Articles | Volume 9, issue 2
https://doi.org/10.5194/gi-9-317-2020
https://doi.org/10.5194/gi-9-317-2020
Research article
 | Highlight paper
 | 
05 Aug 2020
Research article | Highlight paper |  | 05 Aug 2020

A monitoring system for spatiotemporal electrical self-potential measurements in cryospheric environments

Maximilian Weigand, Florian M. Wagner, Jonas K. Limbrock, Christin Hilbich, Christian Hauck, and Andreas Kemna

Related authors

Design and operation of a long-term monitoring system for spectral electrical impedance tomography (sEIT)
Maximilian Weigand, Egon Zimmermann, Valentin Michels, Johan Alexander Huisman, and Andreas Kemna
Geosci. Instrum. Method. Data Syst., 11, 413–433, https://doi.org/10.5194/gi-11-413-2022,https://doi.org/10.5194/gi-11-413-2022, 2022
Short summary
Multi-frequency electrical impedance tomography as a non-invasive tool to characterize and monitor crop root systems
Maximilian Weigand and Andreas Kemna
Biogeosciences, 14, 921–939, https://doi.org/10.5194/bg-14-921-2017,https://doi.org/10.5194/bg-14-921-2017, 2017
Short summary

Related subject area

Ground-based instruments
Development of an internet-of-things-based controlled-source ultrasonic audio frequency electromagnetic receiver
Zucan Lin, Qisheng Zhang, Keyu Zhou, Xiyuan Zhang, Xinchang Wang, Hui Zhang, and Feng Liu
Geosci. Instrum. Method. Data Syst., 13, 325–336, https://doi.org/10.5194/gi-13-325-2024,https://doi.org/10.5194/gi-13-325-2024, 2024
Short summary
A tool for estimating ground-based InSAR acquisition characteristics prior to monitoring installation and survey and its differences from satellite InSAR
Charlotte Wolff, Marc-Henri Derron, Carlo Rivolta, and Michel Jaboyedoff
Geosci. Instrum. Method. Data Syst., 13, 225–248, https://doi.org/10.5194/gi-13-225-2024,https://doi.org/10.5194/gi-13-225-2024, 2024
Short summary
An underground drip water monitoring network to characterize rainfall recharge of groundwater at different geologies, environments, and climates across Australia
Andy Baker, Margaret Shanafield, Wendy Timms, Martin Sogaard Andersen, Stacey Priestley, and Marilu Melo Zurita
Geosci. Instrum. Method. Data Syst., 13, 117–129, https://doi.org/10.5194/gi-13-117-2024,https://doi.org/10.5194/gi-13-117-2024, 2024
Short summary
Research and application of a flexible measuring array for deep displacement of landslides
Yang Li, Zhong Li, Qifeng Guo, Yimin Liu, and Daji Zhang
Geosci. Instrum. Method. Data Syst., 13, 97–105, https://doi.org/10.5194/gi-13-97-2024,https://doi.org/10.5194/gi-13-97-2024, 2024
Short summary
A hydrate reservoir renovation device and its application in nitrogen bubble fracturing
Jingsheng Lu, Yuanxin Yao, Dongliang Li, Jinhai Yang, Deqing Liang, Yiqun Zhang, Decai Lin, and Kunlin Ma
Geosci. Instrum. Method. Data Syst., 13, 75–83, https://doi.org/10.5194/gi-13-75-2024,https://doi.org/10.5194/gi-13-75-2024, 2024
Short summary

Cited articles

Ahmed, A., Jardani, A., Revil, A., and Dupont, J.: SP2DINV: A 2D forward and inverse code for streaming potential problems, Comput. Geosci., 59, 9–16, https://doi.org/10.1016/j.cageo.2013.05.008, 2013. a, b
Ahmed, A., Revil, A., Bolève, A., Steck, B., Vergniault, C., Courivaud, J., Jougnot, D., and Abbas, M.: Determination of the permeability of seepage flow paths in dams from self-potential measurements, Eng. Geol., 268, 105514, https://doi.org/10.1016/j.enggeo.2020.105514, 2020. a
Bernabé, Y.: Streaming potential in heterogeneous networks, J. Geophys. Res.-Sol. Ea., 103, 20827–20841, https://doi.org/10.1029/98JB02126, 1998. a, b, c
Beutel, J., Buchli, B., Ferrari, F., Keller, M., Zimmerling, M., and Thiele, L.: X-SENSE: Sensing in extreme environments, in: 2011 Design, Automation Test in Europe, 1–6, https://doi.org/10.1109/DATE.2011.5763236, 2011. a
Biskaborn, B., Smith, S., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A., Abramov, A., Allard, M., Boike, J., Cable, W., Christiansen, H., Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G., Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson, M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P., Kröger, T., Lambiel, C., Lanckman, J.-P., Luo, D., Malkova, G., Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel, A., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q., Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a global scale, Nat. Commun., 10, 264 pp., https://doi.org/10.1038/s41467-018-08240-4, 2019. a
Download
Short summary
In times of global warming, permafrost is starting to degrade at alarming rates, requiring new and improved characterization approaches. We describe the design and test installation, as well as detailed data quality assessment, of a monitoring system used to capture natural electrical potentials in the subsurface. These self-potential signals are of great interest for the noninvasive investigation of water flow in the non-frozen or partially frozen subsurface.