Articles | Volume 4, issue 1
Geosci. Instrum. Method. Data Syst., 4, 57–64, 2015
https://doi.org/10.5194/gi-4-57-2015
Geosci. Instrum. Method. Data Syst., 4, 57–64, 2015
https://doi.org/10.5194/gi-4-57-2015
Research article
02 Mar 2015
Research article | 02 Mar 2015

A new instrument to measure plot-scale runoff

R. D. Stewart et al.

Related authors

Recession discharge from compartmentalized bedrock hillslopes
Clément Roques, David E. Rupp, Jean-Raynald de Dreuzy, Laurent Longuevergne, Elizabeth R. Jachens, Gordon Grant, Luc Aquilina, and John S. Selker
Hydrol. Earth Syst. Sci., 26, 4391–4405, https://doi.org/10.5194/hess-26-4391-2022,https://doi.org/10.5194/hess-26-4391-2022, 2022
Short summary
The motion of trees in the wind: a data synthesis
Toby D. Jackson, Sarab Sethi, Ebba Dellwik, Nikolas Angelou, Amanda Bunce, Tim van Emmerik, Marine Duperat, Jean-Claude Ruel, Axel Wellpott, Skip Van Bloem, Alexis Achim, Brian Kane, Dominick M. Ciruzzi, Steven P. Loheide II, Ken James, Daniel Burcham, John Moore, Dirk Schindler, Sven Kolbe, Kilian Wiegmann, Mark Rudnicki, Victor J. Lieffers, John Selker, Andrew V. Gougherty, Tim Newson, Andrew Koeser, Jason Miesbauer, Roger Samelson, Jim Wagner, Anthony R. Ambrose, Andreas Detter, Steffen Rust, David Coomes, and Barry Gardiner
Biogeosciences, 18, 4059–4072, https://doi.org/10.5194/bg-18-4059-2021,https://doi.org/10.5194/bg-18-4059-2021, 2021
Short summary
Revisiting wind speed measurements using actively heated fiber optics: a wind tunnel study
Justus G. V. van Ramshorst, Miriam Coenders-Gerrits, Bart Schilperoort, Bas J. H. van de Wiel, Jonathan G. Izett, John S. Selker, Chad W. Higgins, Hubert H. G. Savenije, and Nick C. van de Giesen
Atmos. Meas. Tech., 13, 5423–5439, https://doi.org/10.5194/amt-13-5423-2020,https://doi.org/10.5194/amt-13-5423-2020, 2020
Short summary
Distributed observations of wind direction using microstructures attached to actively heated fiber-optic cables
Karl Lapo, Anita Freundorfer, Lena Pfister, Johann Schneider, John Selker, and Christoph Thomas
Atmos. Meas. Tech., 13, 1563–1573, https://doi.org/10.5194/amt-13-1563-2020,https://doi.org/10.5194/amt-13-1563-2020, 2020
Short summary
Recession analysis revisited: impacts of climate on parameter estimation
Elizabeth R. Jachens, David E. Rupp, Clément Roques, and John S. Selker
Hydrol. Earth Syst. Sci., 24, 1159–1170, https://doi.org/10.5194/hess-24-1159-2020,https://doi.org/10.5194/hess-24-1159-2020, 2020
Short summary

Related subject area

Ground-based instruments
Measurements of natural airflow within a Stevenson screen and its influence on air temperature and humidity records
Stephen Burt
Geosci. Instrum. Method. Data Syst., 11, 263–277, https://doi.org/10.5194/gi-11-263-2022,https://doi.org/10.5194/gi-11-263-2022, 2022
Short summary
The soil heat flux sensor functioning checks, imbalances' origins, and forgotten energies
Bartosz M. Zawilski
Geosci. Instrum. Method. Data Syst., 11, 223–234, https://doi.org/10.5194/gi-11-223-2022,https://doi.org/10.5194/gi-11-223-2022, 2022
Short summary
Wind speed influences corrected Autocalibrated Soil Evapo-respiration Chamber (ASERC) evaporation measures
Bartosz M. Zawilski
Geosci. Instrum. Method. Data Syst., 11, 163–182, https://doi.org/10.5194/gi-11-163-2022,https://doi.org/10.5194/gi-11-163-2022, 2022
Short summary
Assessing the feasibility of a directional cosmic-ray neutron sensing sensor for estimating soil moisture
Till Francke, Maik Heistermann, Markus Köhli, Christian Budach, Martin Schrön, and Sascha E. Oswald
Geosci. Instrum. Method. Data Syst., 11, 75–92, https://doi.org/10.5194/gi-11-75-2022,https://doi.org/10.5194/gi-11-75-2022, 2022
Short summary
Accounting for meteorological effects in the detector of the charged component of cosmic rays
Maxim Philippov, Vladimir Makhmutov, Galina Bazilevskaya, Fedor Zagumennov, Vladimir Fomenko, Yuri Stozhkov, and Andrey Orlov
Geosci. Instrum. Method. Data Syst., 10, 219–226, https://doi.org/10.5194/gi-10-219-2021,https://doi.org/10.5194/gi-10-219-2021, 2021
Short summary

Cited articles

Aksoy, H. and Kavvas, M. L.: A review of hillslope and watershed scale erosion and sediment transport models, Catena, 64, 247–271, 2005.
Ali, G., Oswald, C. J., Spence, C., Cammeraat, E. L., McGuire, K. J., Meixner, T., and Reaney, S. M.: Towards a unified threshold-based hydrological theory: necessary components and recurring challenges, Hydrol. Process., 27, 313–318, 2013.
Betson, R. P.: What is watershed runoff?, J. Geophys. Res., 69, 1541–1552, 1964.
Blair, A., Sanger, D., White, D., Holland, A. F., Vandiver, L., Bowker, C., and White, S.: Quantifying and simulating stormwater runoff in watersheds, Hydrol. Process., 28, 559–569, 2014.
Blume, T., Zehe, E., Reusser, D. E., Iroumé, A., and Bronstert, A.: Investigation of runoff generation in a pristine, poorly gauged catchment in the Chilean Andes I: A multi-method experimental study, Hydrol. Process., 22, 3661–3675, 2008.
Download
Short summary
We present a new instrument for measuring surface runoff rates ranging from very low (~0.05L min-1) to high (300L min-1, with much higher rates possible depending on the device configuration). The device is economical, simple, rugged, accurate and requires little maintenance (the system is self-emptying and contains no moving parts). We have successfully used this instrument in long-term monitoring studies and expect that it will appeal to other scientists studying runoff processes.