a new approach to use fast X-ray fluorescence mapping as a tool for automated mineralogy applied on thin sections of plutonic rocks. Using a supervised classification of the spectral information, mineral maps are obtained for modal mineralogy and image analysis. The results are compared to a conventional method for automated mineralogy, which is scanning electron microscopy with mineral liberation analyzer, showing a good overall accuracy of 76 %.
E. William Worthington and Jürgen Matzka
Geosci. Instrum. Method. Data Syst., 6, 419–427, https://doi.org/10.5194/gi-6-419-2017, https://doi.org/10.5194/gi-6-419-2017, 2017
Short summary
Short summary
We have compared two methods of performing Absolute observations of the Earth's magnetic field. The newer, Residual method was evaluated for use at USGS geomagnetic observatories and compared with measurements using the traditional Null method. A mathematical outline of the Residual method is presented, including more precise conversions of the Declination angles to nanoTeslas (nT). Results show that the Residual method is better than the Null method, especially at high latitude.
Achim Morschhauser, Gabriel Brando Soares, Jürgen Haseloff, Oliver Bronkalla, José Protásio, Katia Pinheiro, and Jürgen Matzka
Geosci. Instrum. Method. Data Syst., 6, 367–376, https://doi.org/10.5194/gi-6-367-2017, https://doi.org/10.5194/gi-6-367-2017, 2017
Short summary
Short summary
We report on the history and recent developments of the Tatuoca magnetic observatory in Brazil. This observatory is located close to the geomagnetic equator and within a region of strong main field dynamics. Starting from 2015, we have installed new instrumentation and a new datalogger system. In the paper, we also comment on the challenges of doing absolute measurements at the geomagnetic equator.
Antoine Poncelet, Alexandre Gonsette, and Jean Rasson
Geosci. Instrum. Method. Data Syst., 6, 353–360, https://doi.org/10.5194/gi-6-353-2017, https://doi.org/10.5194/gi-6-353-2017, 2017
Short summary
Short summary
In this paper, we give some background on calibration and verification of our automatic DI-flux instrument and then compare the automatic absolute magnetic measurements
with the human-made and discuss the advantages and disadvantages of automatic measurements.
Alexandre Gonsette, Jean Rasson, and François Humbled
Geosci. Instrum. Method. Data Syst., 6, 361–366, https://doi.org/10.5194/gi-6-361-2017, https://doi.org/10.5194/gi-6-361-2017, 2017
Short summary
Short summary
We present a novel method for calibrating magnetic observatories. We show how magnetometer baselines can highlight a possible calibration error. We also provide a method based on high-frequency automatic absolute measurements. This method determines a transformation matrix for correcting raw data suffering from scale factor and orientation errors. We finally present a practical case where covered data have been successfully compared to those coming from a reference magnetometer.
Achim Morschhauser, Jürgen Haseloff, Oliver Bronkalla, Carsten Müller-Brettschneider, and Jürgen Matzka
Geosci. Instrum. Method. Data Syst., 6, 345–352, https://doi.org/10.5194/gi-6-345-2017, https://doi.org/10.5194/gi-6-345-2017, 2017
Short summary
Short summary
A modern geomagnetic observatory is expected to record geomagnetic data with high stability, high resolution, and high reliability. Also, geomagnetic observatories may be located in remote areas, requiring low power consumption and simple maintenance. Here, we present a new data logger system that was designed to meet these criteria. This system is based on a Raspberry Pi embedded PC and includes a modular C++ software package which can be adapted to specific observatory setups.
Xinyue Zhang, Qisheng Zhang, Xiao Zhao, Qimao Zhang, Shenghui Liu, Shuhan Li, and Zhenzhong Yuan
Geosci. Instrum. Method. Data Syst., 6, 209–215, https://doi.org/10.5194/gi-6-209-2017, https://doi.org/10.5194/gi-6-209-2017, 2017
Short summary
Short summary
In this study, we propose a more accurate method for calculating the current velocity from the nanovolt-scale current-induced electric field as measured using an expendable current profiler (XCP). In order to confirm the accuracy of the proposed data processing method, a sea test was performed, wherein ocean current/electric field data were collected from the sea surface to a depth of 1000 m using an XCP.
Cited articles
Anderson, R., Jones, D. H., and Gudmundsson, G. H.: Halley Research Station,
Antarctica: calving risks and monitoring strategies, Nat. Hazards Earth Syst.
Sci., 14, 917–927, https://doi.org/10.5194/nhess-14-917-2014, 2014.
Artushkin, I., Boriskin, A., and Kozlov, D.: ATOM: Super Compact and Flexible
Format to Store and Transmit GNSS Data, Proc ION GNSS, 1895–1902, 2008.
Ashtech: Ashtech MB100 Compact, Low-Power, GPS/GLONASS, RTK OEM Receiver
Module, available at: http://intech.trimble.com/library/DS_MB100_US.pdf (last access: 22 March 2016), 2014.
Bauguitte, S. J.-B., Brough, N., Frey, M. M., Jones, A. E., Maxfield, D. J.,
Roscoe, H. K., Rose, M. C., and Wolff, E. W.: A network of autonomous surface
ozone monitors in Antarctica: technical description and first results, Atmos.
Meas. Tech., 4, 645–658, https://doi.org/10.5194/amt-4-645-2011, 2011.
Bevis, M., Wahr, J., Khan, S. A., Madsen, F. B., Brown, A., Willis, M.,
Kendrick, E., Knudsen, P., Box, J. E., Dam, T. V., Caccamise, D. J., Johns,
B., Nylen, T., Abbott, R., White, S., Miner, J., Forsberg, R., Zhou, H.,
Wang, J., Wilson, T., Bromwich, D., and Francis, O.: Bedrock displacements in
Greenland manifest ice mass variations, climate cycles and climate change,
P. Natl. Acad. Sci. USA, 109, 11944–11948, 2012.
Dach, R., Beutler, G., and Gudmundsson, G. H.: Analysis of GPS Data from An
Antarctic Ice Stream, IAG Symp., 133,
569–579, 2008.
Hemisphere: Eclipse II GNSS OEM Module, available at:
http://www.navtechgps.com/assets/1/7/EclipseII_OEM_DS.pdf (last access: 22 March 2016), revision 9/10,
2010.
Iridium: Iridium 9602 Brochure, available at:
www.iridium.com (last access: 22 March 2016), 27000 V3, 2014.
Jackson, M., Meertens, C., Andreatta, V., and Hove, T. V.: GPS Receiver and
Antenna Testing Report for SumoiNet, UNAVCO Knowledgebase, available at: https://facility.unavco.org/science_tech/dev_test/publications/suominetreportv_4.pdf
(last access: 22 March 2016), 2000.
Jones, D. and Rose, M. C.: Measurement of Relative Position of Halley VI
modules (MORPH): GPS monitoring of building deformation in dynamic regions
(under review), Cold regions Science and Technology, 120, 56–62, 2015.
King, M. A., Padman, L., Nicholls, K., Clarke, P. J., Gudmundsson, G. H.,
Kulessa, B., and Shepherd, A.: Ocean tides in the Weddell Sea: New
observations on the Filchner-Ronne and Larsen C ice shelves and model
validation, J. Geophys. Res.-Oceans, 116,
c06006, https://doi.org/10.1029/2011JC006949, 2011.
Micro-Robotics: VM2 Datasheet, available at:
www.microrobotics.co.uk (last access:
22 March 2016), D040, 2015.
Nettles, M., Larsen, T. B., Elósegui, P., Hamilton, G. S., Stearns, L. A.,
Ahlstrøm, A. P., Davis, J. L., Andersen, M. L., de Juan, J., Khan, S. A.,
Stenseng, L., Ekström, G., and Forsberg, R.: Step-wise changes in glacier
flow speed coincide with calving and glacial earthquakes at Helheim Glacier,
Greenland, Geophys. Res. Lett., 35, L24503, https://doi.org/10.1029/2008GL036127,
2008.
Novatel: Next Generation High Performance GNSS Receiver, available at:
http://www.novatel.com/assets/Documents/Papers/OEM628.pdf (last access:
22 March 2016), version 13, 2015.
Penna, N., Clarke, P., Edwards, S., and King, M.: Further testing of commercial
Network RTK GNSS services in Great Britain (NetRTK-2), The Survey Association
presentation, available at: https://communities.rics.org/gf2.ti/f/200194/7087237.1/PDF/-/UK_industry_research__Network_RTK_GNSS_Report_2012_LR.pdf (last access:
22 March 2016), 2012.
Rose, M. C., Maxfield, D., and Junyent, J.: Performance of some environmental
power systems in Antarctica, Proceedings of European Geophysical Union, 11,
EGU2009–9612, 2009.
Septentrio: AsteRx2el GNSS Dual-frequency L-Band Receiver, available at:
http://westlat.com/wp-content/uploads/2012/08/AsteRx2eL.pdf (last access:
22 March 2016), 2012.
Shepherd, A., Hubbard, A., Nienow, P., King, M., McMillan, M., and Joughin, I.:
Greenland ice sheet motion coupled with daily melting in late summer,
Geophys. Res. Lett., 36, L01501, https://doi.org/10.1029/2008GL035758, 2009.
Tregoning, P., Twilley, B., Hendy, M., and Zwartz, D.: Monitoring Isostatic
Rebound in Antarctica with the Use of Continuous Remote GPS observations, GPS
Solutions, 2, 70–75, 1999.
Trimble: TRIMBLE BD920-W3G, available at:
http://intech.trimble.com/library/DS_BD920-W3G_US.pdf (last access:
22 March 2016), 2014.
UNAVCO: GPS Receiver Evaluations, UNAVCO Knowledgebase, available at:
http://facility.unavco.org/kb/questions/742/GNSS+Receiver+Evaluations+2012 (last access:
22 March 2016), 2012.
Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., and Webb,
F. H.: Precise point positioning for the efficient and robust analysis of
GPS data from large networks, J. Geophys. Res., 102, 5005–5017, 1997.
Short summary
Long-term records from high-precision GPS receivers are essential for studying geophysical movement. Existing, commercially available, precision GPS receivers are not intended for long-term, autonomous deployment. We have designed a GPS receiver that is better suited for this application. In this paper, we discuss the receiver design and compare its performance with that of some of the commercially available receivers.
Long-term records from high-precision GPS receivers are essential for studying geophysical...