Articles | Volume 11, issue 2
https://doi.org/10.5194/gi-11-451-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-11-451-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Feasibility of irrigation monitoring with cosmic-ray neutron sensors
Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52425
Jülich, Germany
Heye Reemt Bogena
Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52425
Jülich, Germany
Markus Köhli
Physikalisches Institut, Heidelberg University, Heidelberg, Germany
Johan Alexander Huisman
Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52425
Jülich, Germany
Harrie-Jan Hendricks Franssen
Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52425
Jülich, Germany
Olga Dombrowski
Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52425
Jülich, Germany
Related authors
Salar Saeed Dogar, Cosimo Brogi, Dave O'Leary, Ixchel Hernández-Ochoa, Marco Donat, Harry Vereecken, and Johan Alexander Huisman
EGUsphere, https://doi.org/10.5194/egusphere-2025-827, https://doi.org/10.5194/egusphere-2025-827, 2025
Short summary
Short summary
Farmers need precise information about their fields to use water, fertilizers, and other resources efficiently. This study combines underground soil data and satellite images to create detailed field maps using advanced machine learning. By testing different ways of processing data, we ensured a balanced and accurate approach. The results help farmers manage their land more effectively, leading to better harvests and more sustainable farming practices.
Till Francke, Cosimo Brogi, Alby Duarte Rocha, Michael Förster, Maik Heistermann, Markus Köhli, Daniel Rasche, Marvin Reich, Paul Schattan, Lena Scheiffele, and Martin Schrön
Geosci. Model Dev., 18, 819–842, https://doi.org/10.5194/gmd-18-819-2025, https://doi.org/10.5194/gmd-18-819-2025, 2025
Short summary
Short summary
Multiple methods for measuring soil moisture beyond the point scale exist. Their validation is generally hindered by not knowing the truth. We propose a virtual framework in which this truth is fully known and the sensor observations for cosmic ray neutron sensing, remote sensing, and hydrogravimetry are simulated. This allows for the rigorous testing of these virtual sensors to understand their effectiveness and limitations.
Olga Dombrowski, Cosimo Brogi, Harrie-Jan Hendricks Franssen, Damiano Zanotelli, and Heye Bogena
Geosci. Model Dev., 15, 5167–5193, https://doi.org/10.5194/gmd-15-5167-2022, https://doi.org/10.5194/gmd-15-5167-2022, 2022
Short summary
Short summary
Soil carbon storage and food production of fruit orchards will be influenced by climate change. However, they lack representation in models that study such processes. We developed and tested a new sub-model, CLM5-FruitTree, that describes growth, biomass distribution, and management practices in orchards. The model satisfactorily predicted yield and exchange of carbon, energy, and water in an apple orchard and can be used to study land surface processes in fruit orchards at different scales.
Cosimo Brogi, Johan A. Huisman, Lutz Weihermüller, Michael Herbst, and Harry Vereecken
SOIL, 7, 125–143, https://doi.org/10.5194/soil-7-125-2021, https://doi.org/10.5194/soil-7-125-2021, 2021
Short summary
Short summary
There is a need in agriculture for detailed soil maps that carry quantitative information. Geophysics-based soil maps have the potential to deliver such products, but their added value has not been fully investigated yet. In this study, we compare the use of a geophysics-based soil map with the use of two commonly available maps as input for crop growth simulations. The geophysics-based product results in better simulations, with improvements that depend on precipitation, soil, and crop type.
Tim G. Reichenau, Wolfgang Korres, Marius Schmidt, Alexander Graf, Gerhard Welp, Nele Meyer, Anja Stadler, Cosimo Brogi, and Karl Schneider
Earth Syst. Sci. Data, 12, 2333–2364, https://doi.org/10.5194/essd-12-2333-2020, https://doi.org/10.5194/essd-12-2333-2020, 2020
Solomon Ehosioke, Sarah Garré, Johan Alexander Huisman, Egon Zimmermann, Mathieu Javaux, and Frédéric Nguyen
Biogeosciences, 22, 2853–2869, https://doi.org/10.5194/bg-22-2853-2025, https://doi.org/10.5194/bg-22-2853-2025, 2025
Short summary
Short summary
Understanding the electromagnetic properties of plant roots is useful to quantify plant properties and monitor plant physiological responses to changing environmental factors. We investigated the electrical properties of the primary roots of Brachypodium and maize plants during the uptake of fresh and saline water using spectral induced polarization. Our results indicate that salinity tolerance varies with the species and that Maize is more tolerant to salinity than Brachypodium.
Roland Baatz, Patrick Davies, Paolo Nasta, and Heye Bogena
Hydrol. Earth Syst. Sci., 29, 2583–2597, https://doi.org/10.5194/hess-29-2583-2025, https://doi.org/10.5194/hess-29-2583-2025, 2025
Short summary
Short summary
The data-driven approach enhances soil water content measurements by improving the precision of cosmic ray neutron sensors (CRNSs). This study demonstrates a new method to account for dynamics in air pressure, atmospheric humidity, and incoming neutron intensity. Soil water content measured by CRNSs showed reduced errors compared to reference measurements. The findings highlight the need for precise adjustments to better measure soil moisture for agricultural, water, and climate monitoring.
Fang Li, Heye Reemt Bogena, Johannes Keller, Bagher Bayat, Rahul Raj, and Harrie-Jan Hendricks-Franssen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2124, https://doi.org/10.5194/egusphere-2025-2124, 2025
Short summary
Short summary
We developed a new method to improve hydrological modeling by jointly using soil moisture and groundwater level data from field sensors in a catchment in Germany. By updating the model separately for shallow and deep soil zones, we achieved more accurate predictions of soil water, groundwater depth, and evapotranspiration. Our results show that combining both data types gives more balanced and reliable outcomes than using either alone.
Heye Reemt Bogena, Frank Herrmann, Andreas Lücke, Thomas Pütz, and Harry Vereecken
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-185, https://doi.org/10.5194/essd-2025-185, 2025
Preprint under review for ESSD
Short summary
Short summary
The Wüstebach catchment in Germany’s TERENO network underwent partial deforestation in 2013 to support natural regrowth in Eifel National Park. This data paper presents 16 years (2010–2024) of estimated hourly stream-water flux data for nine macro- and micronutrients, dissolved ionic aluminum, and dissolved organic carbon, along with measured solute concentrations and discharge rates from two stations—one affected by clear-cutting and one unaffected.
Bamidele Oloruntoba, Stefan Kollet, Carsten Montzka, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 29, 1659–1683, https://doi.org/10.5194/hess-29-1659-2025, https://doi.org/10.5194/hess-29-1659-2025, 2025
Short summary
Short summary
We studied how soil and weather data affect land model simulations over Africa. By combining soil data processed in different ways with weather data of varying time intervals, we found that weather inputs had a greater impact on water processes than soil data type. However, the way soil data were processed became crucial when paired with high-frequency weather inputs, showing that detailed weather data can improve local and regional predictions of how water moves and interacts with the land.
Salar Saeed Dogar, Cosimo Brogi, Dave O'Leary, Ixchel Hernández-Ochoa, Marco Donat, Harry Vereecken, and Johan Alexander Huisman
EGUsphere, https://doi.org/10.5194/egusphere-2025-827, https://doi.org/10.5194/egusphere-2025-827, 2025
Short summary
Short summary
Farmers need precise information about their fields to use water, fertilizers, and other resources efficiently. This study combines underground soil data and satellite images to create detailed field maps using advanced machine learning. By testing different ways of processing data, we ensured a balanced and accurate approach. The results help farmers manage their land more effectively, leading to better harvests and more sustainable farming practices.
Till Francke, Cosimo Brogi, Alby Duarte Rocha, Michael Förster, Maik Heistermann, Markus Köhli, Daniel Rasche, Marvin Reich, Paul Schattan, Lena Scheiffele, and Martin Schrön
Geosci. Model Dev., 18, 819–842, https://doi.org/10.5194/gmd-18-819-2025, https://doi.org/10.5194/gmd-18-819-2025, 2025
Short summary
Short summary
Multiple methods for measuring soil moisture beyond the point scale exist. Their validation is generally hindered by not knowing the truth. We propose a virtual framework in which this truth is fully known and the sensor observations for cosmic ray neutron sensing, remote sensing, and hydrogravimetry are simulated. This allows for the rigorous testing of these virtual sensors to understand their effectiveness and limitations.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
Hydrol. Earth Syst. Sci., 29, 465–483, https://doi.org/10.5194/hess-29-465-2025, https://doi.org/10.5194/hess-29-465-2025, 2025
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two endmembers of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented supersites.
Christian Poppe Terán, Bibi S. Naz, Harry Vereecken, Roland Baatz, Rosie A. Fisher, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 18, 287–317, https://doi.org/10.5194/gmd-18-287-2025, https://doi.org/10.5194/gmd-18-287-2025, 2025
Short summary
Short summary
Carbon and water exchanges between the atmosphere and the land surface contribute to water resource availability and climate change mitigation. Land surface models, like the Community Land Model version 5 (CLM5), simulate these. This study finds that CLM5 and other data sets underestimate the magnitudes of and variability in carbon and water exchanges for the most abundant plant functional types compared to observations. It provides essential insights for further research into these processes.
Teng Xu, Sinan Xiao, Sebastian Reuschen, Nils Wildt, Harrie-Jan Hendricks Franssen, and Wolfgang Nowak
Hydrol. Earth Syst. Sci., 28, 5375–5400, https://doi.org/10.5194/hess-28-5375-2024, https://doi.org/10.5194/hess-28-5375-2024, 2024
Short summary
Short summary
We provide a set of benchmarking scenarios for geostatistical inversion, and we encourage the scientific community to use these to compare their newly developed methods. To facilitate transparent, appropriate, and uncertainty-aware comparison of novel methods, we provide some accurate reference solutions, a high-end reference algorithm, and a diverse set of benchmarking metrics, all of which are publicly available. With this, we seek to foster more targeted and transparent progress in the field.
Lukas Strebel, Heye Bogena, Harry Vereecken, Mie Andreasen, Sergio Aranda-Barranco, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 28, 1001–1026, https://doi.org/10.5194/hess-28-1001-2024, https://doi.org/10.5194/hess-28-1001-2024, 2024
Short summary
Short summary
We present results from using soil water content measurements from 13 European forest sites in a state-of-the-art land surface model. We use data assimilation to perform a combination of observed and modeled soil water content and show the improvements in the representation of soil water content. However, we also look at the impact on evapotranspiration and see no corresponding improvements.
Denise Degen, Daniel Caviedes Voullième, Susanne Buiter, Harrie-Jan Hendricks Franssen, Harry Vereecken, Ana González-Nicolás, and Florian Wellmann
Geosci. Model Dev., 16, 7375–7409, https://doi.org/10.5194/gmd-16-7375-2023, https://doi.org/10.5194/gmd-16-7375-2023, 2023
Short summary
Short summary
In geosciences, we often use simulations based on physical laws. These simulations can be computationally expensive, which is a problem if simulations must be performed many times (e.g., to add error bounds). We show how a novel machine learning method helps to reduce simulation time. In comparison to other approaches, which typically only look at the output of a simulation, the method considers physical laws in the simulation itself. The method provides reliable results faster than standard.
Theresa Boas, Heye Reemt Bogena, Dongryeol Ryu, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 27, 3143–3167, https://doi.org/10.5194/hess-27-3143-2023, https://doi.org/10.5194/hess-27-3143-2023, 2023
Short summary
Short summary
In our study, we tested the utility and skill of a state-of-the-art forecasting product for the prediction of regional crop productivity using a land surface model. Our results illustrate the potential value and skill of combining seasonal forecasts with modelling applications to generate variables of interest for stakeholders, such as annual crop yield for specific cash crops and regions. In addition, this study provides useful insights for future technical model evaluations and improvements.
Daniel Rasche, Jannis Weimar, Martin Schrön, Markus Köhli, Markus Morgner, Andreas Güntner, and Theresa Blume
Hydrol. Earth Syst. Sci., 27, 3059–3082, https://doi.org/10.5194/hess-27-3059-2023, https://doi.org/10.5194/hess-27-3059-2023, 2023
Short summary
Short summary
We introduce passive downhole cosmic-ray neutron sensing (d-CRNS) as an approach for the non-invasive estimation of soil moisture in deeper layers of the unsaturated zone which exceed the observational window of above-ground CRNS applications. Neutron transport simulations are used to derive mathematical descriptions and transfer functions, while experimental measurements in an existing groundwater observation well illustrate the feasibility and applicability of the approach.
Tanja Denager, Torben O. Sonnenborg, Majken C. Looms, Heye Bogena, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 27, 2827–2845, https://doi.org/10.5194/hess-27-2827-2023, https://doi.org/10.5194/hess-27-2827-2023, 2023
Short summary
Short summary
This study contributes to improvements in the model characterization of water and energy fluxes. The results show that multi-objective autocalibration in combination with mathematical regularization is a powerful tool to improve land surface models. Using the direct measurement of turbulent fluxes as the target variable, parameter optimization matches simulations and observations of latent heat, whereas sensible heat is clearly biased.
Maik Heistermann, Till Francke, Lena Scheiffele, Katya Dimitrova Petrova, Christian Budach, Martin Schrön, Benjamin Trost, Daniel Rasche, Andreas Güntner, Veronika Döpper, Michael Förster, Markus Köhli, Lisa Angermann, Nikolaos Antonoglou, Manuela Zude-Sasse, and Sascha E. Oswald
Earth Syst. Sci. Data, 15, 3243–3262, https://doi.org/10.5194/essd-15-3243-2023, https://doi.org/10.5194/essd-15-3243-2023, 2023
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) allows for the non-invasive estimation of root-zone soil water content (SWC). The signal observed by a single CRNS sensor is influenced by the SWC in a radius of around 150 m (the footprint). Here, we have put together a cluster of eight CRNS sensors with overlapping footprints at an agricultural research site in north-east Germany. That way, we hope to represent spatial SWC heterogeneity instead of retrieving just one average SWC estimate from a single sensor.
Martin Schrön, Markus Köhli, and Steffen Zacharias
Hydrol. Earth Syst. Sci., 27, 723–738, https://doi.org/10.5194/hess-27-723-2023, https://doi.org/10.5194/hess-27-723-2023, 2023
Short summary
Short summary
This paper presents a new analytical concept to answer long-lasting questions of the cosmic-ray neutron sensing community, such as
what is the influence of a distant area or patches of different land use on the measurement signal?or
is the detector sensitive enough to detect a change of soil moisture (e.g. due to irrigation) in a remote field at a certain distance?The concept may support signal interpretation and sensor calibration, particularly in heterogeneous terrain.
Markus Köhli, Martin Schrön, Steffen Zacharias, and Ulrich Schmidt
Geosci. Model Dev., 16, 449–477, https://doi.org/10.5194/gmd-16-449-2023, https://doi.org/10.5194/gmd-16-449-2023, 2023
Short summary
Short summary
In the last decades, Monte Carlo codes were often consulted to study neutrons near the surface. As an alternative for the growing community of CRNS, we developed URANOS. The main model features are tracking of particle histories from creation to detection, detector representations as layers or geometric shapes, a voxel-based geometry model, and material setup based on color codes in ASCII matrices or bitmap images. The entire software is developed in C++ and features a graphical user interface.
Thomas Hermans, Pascal Goderniaux, Damien Jougnot, Jan H. Fleckenstein, Philip Brunner, Frédéric Nguyen, Niklas Linde, Johan Alexander Huisman, Olivier Bour, Jorge Lopez Alvis, Richard Hoffmann, Andrea Palacios, Anne-Karin Cooke, Álvaro Pardo-Álvarez, Lara Blazevic, Behzad Pouladi, Peleg Haruzi, Alejandro Fernandez Visentini, Guilherme E. H. Nogueira, Joel Tirado-Conde, Majken C. Looms, Meruyert Kenshilikova, Philippe Davy, and Tanguy Le Borgne
Hydrol. Earth Syst. Sci., 27, 255–287, https://doi.org/10.5194/hess-27-255-2023, https://doi.org/10.5194/hess-27-255-2023, 2023
Short summary
Short summary
Although invisible, groundwater plays an essential role for society as a source of drinking water or for ecosystems but is also facing important challenges in terms of contamination. Characterizing groundwater reservoirs with their spatial heterogeneity and their temporal evolution is therefore crucial for their sustainable management. In this paper, we review some important challenges and recent innovations in imaging and modeling the 4D nature of the hydrogeological systems.
Maximilian Weigand, Egon Zimmermann, Valentin Michels, Johan Alexander Huisman, and Andreas Kemna
Geosci. Instrum. Method. Data Syst., 11, 413–433, https://doi.org/10.5194/gi-11-413-2022, https://doi.org/10.5194/gi-11-413-2022, 2022
Short summary
Short summary
The construction, operation and analysis of a spectral electrical
impedance tomography (sEIT) field monitoring setup with high spatial and temporal resolution are presented. Electromagnetic induction errors are corrected, allowing the recovery of images of in-phase conductivity and electrical polarisation of up to 1 kHz.
Friedrich Boeing, Oldrich Rakovec, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, Sabine Attinger, and Andreas Marx
Hydrol. Earth Syst. Sci., 26, 5137–5161, https://doi.org/10.5194/hess-26-5137-2022, https://doi.org/10.5194/hess-26-5137-2022, 2022
Short summary
Short summary
In this paper, we deliver an evaluation of the second generation operational German drought monitor (https://www.ufz.de/duerremonitor) with a state-of-the-art compilation of observed soil moisture data from 40 locations and four different measurement methods in Germany. We show that the expressed stakeholder needs for higher resolution drought information at the one-kilometer scale can be met and that the agreement of simulated and observed soil moisture dynamics can be moderately improved.
Olga Dombrowski, Cosimo Brogi, Harrie-Jan Hendricks Franssen, Damiano Zanotelli, and Heye Bogena
Geosci. Model Dev., 15, 5167–5193, https://doi.org/10.5194/gmd-15-5167-2022, https://doi.org/10.5194/gmd-15-5167-2022, 2022
Short summary
Short summary
Soil carbon storage and food production of fruit orchards will be influenced by climate change. However, they lack representation in models that study such processes. We developed and tested a new sub-model, CLM5-FruitTree, that describes growth, biomass distribution, and management practices in orchards. The model satisfactorily predicted yield and exchange of carbon, energy, and water in an apple orchard and can be used to study land surface processes in fruit orchards at different scales.
Maik Heistermann, Heye Bogena, Till Francke, Andreas Güntner, Jannis Jakobi, Daniel Rasche, Martin Schrön, Veronika Döpper, Benjamin Fersch, Jannis Groh, Amol Patil, Thomas Pütz, Marvin Reich, Steffen Zacharias, Carmen Zengerle, and Sascha Oswald
Earth Syst. Sci. Data, 14, 2501–2519, https://doi.org/10.5194/essd-14-2501-2022, https://doi.org/10.5194/essd-14-2501-2022, 2022
Short summary
Short summary
This paper presents a dense network of cosmic-ray neutron sensing (CRNS) to measure spatio-temporal soil moisture patterns during a 2-month campaign in the Wüstebach headwater catchment in Germany. Stationary, mobile, and airborne CRNS technology monitored the root-zone water dynamics as well as spatial heterogeneity in the 0.4 km2 area. The 15 CRNS stations were supported by a hydrogravimeter, biomass sampling, and a wireless soil sensor network to facilitate holistic hydrological analysis.
Wei Qu, Heye Bogena, Christoph Schüth, Harry Vereecken, Zongmei Li, and Stephan Schulz
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-131, https://doi.org/10.5194/gmd-2022-131, 2022
Publication in GMD not foreseen
Short summary
Short summary
We applied the global sensitivity analysis LH-OAT to the integrated hydrology model ParFlow-CLM to investigate the sensitivity of the 12 parameters for different scenarios. And we found that the general patterns of the parameter sensitivities were consistent, however, for some parameters a significantly larger span of the sensitivities was observed, especially for the higher slope and in subarctic climatic scenarios.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Till Francke, Maik Heistermann, Markus Köhli, Christian Budach, Martin Schrön, and Sascha E. Oswald
Geosci. Instrum. Method. Data Syst., 11, 75–92, https://doi.org/10.5194/gi-11-75-2022, https://doi.org/10.5194/gi-11-75-2022, 2022
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a non-invasive tool for measuring hydrogen pools like soil moisture, snow, or vegetation. This study presents a directional shielding approach, aiming to measure in specific directions only. The results show that non-directional neutron transport blurs the signal of the targeted direction. For typical instruments, this does not allow acceptable precision at a daily time resolution. However, the mere statistical distinction of two rates is feasible.
Lukas Strebel, Heye R. Bogena, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 15, 395–411, https://doi.org/10.5194/gmd-15-395-2022, https://doi.org/10.5194/gmd-15-395-2022, 2022
Short summary
Short summary
We present the technical coupling between a land surface model (CLM5) and the Parallel Data Assimilation Framework (PDAF). This coupling enables measurement data to update simulated model states and parameters in a statistically optimal way. We demonstrate the viability of the model framework using an application in a forested catchment where the inclusion of soil water measurements significantly improved the simulation quality.
Daniel Rasche, Markus Köhli, Martin Schrön, Theresa Blume, and Andreas Güntner
Hydrol. Earth Syst. Sci., 25, 6547–6566, https://doi.org/10.5194/hess-25-6547-2021, https://doi.org/10.5194/hess-25-6547-2021, 2021
Short summary
Short summary
Cosmic-ray neutron sensing provides areal average soil moisture measurements. We investigated how distinct differences in spatial soil moisture patterns influence the soil moisture estimates and present two approaches to improve the estimate of soil moisture close to the instrument by reducing the influence of soil moisture further afield. Additionally, we show that the heterogeneity of soil moisture can be assessed based on the relationship of different neutron energies.
Yafei Huang, Jonas Weis, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-569, https://doi.org/10.5194/hess-2021-569, 2021
Manuscript not accepted for further review
Short summary
Short summary
Trends in agricultural droughts cannot be easily deduced from measurements. Here trends in agricultural droughts over 31 German and Dutch sites were calculated with model simulations and long-term observed meteorological data as input. We found that agricultural droughts are increasing although precipitation hardly decreases. The increase is driven by increase in evapotranspiration. The year 2018 was for half of the sites the year with the most extreme agricultural drought in the last 55 years.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Mengna Li, Yijian Zeng, Maciek W. Lubczynski, Jean Roy, Lianyu Yu, Hui Qian, Zhenyu Li, Jie Chen, Lei Han, Han Zheng, Tom Veldkamp, Jeroen M. Schoorl, Harrie-Jan Hendricks Franssen, Kai Hou, Qiying Zhang, Panpan Xu, Fan Li, Kai Lu, Yulin Li, and Zhongbo Su
Earth Syst. Sci. Data, 13, 4727–4757, https://doi.org/10.5194/essd-13-4727-2021, https://doi.org/10.5194/essd-13-4727-2021, 2021
Short summary
Short summary
The Tibetan Plateau is the source of most of Asia's major rivers and has been called the Asian Water Tower. Due to its remoteness and the harsh environment, there is a lack of field survey data to investigate its hydrogeology. Borehole core lithology analysis, an altitude survey, soil thickness measurement, hydrogeological surveys, and hydrogeophysical surveys were conducted in the Maqu catchment within the Yellow River source region to improve a full–picture understanding of the water cycle.
Bernd Schalge, Gabriele Baroni, Barbara Haese, Daniel Erdal, Gernot Geppert, Pablo Saavedra, Vincent Haefliger, Harry Vereecken, Sabine Attinger, Harald Kunstmann, Olaf A. Cirpka, Felix Ament, Stefan Kollet, Insa Neuweiler, Harrie-Jan Hendricks Franssen, and Clemens Simmer
Earth Syst. Sci. Data, 13, 4437–4464, https://doi.org/10.5194/essd-13-4437-2021, https://doi.org/10.5194/essd-13-4437-2021, 2021
Short summary
Short summary
In this study, a 9-year simulation of complete model output of a coupled atmosphere–land-surface–subsurface model on the catchment scale is discussed. We used the Neckar catchment in SW Germany as the basis of this simulation. Since the dataset includes the full model output, it is not only possible to investigate model behavior and interactions between the component models but also use it as a virtual truth for comparison of, for example, data assimilation experiments.
Markus Hrachowitz, Michael Stockinger, Miriam Coenders-Gerrits, Ruud van der Ent, Heye Bogena, Andreas Lücke, and Christine Stumpp
Hydrol. Earth Syst. Sci., 25, 4887–4915, https://doi.org/10.5194/hess-25-4887-2021, https://doi.org/10.5194/hess-25-4887-2021, 2021
Short summary
Short summary
Deforestation affects how catchments store and release water. Here we found that deforestation in the study catchment led to a 20 % increase in mean runoff, while reducing the vegetation-accessible water storage from about 258 to 101 mm. As a consequence, fractions of young water in the stream increased by up to 25 % during wet periods. This implies that water and solutes are more rapidly routed to the stream, which can, after contamination, lead to increased contaminant peak concentrations.
Cosimo Brogi, Johan A. Huisman, Lutz Weihermüller, Michael Herbst, and Harry Vereecken
SOIL, 7, 125–143, https://doi.org/10.5194/soil-7-125-2021, https://doi.org/10.5194/soil-7-125-2021, 2021
Short summary
Short summary
There is a need in agriculture for detailed soil maps that carry quantitative information. Geophysics-based soil maps have the potential to deliver such products, but their added value has not been fully investigated yet. In this study, we compare the use of a geophysics-based soil map with the use of two commonly available maps as input for crop growth simulations. The geophysics-based product results in better simulations, with improvements that depend on precipitation, soil, and crop type.
Theresa Boas, Heye Bogena, Thomas Grünwald, Bernard Heinesch, Dongryeol Ryu, Marius Schmidt, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 14, 573–601, https://doi.org/10.5194/gmd-14-573-2021, https://doi.org/10.5194/gmd-14-573-2021, 2021
Short summary
Short summary
In this study we were able to significantly improve CLM5 model performance for European cropland sites by adding a winter wheat representation, specific plant parameterizations for important cash crops, and a cover-cropping and crop rotation subroutine to its crop module. Our modifications should be applied in future studies of CLM5 to improve regional yield predictions and to better understand large-scale impacts of agricultural management on carbon, water, and energy fluxes.
Tim G. Reichenau, Wolfgang Korres, Marius Schmidt, Alexander Graf, Gerhard Welp, Nele Meyer, Anja Stadler, Cosimo Brogi, and Karl Schneider
Earth Syst. Sci. Data, 12, 2333–2364, https://doi.org/10.5194/essd-12-2333-2020, https://doi.org/10.5194/essd-12-2333-2020, 2020
Jie Tian, Zhibo Han, Heye Reemt Bogena, Johan Alexander Huisman, Carsten Montzka, Baoqing Zhang, and Chansheng He
Hydrol. Earth Syst. Sci., 24, 4659–4674, https://doi.org/10.5194/hess-24-4659-2020, https://doi.org/10.5194/hess-24-4659-2020, 2020
Short summary
Short summary
Large-scale profile soil moisture (SM) is important for water resource management, but its estimation is a challenge. Thus, based on in situ SM observations in a cold mountain, a strong relationship between the surface SM and subsurface SM is found. Both the subsurface SM of 10–30 cm and the profile SM of 0–70 cm can be estimated from the surface SM of 0–10 cm accurately. By combing with the satellite product, we improve the large-scale profile SM estimation in the cold mountains finally.
Benjamin Fersch, Till Francke, Maik Heistermann, Martin Schrön, Veronika Döpper, Jannis Jakobi, Gabriele Baroni, Theresa Blume, Heye Bogena, Christian Budach, Tobias Gränzig, Michael Förster, Andreas Güntner, Harrie-Jan Hendricks Franssen, Mandy Kasner, Markus Köhli, Birgit Kleinschmit, Harald Kunstmann, Amol Patil, Daniel Rasche, Lena Scheiffele, Ulrich Schmidt, Sandra Szulc-Seyfried, Jannis Weimar, Steffen Zacharias, Marek Zreda, Bernd Heber, Ralf Kiese, Vladimir Mares, Hannes Mollenhauer, Ingo Völksch, and Sascha Oswald
Earth Syst. Sci. Data, 12, 2289–2309, https://doi.org/10.5194/essd-12-2289-2020, https://doi.org/10.5194/essd-12-2289-2020, 2020
Cited articles
Abioye, E. A., Abidin, M. S. Z., Mahmud, M. S. A., Buyamin, S., Ishak, M.
H. I., Abd Rahman, M. K. I., Otuoze, A. O., Onotu, P., and Ramli, M. S. A.:
A review on monitoring and advanced control strategies for precision
irrigation, Comput. Electron. Agr., 173, 105441, https://doi.org/10.1016/j.compag.2020.105441, 2020.
Adeyemi, O., Grove, I., Peets, S., and Norton, T.: Advanced monitoring and
management systems for improving sustainability in precision irrigation,
Sustainability, 9, 353, https://doi.org/10.3390/su9030353, 2017.
Andreasen, M., Jensen, K. H., Zreda, M., Desilets, D., Bogena, H., and
Looms, M. C.: Modeling cosmic ray neutron field measurements, Water
Resour. Res., 52, 6451–6471, 2016.
Baatz, R., Bogena, H., Hendricks Franssen, H. J., Huisman, J., Montzka, C.,
and Vereecken, H.: An empirical vegetation correction for soil water content
quantification using cosmic ray probes, Water Resour. Res., 51,
2030–2046, 2015.
Baatz, R., Hendricks Franssen, H.-J., Han, X., Hoar, T., Bogena, H. R., and Vereecken, H.: Evaluation of a cosmic-ray neutron sensor network for improved land surface model prediction, Hydrol. Earth Syst. Sci., 21, 2509–2530, https://doi.org/10.5194/hess-21-2509-2017, 2017.
Badiee, A., Wallbank, J. R., Fentanes, J. P., Trill, E., Scarlet, P., Zhu,
Y., Cielniak, G., Cooper, H., Blake, J. R., and Evans, J. G.: Using
additional moderator to control the footprint of a COSMOS Rover for soil
moisture measurement, Water Resour. Res., 57, e2020WR028478, https://doi.org/10.1029/2020WR028478, 2021.
Baroni, G., Scheiffele, L., Schrön, M., Ingwersen, J., and Oswald, S.:
Uncertainty, sensitivity and improvements in soil moisture estimation with
cosmic-ray neutron sensing, J. Hydrol., 564, 873–887, 2018.
Bogena, H., Herbst, M., Huisman, J., Rosenbaum, U., Weuthen, A., and
Vereecken, H.: Potential of wireless sensor networks for measuring soil
water content variability, Vadose Zone J., 9, 1002–1013, 2010.
Bogena, H., Huisman, J., Baatz, R., Hendricks Franssen, H. J., and
Vereecken, H.: Accuracy of the cosmic-ray soil water content probe in humid
forest ecosystems: The worst case scenario, Water Resour. Res., 49,
5778–5791, 2013.
Bogena, H., Huisman, J., Güntner, A., Hübner, C., Kusche, J.,
Jonard, F., Vey, S., and Vereecken, H.: Emerging methods for noninvasive
sensing of soil moisture dynamics from field to catchment scale: A review,
WIRES Water, 2, 635–647, 2015.
Bogena, H., Herrmann, F., Jakobi, J., Brogi, C., Ilias, A., Huisman, J.,
Panagopoulos, A., and Pisinaras, V.: Monitoring of snowpack dynamics with
cosmic-ray neutron probes: A comparison of four conversion methods,
Front. Water, 2, 19, https://doi.org/10.3389/frwa.2020.00019, 2020.
Bogena, H. R., Schrön, M., Jakobi, J., Ney, P., Zacharias, S., Andreasen, M., Baatz, R., Boorman, D., Duygu, M. B., Eguibar-Galán, M. A., Fersch, B., Franke, T., Geris, J., González Sanchis, M., Kerr, Y., Korf, T., Mengistu, Z., Mialon, A., Nasta, P., Nitychoruk, J., Pisinaras, V., Rasche, D., Rosolem, R., Said, H., Schattan, P., Zreda, M., Achleitner, S., Albentosa-Hernández, E., Akyürek, Z., Blume, T., del Campo, A., Canone, D., Dimitrova-Petrova, K., Evans, J. G., Ferraris, S., Frances, F., Gisolo, D., Güntner, A., Herrmann, F., Iwema, J., Jensen, K. H., Kunstmann, H., Lidón, A., Looms, M. C., Oswald, S., Panagopoulos, A., Patil, A., Power, D., Rebmann, C., Romano, N., Scheiffele, L., Seneviratne, S., Weltin, G., and Vereecken, H.: COSMOS-Europe: a European network of cosmic-ray neutron soil moisture sensors, Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, 2022.
Chadwick, M. B., Herman, M., Obložinský, P., Dunn, M. E., Danon, Y.,
Kahler, A., Smith, D. L., Pritychenko, B., Arbanas, G., and Arcilla, R.:
ENDF/B-VII. 1 nuclear data for science and technology: cross sections,
covariances, fission product yields and decay data, Nucl. Data Sheets,
112, 2887–2996, 2011.
Chrisman, B. and Zreda, M.: Quantifying mesoscale soil moisture with the cosmic-ray rover, Hydrol. Earth Syst. Sci., 17, 5097–5108, https://doi.org/10.5194/hess-17-5097-2013, 2013.
Desilets, D. and Zreda, M.: Footprint diameter for a cosmic-ray soil
moisture probe: Theory and Monte Carlo simulations, Water Resour.
Res., 49, 3566–3575, 2013.
Desilets, D., Zreda, M., and Ferré, T. P.: Nature's neutron probe: Land
surface hydrology at an elusive scale with cosmic rays, Water Resour.
Res., 46, https://doi.org/10.1029/2009WR008726, 2010.
Dong, J., Ochsner, T. E., Zreda, M., Cosh, M. H., and Zou, C. B.:
Calibration and validation of the COSMOS rover for surface soil moisture
measurement, Vadose Zone J., 13, https://doi.org/10.2136/vzj2013.08.0148, 2014.
Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten,
D., Glotter, M., Flörke, M., Wada, Y., Best, N., Eisner, S., Fekete, B.
M., Folberth, C., Foster, I., Gosling, S. N., Haddeland, I., Khabarov, N.,
Ludwig, F., Masaki, Y., Olin, S., Rosenzweig, C., Ruane, A. C., Satoh, Y.,
Schmid, E., Stacke, T., Tang, Q., and Wisser, D.: Constraints and potentials
of future irrigation water availability on agricultural production under
climate change, P. Natl. Acad. Sci. USA, 111,
3239–3244, https://doi.org/10.1073/pnas.1222474110, 2014.
Finkenbiner, C. E., Franz, T. E., Gibson, J., Heeren, D. M., and Luck, J.:
Integration of hydrogeophysical datasets and empirical orthogonal functions
for improved irrigation water management, Precis. Agric., 20, 78–100,
2019.
Francke, T., Heistermann, M., Köhli, M., Budach, C., Schrön, M., and
Oswald, S. E.: Assessing the feasibility of a directional cosmic-ray neutron
sensing sensor for estimating soil moisture, Geosci. Instrum.
Meth., 11, 75–92, 2022.
Franz, T. E., Zreda, M., Ferre, T., and Rosolem, R.: An assessment of the
effect of horizontal soil moisture heterogeneity on the area-average
measurement of cosmic-ray neutrons, Water Resour. Res., 49, 6450–6458,
2013.
Franz, T. E., Wahbi, A., Vreugdenhil, M., Weltin, G., Heng, L., Oismueller,
M., Strauss, P., Dercon, G., and Desilets, D.: Using cosmic-ray neutron
probes to monitor landscape scale soil water content in mixed land use
agricultural systems, Appl. Environ. Soil Sci., 2016, 4323742, https://doi.org/10.1155/2016/4323742, 2016.
Franz, T. E., Wahbi, A., Zhang, J., Vreugdenhil, M., Heng, L., Dercon, G.,
Strauss, P., Brocca, L., and Wagner, W.: Practical data products from
cosmic-ray neutron sensing for hydrological applications, Front.
Water, 2, 9, https://doi.org/10.3389/frwa.2020.00009, 2020.
Heistermann, M., Francke, T., Schrön, M., and Oswald, S. E.: Spatio-temporal soil moisture retrieval at the catchment scale using a dense network of cosmic-ray neutron sensors, Hydrol. Earth Syst. Sci., 25, 4807–4824, https://doi.org/10.5194/hess-25-4807-2021, 2021.
Iwema, J., Schrön, M., Koltermann Da Silva, J., Schweiser De Paiva
Lopes, R., and Rosolem, R.: Accuracy and precision of the cosmic-ray neutron
sensor for soil moisture estimation at humid environments, Hydrol.
Process., 35, e14419, https://doi.org/10.1002/hyp.14419, 2021.
Jakobi, J., Huisman, J. H., Schrön, M., Fiedler, J., Brogi, C.,
Vereecken, H., and Bogena, H. R.: Error estimation for soil moisture
measurements with cosmic-ray neutron sensing and implications for rover
surveys, Front. Water, 2, 10,
https://doi.org/10.3389/frwa.2020.00010, 2020.
Jakobi, J., Huisman, J. A., Köhli, M., Rasche, D., Vereecken, H., and
Bogena, H.: The footprint characteristics of cosmic ray thermal neutrons,
Geophys. Res. Lett., 48, e2021GL094281, https://doi.org/10.1029/2021GL094281, 2021.
Jakobi, J. C., Huisman, J. A., Fuchs, H., Vereecken, H., and Bogena, H.:
Potential of thermal neutrons to correct cosmic-ray neutron soil moisture
content measurements for dynamic biomass effects, Water Resour. Res., 58, e2022WR031972, https://doi.org/10.1029/2022WR031972, 2022.
Kamali, B., Lorite, I. J., Webber, H. A., Rezaei, E. E., Gabaldon-Leal, C.,
Nendel, C., Siebert, S., Ramirez-Cuesta, J. M., Ewert, F., and Ojeda, J. J.:
Uncertainty in climate change impact studies for irrigated maize cropping
systems in southern Spain, Sci. Rep., 12, 1–13, 2022.
Köhli, M., Schrön, M., Zreda, M., Schmidt, U., Dietrich, P., and
Zacharias, S.: Footprint characteristics revised for field-scale soil
moisture monitoring with cosmic-ray neutrons, Water Resour. Res., 51,
5772–5790, 2015.
Köhli, M., Schrön, M., and Schmidt, U.: Response functions for
detectors in cosmic ray neutron sensing, Nuclear instruments and methods in
physics research section A: Accelerators, spectrometers, detectors and
associated equipment, 902, 184–189, 2018.
Köhli, M., Weimar, J., Schrön, M., Baatz, R., and Schmidt, U.: Soil
moisture and air humidity dependence of the above-ground cosmic-ray neutron
intensity, Front. Water, 2, 66, https://doi.org/10.3389/frwa.2020.544847, 2021.
Kukal, M. S. and Irmak, S.: Irrigation-limited yield gaps: trends and
variability in the United States post-1950, Environ. Res.
Commun., 1, 061005, https://doi.org/10.1088/2515-7620/ab2aee, 2019.
Li, D., Schrön, M., Kohli, M., Bogena, H., Weimar, J., Jiménez
Bello, M. A., Han, X., Martínez-Gimeno, M. A., Zacharias, S.,
Vereecken, H., and Hendricks Franssen, H. J.: Can drip irrigation be
scheduled with cosmic-ray neutron sensing?, Vadose Zone J., 18, 1–13,
2019.
Mohanty, B. P., Cosh, M. H., Lakshmi, V., and Montzka, C.: Soil moisture
remote sensing: State-of-the-science, Vadose Zone J., 16, 1–9, 2017.
Molden, D.: Water for food water for life: A comprehensive assessment of
water management in agriculture, Taylor & Francis Group, https://doi.org/10.4324/9781849773799, 2013.
Montzka, C., Bogena, H. R., Zreda, M., Monerris, A., Morrison, R., Muddu,
S., and Vereecken, H.: Validation of spaceborne and modelled surface soil
moisture products with cosmic-ray neutron probes, Remote Sens., 9, 103, https://doi.org/10.3390/rs9020103,
2017.
Ney, P., Köhli, M., Bogena, H., and Goergen, K.: CRNS-based monitoring technologies for a weather and climate-resilient agriculture: realization by the ADAPTER project, 2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), 3–5 November 2021, Trento-Bolzano, Italy, 203–208, https://doi.org/10.1109/MetroAgriFor52389.2021.9628766, 2021.
Pisinaras, V., Paraskevas, C., and Panagopoulos, A.: Investigating the
Effects of Agricultural Water Management in a Mediterranean Coastal Aquifer
under Current and Projected Climate Conditions, Water, 13, 108, https://doi.org/10.3390/w13010108, 2021.
Ragab, R., Evans, J., Battilani, A., and Solimando, D.: The cosmic-ray soil
moisture observation system (Cosmos) for estimating the crop water
requirement: new approach, Irrig. Drain., 66, 456–468, 2017.
Rasche, D., Köhli, M., Schrön, M., Blume, T., and Güntner, A.: Towards disentangling heterogeneous soil moisture patterns in cosmic-ray neutron sensor footprints, Hydrol. Earth Syst. Sci., 25, 6547–6566, https://doi.org/10.5194/hess-25-6547-2021, 2021.
Romano, P. K. and Forget, B.: The OpenMC monte carlo particle transport
code, Ann. Nucl. Energ., 51, 274–281, 2013.
Rosolem, R., Shuttleworth, W. J., Zreda, M., Franz, T. E., Zeng, X., and
Kurc, S.: The effect of atmospheric water vapor on neutron count in the
cosmic-ray soil moisture observing system, J. Hydrometeorol., 14,
1659–1671, 2013.
Rost, S., Gerten, D., Bondeau, A., Lucht, W., Rohwer, J., and Schaphoff, S.:
Agricultural green and blue water consumption and its influence on the
global water system, Water Resour. Res., 44, 9, https://doi.org/10.1029/2007WR006331, 2008.
Sato, T.: Analytical model for estimating terrestrial cosmic ray fluxes
nearly anytime and anywhere in the world: Extension of PARMA/EXPACS, PloS
one, 10, e0144679, https://doi.org/10.1371/journal.pone.0144679, 2015.
Schattan, P., Baroni, G., Oswald, S. E., Schöber, J., Fey, C., Kormann,
C., Huttenlau, M., and Achleitner, S.: Continuous monitoring of snowpack
dynamics in alpine terrain by aboveground neutron sensing, Water Resour.
Res., 53, 3615–3634, 2017.
Schattan, P., Köhli, M., Schrön, M., Baroni, G., and Oswald, S. E.:
Sensing area-average snow water equivalent with cosmic-ray neutrons: The
influence of fractional snow cover, Water Resour. Res., 55,
10796–10812, 2019.
Schrön, M., Köhli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., Martini, E., Baroni, G., Rosolem, R., Weimar, J., Mai, J., Cuntz, M., Rebmann, C., Oswald, S. E., Dietrich, P., Schmidt, U., and Zacharias, S.: Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity, Hydrol. Earth Syst. Sci., 21, 5009–5030, https://doi.org/10.5194/hess-21-5009-2017, 2017.
Schrön, M., Rosolem, R., Köhli, M., Piussi, L., Schröter, I.,
Iwema, J., Kögler, S., Oswald, S., Wollschläger, U., and Samaniego,
L.: Cosmic-ray neutron rover surveys of field soil moisture and the
influence of roads, Water Resour. Res., 54, 6441–6459, 2018a.
Schrön, M., Zacharias, S., Womack, G., Köhli, M., Desilets, D.,
Oswald, S. E., Bumberger, J., Mollenhauer, H., Kögler, S., and Remmler,
P.: Intercomparison of cosmic-ray neutron sensors and water balance
monitoring in an urban environment, Geosci. Instrum. Meth., 7, 83–99, 2018b.
Schrön, M., Köhli, M., and Zacharias, S.: Signal contribution of distant areas to cosmic-ray neutron sensors – implications on footprint and sensitivity, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-219, 2022.
Shibata, K., Iwamoto, O., Nakagawa, T., Iwamoto, N., Ichihara, A., Kunieda,
S., Chiba, S., Furutaka, K., Otuka, N., and Ohsawa, T.: JENDL-4.0: a new
library for nuclear science and engineering, J. Nucl. Sci.
Technol., 48, 1–30, 2011.
Shuttleworth, J., Rosolem, R., Zreda, M., and Franz, T.: The COsmic-ray Soil Moisture Interaction Code (COSMIC) for use in data assimilation, Hydrol. Earth Syst. Sci., 17, 3205–3217, https://doi.org/10.5194/hess-17-3205-2013, 2013.
Siebert, S., Webber, H., Zhao, G., and Ewert, F.: Heat stress is
overestimated in climate impact studies for irrigated agriculture,
Environ. Res. Lett., 12, 054023, https://doi.org/10.1088/1748-9326/aa702f, 2017.
Tack, J., Barkley, A., and Hendricks, N.: Irrigation offsets wheat yield
reductions from warming temperatures, Environ. Res. Lett., 12,
114027, https://doi.org/10.1088/1748-9326/aa8d27, 2017.
Troy, T. J., Kipgen, C., and Pal, I.: The impact of climate extremes and
irrigation on US crop yields, Environ. Res. Lett., 10, 054013,
https://doi.org/10.1088/1748-9326/10/5/054013, 2015.
Vereecken, H., Huisman, J., Bogena, H., Vanderborght, J., Vrugt, J., and
Hopmans, J.: On the value of soil moisture measurements in vadose zone
hydrology: A review, Water Resour. Res., 44, https://doi.org/10.1029/2008WR006829, 2008.
Wagner, W., Blöschl, G., Pampaloni, P., Calvet, J.-C., Bizzarri, B.,
Wigneron, J.-P., and Kerr, Y.: Operational readiness of microwave remote
sensing of soil moisture for hydrologic applications, Hydrol. Res.,
38, 1–20, 2007.
Walker, J. P., Houser, P. R., and Willgoose, G. R.: Active microwave remote
sensing for soil moisture measurement: a field evaluation using ERS-2,
Hydrol. Process., 18, 1975–1997, 2004.
Webber, H., Ewert, F., Kimball, B., Siebert, S., White, J. W., Wall, G.,
Ottman, M. J., Trawally, D., and Gaiser, T.: Simulating canopy temperature
for modelling heat stress in cereals, Environ. Model. Softw.,
77, 143–155, 2016.
Weimar, J., Köhli, M., Budach, C., and Schmidt, U.: Large-Scale
Boron-Lined Neutron Detection Systems as a 3He Alternative for Cosmic Ray
Neutron Sensing, Front. Water, 2, https://doi.org/10.3389/frwa.2020.00016, 2020.
Zaveri, E. and Lobell, D. B.: The role of irrigation in changing wheat
yields and heat sensitivity in India, Nat. Commun., 10, 4144,
https://doi.org/10.1038/s41467-019-12183-9, 2019.
Zreda, M., Desilets, D., Ferré, T., and Scott, R. L.: Measuring soil
moisture content non-invasively at intermediate spatial scale using
cosmic-ray neutrons, Geophys. Res. Lett., 35, 21, https://doi.org/10.1029/2008GL035655, 2008.
Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray Soil Moisture Observing System, Hydrol. Earth Syst. Sci., 16, 4079–4099, https://doi.org/10.5194/hess-16-4079-2012, 2012.
Short summary
Accurate monitoring of water in soil can improve irrigation efficiency, which is important considering climate change and the growing world population. Cosmic-ray neutrons sensors (CRNSs) are a promising tool in irrigation monitoring due to a larger sensed area and to lower maintenance than other ground-based sensors. Here, we analyse the feasibility of irrigation monitoring with CRNSs and the impact of the irrigated field dimensions, of the variations of water in soil, and of instrument design.
Accurate monitoring of water in soil can improve irrigation efficiency, which is important...