Articles | Volume 5, issue 1
https://doi.org/10.5194/gi-5-193-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gi-5-193-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Data flow of spectral UV measurements at Sodankylä and Jokioinen
Kaisa Lakkala
Finnish Meteorological Institute, Research and Development, Helsinki, Finland
Finnish Meteorological Institute, Sodankylä, Finland
Tapani Koskela
Finnish Meteorological Institute, Research and Development, Helsinki, Finland
now: an independent researcher
Tomi Karppinen
Finnish Meteorological Institute, Sodankylä, Finland
Juha Matti Karhu
Finnish Meteorological Institute, Sodankylä, Finland
Vladimir Savastiouk
IOS Inc, Toronto, Canada
Hanne Suokanerva
Finnish Meteorological Institute, Sodankylä, Finland
Jussi Kaurola
Finnish Meteorological Institute, Research and Development, Helsinki, Finland
Antti Arola
Finnish Meteorological Institute, Kuopio, Finland
Anders Vilhelm Lindfors
Finnish Meteorological Institute, Research and Development, Helsinki, Finland
Outi Meinander
Finnish Meteorological Institute, Research and Development, Helsinki, Finland
Gerrit de Leeuw
Finnish Meteorological Institute, Research and Development, Helsinki, Finland
Department of Physics, University of Helsinki, Helsinki, Finland
Anu Heikkilä
Finnish Meteorological Institute, Research and Development, Helsinki, Finland
Related authors
No articles found.
Frank Hase, Paolo Castracane, Angelika Dehn, Omaira Elena García, David W. T. Griffith, Lukas Heizmann, Nicholas B. Jones, Tomi Karppinen, Rigel Kivi, Martine de Mazière, Justus Notholt, and Mahesh Kumar Sha
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-140, https://doi.org/10.5194/amt-2024-140, 2024
Preprint under review for AMT
Short summary
Short summary
The primary measurement result delivered by a Fourier Transform spectrometer is an interferogram, and the spectrum required for further analysis needs to be calculated from the interferogram by a Fourier analysis. The paper deals with technical aspects of this process and shows how the reconstruction of the spectrum can be optimized.
Harri Kokkola, Juha Tonttila, Silvia Calderón, Sami Romakkaniemi, Antti Lipponen, Aapo Peräkorpi, Tero Mielonen, Edward Gryspeerdt, Timo H. Virtanen, Pekka Kolmonen, and Antti Arola
EGUsphere, https://doi.org/10.5194/egusphere-2024-1964, https://doi.org/10.5194/egusphere-2024-1964, 2024
Short summary
Short summary
Understanding how atmospheric aerosols affect clouds is a scientific challenge. One question is how aerosols affects the amount cloud water. We used a cloud-scale model to study these effects on marine clouds. The study showed that variations in cloud properties and instrument noise can cause bias in satellite derived cloud water content. However, our results suggest that for similar weather conditions with well-defined aerosol concentrations, satellite data can reliably track these effects.
Timo H. Virtanen, Anu-Maija Sundström, Elli Suhonen, Antti Lipponen, Antti Arola, Christopher O'Dell, Robert R. Nelson, and Hannakaisa Lindqvist
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-77, https://doi.org/10.5194/amt-2024-77, 2024
Preprint under review for AMT
Short summary
Short summary
We find that small particles suspended in the air (aerosols) affect the satellite observations of carbon dioxide (CO2) made by the Orbiting Carbon Observatory -2 satellite instrument. The satellite estimates of CO2 appear too high for clean areas and too low for polluted areas. Our results show that the CO2 and aerosols are often co-emitted, and this is partly masked out in the current retrievals. Correctly accounting for the aerosol effect is important for CO2 emission estimates by satellites.
Yuqin Liu, Tao Lin, Jiahua Zhang, Fu Wang, Yiyi Huang, Xian Wu, Hong Ye, Guoqin Zhang, Xin Cao, and Gerrit de Leeuw
Atmos. Chem. Phys., 24, 4651–4673, https://doi.org/10.5194/acp-24-4651-2024, https://doi.org/10.5194/acp-24-4651-2024, 2024
Short summary
Short summary
A new method, the geographical detector method (GDM), has been applied to satellite data, in addition to commonly used statistical methods, to study the sensitivity of cloud properties to aerosol over China. Different constraints for aerosol and cloud liquid water path apply over polluted and clean areas. The GDM shows that cloud parameters are more sensitive to combinations of parameters than to individual parameters, but confounding effects due to co-variation of parameters cannot be excluded.
Ouyang Liu, Zhengqiang Li, Yangyan Lin, Cheng Fan, Ying Zhang, Kaitao Li, Peng Zhang, Yuanyuan Wei, Tianzeng Chen, Jiantao Dong, and Gerrit de Leeuw
Atmos. Meas. Tech., 17, 377–395, https://doi.org/10.5194/amt-17-377-2024, https://doi.org/10.5194/amt-17-377-2024, 2024
Short summary
Short summary
Nitrogen dioxide (NO2) is a trace gas which is important for atmospheric chemistry and may affect human health. To understand processes leading to harmful concentrations, it is important to monitor NO2 concentrations near the surface and higher up. To this end, a Pandora instrument has been installed in Beijing. An overview of the first year of data shows the large variability on diurnal to seasonal timescales and how this is affected by wind speed and direction and chemistry.
Markku Kulmala, Anna Lintunen, Hanna Lappalainen, Annele Virtanen, Chao Yan, Ekaterina Ezhova, Tuomo Nieminen, Ilona Riipinen, Risto Makkonen, Johanna Tamminen, Anu-Maija Sundström, Antti Arola, Armin Hansel, Kari Lehtinen, Timo Vesala, Tuukka Petäjä, Jaana Bäck, Tom Kokkonen, and Veli-Matti Kerminen
Atmos. Chem. Phys., 23, 14949–14971, https://doi.org/10.5194/acp-23-14949-2023, https://doi.org/10.5194/acp-23-14949-2023, 2023
Short summary
Short summary
To be able to meet global grand challenges, we need comprehensive open data with proper metadata. In this opinion paper, we describe the SMEAR (Station for Measuring Earth surface – Atmosphere Relations) concept and include several examples (cases), such as new particle formation and growth, feedback loops and the effect of COVID-19, and what has been learned from these investigations. The future needs and the potential of comprehensive observations of the environment are summarized.
Vladimir Savastiouk, Henri Diémoz, and C. Thomas McElroy
Atmos. Meas. Tech., 16, 4785–4806, https://doi.org/10.5194/amt-16-4785-2023, https://doi.org/10.5194/amt-16-4785-2023, 2023
Short summary
Short summary
This paper describes a way to significantly improve ozone measurements at low sun elevations and large ozone amounts when using the Brewer ozone spectrophotometer. The proposed algorithm will allow more uniform ozone measurements across the monitoring network. This will contribute to more reliable trend analysis and support the satellite validation. This research contributes to better understanding the physics of the instrument, and the new algorithm is based on this new knowledge.
William Wandji Nyamsi, Yves-Marie Saint-Drenan, Antti Arola, and Lucien Wald
Atmos. Meas. Tech., 16, 2001–2036, https://doi.org/10.5194/amt-16-2001-2023, https://doi.org/10.5194/amt-16-2001-2023, 2023
Short summary
Short summary
The McClear service provides estimates of surface solar irradiances in cloud-free conditions. By comparing McClear estimates to 1 min measurements performed in Sub-Saharan Africa and the Maldives Archipelago in the Indian Ocean, McClear accurately estimates global irradiance and tends to overestimate direct irrradiance. This work establishes a general overview of the performance of the McClear service.
Kostas Eleftheratos, John Kapsomenakis, Ilias Fountoulakis, Christos S. Zerefos, Patrick Jöckel, Martin Dameris, Alkiviadis F. Bais, Germar Bernhard, Dimitra Kouklaki, Kleareti Tourpali, Scott Stierle, J. Ben Liley, Colette Brogniez, Frédérique Auriol, Henri Diémoz, Stana Simic, Irina Petropavlovskikh, Kaisa Lakkala, and Kostas Douvis
Atmos. Chem. Phys., 22, 12827–12855, https://doi.org/10.5194/acp-22-12827-2022, https://doi.org/10.5194/acp-22-12827-2022, 2022
Short summary
Short summary
We present the future evolution of DNA-active ultraviolet (UV) radiation in view of increasing greenhouse gases (GHGs) and decreasing ozone depleting substances (ODSs). It is shown that DNA-active UV radiation might increase after 2050 between 50° N–50° S due to GHG-induced reductions in clouds and ozone, something that is likely not to happen at high latitudes, where DNA-active UV radiation will continue its downward trend mainly due to stratospheric ozone recovery from the reduction in ODSs.
Chao Yan, Yicheng Shen, Dominik Stolzenburg, Lubna Dada, Ximeng Qi, Simo Hakala, Anu-Maija Sundström, Yishuo Guo, Antti Lipponen, Tom V. Kokkonen, Jenni Kontkanen, Runlong Cai, Jing Cai, Tommy Chan, Liangduo Chen, Biwu Chu, Chenjuan Deng, Wei Du, Xiaolong Fan, Xu-Cheng He, Juha Kangasluoma, Joni Kujansuu, Mona Kurppa, Chang Li, Yiran Li, Zhuohui Lin, Yiliang Liu, Yuliang Liu, Yiqun Lu, Wei Nie, Jouni Pulliainen, Xiaohui Qiao, Yonghong Wang, Yifan Wen, Ye Wu, Gan Yang, Lei Yao, Rujing Yin, Gen Zhang, Shaojun Zhang, Feixue Zheng, Ying Zhou, Antti Arola, Johanna Tamminen, Pauli Paasonen, Yele Sun, Lin Wang, Neil M. Donahue, Yongchun Liu, Federico Bianchi, Kaspar R. Daellenbach, Douglas R. Worsnop, Veli-Matti Kerminen, Tuukka Petäjä, Aijun Ding, Jingkun Jiang, and Markku Kulmala
Atmos. Chem. Phys., 22, 12207–12220, https://doi.org/10.5194/acp-22-12207-2022, https://doi.org/10.5194/acp-22-12207-2022, 2022
Short summary
Short summary
Atmospheric new particle formation (NPF) is a dominant source of atmospheric ultrafine particles. In urban environments, traffic emissions are a major source of primary pollutants, but their contribution to NPF remains under debate. During the COVID-19 lockdown, traffic emissions were significantly reduced, providing a unique chance to examine their relevance to NPF. Based on our comprehensive measurements, we demonstrate that traffic emissions alone are not able to explain the NPF in Beijing.
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Hanqing Kang, Bin Zhu, Gerrit de Leeuw, Bu Yu, Ronald J. van der A, and Wen Lu
Atmos. Chem. Phys., 22, 10623–10634, https://doi.org/10.5194/acp-22-10623-2022, https://doi.org/10.5194/acp-22-10623-2022, 2022
Short summary
Short summary
This study quantified the contribution of each urban-induced meteorological effect (temperature, humidity, and circulation) to aerosol concentration. We found that the urban heat island (UHI) circulation dominates the UHI effects on aerosol. The UHI circulation transports aerosol and its precursor gases from the warmer lower boundary layer to the colder lower free troposphere and promotes the secondary formation of ammonium nitrate aerosol in the cold atmosphere.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Antti Lipponen, Jaakko Reinvall, Arttu Väisänen, Henri Taskinen, Timo Lähivaara, Larisa Sogacheva, Pekka Kolmonen, Kari Lehtinen, Antti Arola, and Ville Kolehmainen
Atmos. Meas. Tech., 15, 895–914, https://doi.org/10.5194/amt-15-895-2022, https://doi.org/10.5194/amt-15-895-2022, 2022
Short summary
Short summary
We have developed a machine-learning-based model that can be used to correct the Sentinel-3 satellite-based aerosol parameter data of the Synergy data product. The strength of the model is that the original satellite data processing does not have to be carried out again but the correction can be carried out with the data already available. We show that the correction significantly improves the accuracy of the satellite aerosol parameters.
Boming Liu, Jianping Guo, Wei Gong, Yong Zhang, Lijuan Shi, Yingying Ma, Jian Li, Xiaoran Guo, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-26, https://doi.org/10.5194/amt-2022-26, 2022
Publication in AMT not foreseen
Short summary
Short summary
Aeolus is the first satellite mission to directly observe wind profile information on a global scale. However, Aeolus wind products over China were thus far not evaluated by in-situ comparison. This work is the comparison of wind speed on a large scale between the Aeolus, ERA5 and RS , shedding important light on the data application of Aeolus wind products.
Anu Kauppi, Antti Kukkurainen, Antti Lipponen, Marko Laine, Antti Arola, Hannakaisa Lindqvist, and Johanna Tamminen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-328, https://doi.org/10.5194/amt-2021-328, 2021
Revised manuscript not accepted
Short summary
Short summary
We present a methodology in Bayesian framework for retrieving atmospheric aerosol optical depth and aerosol type from the pre-computed look-up tables (LUTs). Especially, we consider Bayesian model averaging and uncertainty originating from aerosol model selection and imperfect forward modelling. Our aim is to get more realistic uncertainty estimates. We have applied the methodology to TROPOMI/S5P satellite observations and evaluated the results against ground-based data from the AERONET.
Xiaoxia Shang, Tero Mielonen, Antti Lipponen, Elina Giannakaki, Ari Leskinen, Virginie Buchard, Anton S. Darmenov, Antti Kukkurainen, Antti Arola, Ewan O'Connor, Anne Hirsikko, and Mika Komppula
Atmos. Meas. Tech., 14, 6159–6179, https://doi.org/10.5194/amt-14-6159-2021, https://doi.org/10.5194/amt-14-6159-2021, 2021
Short summary
Short summary
The long-range-transported smoke particles from a Canadian wildfire event were observed with a multi-wavelength Raman polarization lidar and a ceilometer over Kuopio, Finland, in June 2019. The optical properties and the mass concentration estimations were reported for such aged smoke aerosols over northern Europe.
Kevin Lamy, Thierry Portafaix, Colette Brogniez, Kaisa Lakkala, Mikko R. A. Pitkänen, Antti Arola, Jean-Baptiste Forestier, Vincent Amelie, Mohamed Abdoulwahab Toihir, and Solofoarisoa Rakotoniaina
Earth Syst. Sci. Data, 13, 4275–4301, https://doi.org/10.5194/essd-13-4275-2021, https://doi.org/10.5194/essd-13-4275-2021, 2021
Short summary
Short summary
This paper is about the presentation of the UV-Indien measurement network. This network measures the ultraviolet radiation emitted by the Sun received at the Earth's surface and the clouding above each station. It has been deployed at several sites in the Indian Ocean region representing different environmental conditions. A description of the instruments and their calibration, maintenance, and data processing is presented in this paper along with a valuation of the data quality.
Panagiotis G. Kosmopoulos, Stelios Kazadzis, Alois W. Schmalwieser, Panagiotis I. Raptis, Kyriakoula Papachristopoulou, Ilias Fountoulakis, Akriti Masoom, Alkiviadis F. Bais, Julia Bilbao, Mario Blumthaler, Axel Kreuter, Anna Maria Siani, Kostas Eleftheratos, Chrysanthi Topaloglou, Julian Gröbner, Bjørn Johnsen, Tove M. Svendby, Jose Manuel Vilaplana, Lionel Doppler, Ann R. Webb, Marina Khazova, Hugo De Backer, Anu Heikkilä, Kaisa Lakkala, Janusz Jaroslawski, Charikleia Meleti, Henri Diémoz, Gregor Hülsen, Barbara Klotz, John Rimmer, and Charalampos Kontoes
Atmos. Meas. Tech., 14, 5657–5699, https://doi.org/10.5194/amt-14-5657-2021, https://doi.org/10.5194/amt-14-5657-2021, 2021
Short summary
Short summary
Large-scale retrievals of the ultraviolet index (UVI) in real time by exploiting the modern Earth observation data and techniques are capable of forming operational early warning systems that raise awareness among citizens of the health implications of high UVI doses. In this direction a novel UVI operating system, the so-called UVIOS, was introduced for massive outputs, while its performance was tested against ground-based measurements revealing a dependence on the input quality and resolution.
Yuqin Liu, Tao Lin, Juan Hong, Yonghong Wang, Lamei Shi, Yiyi Huang, Xian Wu, Hao Zhou, Jiahua Zhang, and Gerrit de Leeuw
Atmos. Chem. Phys., 21, 12331–12358, https://doi.org/10.5194/acp-21-12331-2021, https://doi.org/10.5194/acp-21-12331-2021, 2021
Short summary
Short summary
The four-dimensional variation of aerosol properties over the BTH, YRD and PRD (east China) were investigated using satellite observations from 2007 to 2020. Distinct differences between the aerosol optical depth and vertical distribution of the occurrence of aerosol types over these regions depend on season, aerosol loading and meteorological conditions. Day–night differences between the vertical distribution of aerosol types suggest effects of boundary layer dynamics and aerosol transport.
Antti Arola, William Wandji Nyamsi, Antti Lipponen, Stelios Kazadzis, Nickolay A. Krotkov, and Johanna Tamminen
Atmos. Meas. Tech., 14, 4947–4957, https://doi.org/10.5194/amt-14-4947-2021, https://doi.org/10.5194/amt-14-4947-2021, 2021
Short summary
Short summary
Methods to estimate surface UV radiation from satellite measurements offer the only means to obtain global coverage, and the development of satellite-based UV algorithms has been ongoing since the early 1990s. One of the main challenges in this development has been how to account for the overall effect of absorption by atmospheric aerosols. One such method was suggested roughly a decade ago, and in this study we propose further improvements for this kind of approach.
Cheng Fan, Zhengqiang Li, Ying Li, Jiantao Dong, Ronald van der A, and Gerrit de Leeuw
Atmos. Chem. Phys., 21, 7723–7748, https://doi.org/10.5194/acp-21-7723-2021, https://doi.org/10.5194/acp-21-7723-2021, 2021
Short summary
Short summary
Emission control policy in China has resulted in the decrease of nitrogen dioxide concentrations, which however leveled off and stabilized in recent years, as shown from satellite data. The effects of the further emission reduction during the COVID-19 lockdown in 2020 resulted in an initial improvement of air quality, which, however, was offset by chemical and meteorological effects. The study shows the regional dependence over east China, and results have a wider application than China only.
Nick Schutgens, Oleg Dubovik, Otto Hasekamp, Omar Torres, Hiren Jethva, Peter J. T. Leonard, Pavel Litvinov, Jens Redemann, Yohei Shinozuka, Gerrit de Leeuw, Stefan Kinne, Thomas Popp, Michael Schulz, and Philip Stier
Atmos. Chem. Phys., 21, 6895–6917, https://doi.org/10.5194/acp-21-6895-2021, https://doi.org/10.5194/acp-21-6895-2021, 2021
Short summary
Short summary
Absorptive aerosol has a potentially large impact on climate change. We evaluate and intercompare four global satellite datasets of absorptive aerosol optical depth (AAOD) and single-scattering albedo (SSA). We show that these datasets show reasonable correlations with the AErosol RObotic NETwork (AERONET) reference, although significant biases remain. In a follow-up paper we show that these observations nevertheless can be used for model evaluation.
Antti Lipponen, Ville Kolehmainen, Pekka Kolmonen, Antti Kukkurainen, Tero Mielonen, Neus Sabater, Larisa Sogacheva, Timo H. Virtanen, and Antti Arola
Atmos. Meas. Tech., 14, 2981–2992, https://doi.org/10.5194/amt-14-2981-2021, https://doi.org/10.5194/amt-14-2981-2021, 2021
Short summary
Short summary
We have developed a new computational method to post-process-correct the satellite aerosol retrievals. The proposed method combines the conventional satellite aerosol retrievals relying on physics-based models and machine learning. The results show significantly improved accuracy in the aerosol data over the operational satellite data products. The correction can be applied to the existing satellite aerosol datasets with no need to fully reprocess the much larger original radiance data.
Johan Ström, Jonas Svensson, Henri Honkanen, Eija Asmi, Nathaniel B. Dkhar, Shresth Tayal, Ved P. Sharma, Rakesh Hooda, Outi Meinander, Matti Leppäranta, Hans-Werner Jacobi, Heikki Lihavainen, and Antti Hyvärinen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-158, https://doi.org/10.5194/acp-2021-158, 2021
Revised manuscript not accepted
Short summary
Short summary
Snow darkening in the Himalaya results from the deposition of different particles. Here we assess the change in the seasonal snow cover duration due to the presence of mineral dust and black carbon particles in the snow of Sunderdhunga valley, Central Himalaya, India. With the use of in situ weather station data, the snow melt-out date is estimated to be shifted ~13 days earlier due to the presence of the particles in the snow.
Nicola Zoppetti, Simone Ceccherini, Bruno Carli, Samuele Del Bianco, Marco Gai, Cecilia Tirelli, Flavio Barbara, Rossana Dragani, Antti Arola, Jukka Kujanpää, Jacob C. A. van Peet, Ronald van der A, and Ugo Cortesi
Atmos. Meas. Tech., 14, 2041–2053, https://doi.org/10.5194/amt-14-2041-2021, https://doi.org/10.5194/amt-14-2041-2021, 2021
Short summary
Short summary
The new platforms for Earth observation from space will provide an enormous amount of data that can be hard to exploit as a whole. The Complete Data Fusion algorithm can reduce the data volume while retaining the information of the full dataset. In this work, we applied the Complete Data Fusion algorithm to simulated ozone profiles, and the results show that the fused products are characterized by higher information content compared to individual L2 products.
Jianping Guo, Boming Liu, Wei Gong, Lijuan Shi, Yong Zhang, Yingying Ma, Jian Zhang, Tianmeng Chen, Kaixu Bai, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 2945–2958, https://doi.org/10.5194/acp-21-2945-2021, https://doi.org/10.5194/acp-21-2945-2021, 2021
Short summary
Short summary
Vertical wind profiles are crucial to a wide range of atmospheric disciplines. Aeolus is the first satellite mission to directly observe wind profile information on a global scale. However, Aeolus wind products over China have thus far not been evaluated by in situ comparison. This work is expected to let the public and science community better know the Aeolus wind products and to encourage use of these valuable data in future research and applications.
Terhikki Manninen, Kati Anttila, Emmihenna Jääskeläinen, Aku Riihelä, Jouni Peltoniemi, Petri Räisänen, Panu Lahtinen, Niilo Siljamo, Laura Thölix, Outi Meinander, Anna Kontu, Hanne Suokanerva, Roberta Pirazzini, Juha Suomalainen, Teemu Hakala, Sanna Kaasalainen, Harri Kaartinen, Antero Kukko, Olivier Hautecoeur, and Jean-Louis Roujean
The Cryosphere, 15, 793–820, https://doi.org/10.5194/tc-15-793-2021, https://doi.org/10.5194/tc-15-793-2021, 2021
Short summary
Short summary
The primary goal of this paper is to present a model of snow surface albedo (brightness) accounting for small-scale surface roughness effects. It can be combined with any volume scattering model. The results indicate that surface roughness may decrease the albedo by about 1–3 % in midwinter and even more than 10 % during the late melting season. The effect is largest for low solar zenith angle values and lower bulk snow albedo values.
Boming Liu, Jianping Guo, Wei Gong, Yong Zhang, Lijuan Shi, Yingying Ma, Jian Li, Xiaoran Guo, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-41, https://doi.org/10.5194/acp-2021-41, 2021
Revised manuscript not accepted
Short summary
Short summary
Vertical wind profiles are crucial to a wide range of atmospheric disciplines. Aeolus is the first satellite mission to directly observe wind profile information on a global scale. However, Aeolus wind products over China were thus far not evaluated by in-situ comparison. This work is expected to let the public and science community better know the Aeolus wind products and to encourage use of these valuable data in future researches and applications.
Antti Ruuskanen, Sami Romakkaniemi, Harri Kokkola, Antti Arola, Santtu Mikkonen, Harri Portin, Annele Virtanen, Kari E. J. Lehtinen, Mika Komppula, and Ari Leskinen
Atmos. Chem. Phys., 21, 1683–1695, https://doi.org/10.5194/acp-21-1683-2021, https://doi.org/10.5194/acp-21-1683-2021, 2021
Short summary
Short summary
The study focuses mainly on cloud-scavenging efficiency of absorbing particulate matter (mainly black carbon) but additionally covers cloud-scavenging efficiency of scattering particles and statistics of cloud condensation nuclei. The main findings give insight into how black carbon is distributed in different particle sizes and the sensitivity to cloud scavenged. The main findings are useful for large-scale modelling for evaluating cloud scavenging.
Kaisa Lakkala, Jukka Kujanpää, Colette Brogniez, Nicolas Henriot, Antti Arola, Margit Aun, Frédérique Auriol, Alkiviadis F. Bais, Germar Bernhard, Veerle De Bock, Maxime Catalfamo, Christine Deroo, Henri Diémoz, Luca Egli, Jean-Baptiste Forestier, Ilias Fountoulakis, Katerina Garane, Rosa Delia Garcia, Julian Gröbner, Seppo Hassinen, Anu Heikkilä, Stuart Henderson, Gregor Hülsen, Bjørn Johnsen, Niilo Kalakoski, Angelos Karanikolas, Tomi Karppinen, Kevin Lamy, Sergio F. León-Luis, Anders V. Lindfors, Jean-Marc Metzger, Fanny Minvielle, Harel B. Muskatel, Thierry Portafaix, Alberto Redondas, Ricardo Sanchez, Anna Maria Siani, Tove Svendby, and Johanna Tamminen
Atmos. Meas. Tech., 13, 6999–7024, https://doi.org/10.5194/amt-13-6999-2020, https://doi.org/10.5194/amt-13-6999-2020, 2020
Short summary
Short summary
The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor (S5P) satellite was launched on 13 October 2017 to provide the atmospheric composition for atmosphere and climate research. Ground-based data from 25 sites located in Arctic, subarctic, temperate, equatorial and Antarctic
areas were used for the validation of the TROPOMI surface ultraviolet (UV) radiation product. For most sites 60 %–80 % of TROPOMI data was within ± 20 % of ground-based data.
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary
Short summary
Anthropogenic pollution particles – aerosols – serve as cloud condensation nuclei and thus increase cloud droplet concentration and the clouds' reflection of sunlight (a cooling effect on climate). This Twomey effect is poorly constrained by models and requires satellite data for better quantification. The review summarizes the challenges in properly doing so and outlines avenues for progress towards a better use of aerosol retrievals and better retrievals of droplet concentrations.
Ying Zhang, Zhengqiang Li, Yu Chen, Gerrit de Leeuw, Chi Zhang, Yisong Xie, and Kaitao Li
Atmos. Chem. Phys., 20, 12795–12811, https://doi.org/10.5194/acp-20-12795-2020, https://doi.org/10.5194/acp-20-12795-2020, 2020
Short summary
Short summary
Observation of atmospheric aerosol components plays an important role in reducing uncertainty in climate assessment. In this study, an improved remote sensing method which can better distinguish scattering components is developed, and the aerosol components in the atmospheric column over China are retrieved based on the Sun–sky radiometer Observation NETwork (SONET). The component distribution shows there could be a sea salt component in northwest China from a paleomarine source in desert land.
Nick Schutgens, Andrew M. Sayer, Andreas Heckel, Christina Hsu, Hiren Jethva, Gerrit de Leeuw, Peter J. T. Leonard, Robert C. Levy, Antti Lipponen, Alexei Lyapustin, Peter North, Thomas Popp, Caroline Poulsen, Virginia Sawyer, Larisa Sogacheva, Gareth Thomas, Omar Torres, Yujie Wang, Stefan Kinne, Michael Schulz, and Philip Stier
Atmos. Chem. Phys., 20, 12431–12457, https://doi.org/10.5194/acp-20-12431-2020, https://doi.org/10.5194/acp-20-12431-2020, 2020
Short summary
Short summary
We intercompare 14 different datasets of satellite observations of aerosol. Such measurements are challenging but also provide the best opportunity to globally observe an atmospheric component strongly related to air pollution and climate change. Our study shows that most datasets perform similarly well on a global scale but that locally errors can be quite different. We develop a technique to estimate satellite errors everywhere, even in the absence of surface reference data.
Fabio Madonna, Rigel Kivi, Jean-Charles Dupont, Bruce Ingleby, Masatomo Fujiwara, Gonzague Romanens, Miguel Hernandez, Xavier Calbet, Marco Rosoldi, Aldo Giunta, Tomi Karppinen, Masami Iwabuchi, Shunsuke Hoshino, Christoph von Rohden, and Peter William Thorne
Atmos. Meas. Tech., 13, 3621–3649, https://doi.org/10.5194/amt-13-3621-2020, https://doi.org/10.5194/amt-13-3621-2020, 2020
Short summary
Short summary
Radiosondes are one of the primary sources of upper-air data for weather and climate monitoring. In the last two decades, technological progress made available automated radiosonde launchers (ARLs), which are able to replace measurements typically performed manually. This work presents a comparative analysis of the technical performance of the ARLs currently available on the market and contribute to define a strategy to achieve the full traceability of the ARL products.
William Wandji Nyamsi, Antti Lipponen, Arturo Sanchez-Lorenzo, Martin Wild, and Antti Arola
Atmos. Meas. Tech., 13, 3061–3079, https://doi.org/10.5194/amt-13-3061-2020, https://doi.org/10.5194/amt-13-3061-2020, 2020
Short summary
Short summary
This paper proposes a novel and accurate method for estimating and reconstructing aerosol optical depth from sunshine duration measurements under cloud-free conditions at any place and time since the late 19th century. The method performs very well when compared to AErosol RObotic NETwork measurements and operates an efficient detection of signals from massive volcanic eruptions. Reconstructed long-term aerosol optical depths are in agreement with the dimming/brightening phenomenon.
Margit Aun, Kaisa Lakkala, Ricardo Sanchez, Eija Asmi, Fernando Nollas, Outi Meinander, Larisa Sogacheva, Veerle De Bock, Antti Arola, Gerrit de Leeuw, Veijo Aaltonen, David Bolsée, Klara Cizkova, Alexander Mangold, Ladislav Metelka, Erko Jakobson, Tove Svendby, Didier Gillotay, and Bert Van Opstal
Atmos. Chem. Phys., 20, 6037–6054, https://doi.org/10.5194/acp-20-6037-2020, https://doi.org/10.5194/acp-20-6037-2020, 2020
Short summary
Short summary
In 2017, new measurements of UV radiation started in Marambio, Antarctica, by the Finnish Meteorological Institute in collaboration with the Argentinian Servicio Meteorológico Nacional. The paper presents the results of UV irradiance measurements from March 2017 to March 2019, and it
compares them with those from 2000–2008 and also with UV measurements at other Antarctic stations. In 2017/2018, below average UV radiation levels were recorded due to favourable ozone and cloud conditions.
Kaisa Lakkala, Margit Aun, Ricardo Sanchez, Germar Bernhard, Eija Asmi, Outi Meinander, Fernando Nollas, Gregor Hülsen, Tomi Karppinen, Veijo Aaltonen, Antti Arola, and Gerrit de Leeuw
Earth Syst. Sci. Data, 12, 947–960, https://doi.org/10.5194/essd-12-947-2020, https://doi.org/10.5194/essd-12-947-2020, 2020
Short summary
Short summary
A GUV multi-filter radiometer was set up at Marambio, 64° S, 56° W, Antarctica, in 2017. The instrument continuously measures ultraviolet (UV) radiation, visible (VIS) radiation and photosynthetically active radiation (PAR). The measurements are designed for providing high-quality long-term time series that can be used to assess the impact of global climate change in the Antarctic region. The data from the last 5 d are plotted and updated daily.
Larisa Sogacheva, Thomas Popp, Andrew M. Sayer, Oleg Dubovik, Michael J. Garay, Andreas Heckel, N. Christina Hsu, Hiren Jethva, Ralph A. Kahn, Pekka Kolmonen, Miriam Kosmale, Gerrit de Leeuw, Robert C. Levy, Pavel Litvinov, Alexei Lyapustin, Peter North, Omar Torres, and Antti Arola
Atmos. Chem. Phys., 20, 2031–2056, https://doi.org/10.5194/acp-20-2031-2020, https://doi.org/10.5194/acp-20-2031-2020, 2020
Short summary
Short summary
The typical lifetime of a single satellite platform is on the order of 5–15 years; thus, for climate studies the usage of multiple satellite sensors should be considered.
Here we introduce and evaluate a monthly AOD merged product and AOD global and regional time series for the period 1995–2017 created from 12 individual satellite AOD products, which provide a long-term perspective on AOD changes over different regions of the globe.
Giulia Saponaro, Moa K. Sporre, David Neubauer, Harri Kokkola, Pekka Kolmonen, Larisa Sogacheva, Antti Arola, Gerrit de Leeuw, Inger H. H. Karset, Ari Laaksonen, and Ulrike Lohmann
Atmos. Chem. Phys., 20, 1607–1626, https://doi.org/10.5194/acp-20-1607-2020, https://doi.org/10.5194/acp-20-1607-2020, 2020
Short summary
Short summary
The understanding of cloud processes is based on the quality of the representation of cloud properties. We compared cloud parameters from three models with satellite observations. We report on the performance of each data source, highlighting strengths and deficiencies, which should be considered when deriving the effect of aerosols on cloud properties.
Santtu Mikkonen, Mikko R. A. Pitkänen, Tuomo Nieminen, Antti Lipponen, Sini Isokääntä, Antti Arola, and Kari E. J. Lehtinen
Atmos. Chem. Phys., 19, 12531–12543, https://doi.org/10.5194/acp-19-12531-2019, https://doi.org/10.5194/acp-19-12531-2019, 2019
Short summary
Short summary
Atmospheric measurement data never come without measurement error. Too often, these errors are neglected when researchers make inferences from their data. We applied multiple line-fitting methods to simulated data mimicking two central variables in aerosol research. Our results show that an ordinary least squares fit, typically used to describe relationships, underestimates the slope of the fit and that methods taking the measurement uncertainty into account performed significantly better.
Yahui Che, Jie Guang, Gerrit de Leeuw, Yong Xue, Ling Sun, and Huizheng Che
Atmos. Meas. Tech., 12, 4091–4112, https://doi.org/10.5194/amt-12-4091-2019, https://doi.org/10.5194/amt-12-4091-2019, 2019
Short summary
Short summary
The use of AOD data retrieved from ATSR-2, AATSR and AVHRR to produce a very long time series is investigated. The study is made over a small area in northern China with a large variation of AOD values. Sun photometer data from AERONET and CARSNET and radiance-derived AOD are used as reference. The results show that all data sets compare well. However, AVHRR underestimates high AOD (mainly occurring in summer) but performs better than (A)ATSR in winter.
Michael Boy, Erik S. Thomson, Juan-C. Acosta Navarro, Olafur Arnalds, Ekaterina Batchvarova, Jaana Bäck, Frank Berninger, Merete Bilde, Zoé Brasseur, Pavla Dagsson-Waldhauserova, Dimitri Castarède, Maryam Dalirian, Gerrit de Leeuw, Monika Dragosics, Ella-Maria Duplissy, Jonathan Duplissy, Annica M. L. Ekman, Keyan Fang, Jean-Charles Gallet, Marianne Glasius, Sven-Erik Gryning, Henrik Grythe, Hans-Christen Hansson, Margareta Hansson, Elisabeth Isaksson, Trond Iversen, Ingibjorg Jonsdottir, Ville Kasurinen, Alf Kirkevåg, Atte Korhola, Radovan Krejci, Jon Egill Kristjansson, Hanna K. Lappalainen, Antti Lauri, Matti Leppäranta, Heikki Lihavainen, Risto Makkonen, Andreas Massling, Outi Meinander, E. Douglas Nilsson, Haraldur Olafsson, Jan B. C. Pettersson, Nønne L. Prisle, Ilona Riipinen, Pontus Roldin, Meri Ruppel, Matthew Salter, Maria Sand, Øyvind Seland, Heikki Seppä, Henrik Skov, Joana Soares, Andreas Stohl, Johan Ström, Jonas Svensson, Erik Swietlicki, Ksenia Tabakova, Throstur Thorsteinsson, Aki Virkkula, Gesa A. Weyhenmeyer, Yusheng Wu, Paul Zieger, and Markku Kulmala
Atmos. Chem. Phys., 19, 2015–2061, https://doi.org/10.5194/acp-19-2015-2019, https://doi.org/10.5194/acp-19-2015-2019, 2019
Short summary
Short summary
The Nordic Centre of Excellence CRAICC (Cryosphere–Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011–2016, is the largest joint Nordic research and innovation initiative to date and aimed to strengthen research and innovation regarding climate change issues in the Nordic region. The paper presents an overview of the main scientific topics investigated and provides a state-of-the-art comprehensive summary of what has been achieved in CRAICC.
Yuqin Liu, Jiahua Zhang, Putian Zhou, Tao Lin, Juan Hong, Lamei Shi, Fengmei Yao, Jun Wu, Huadong Guo, and Gerrit de Leeuw
Atmos. Chem. Phys., 18, 18187–18202, https://doi.org/10.5194/acp-18-18187-2018, https://doi.org/10.5194/acp-18-18187-2018, 2018
Larisa Sogacheva, Edith Rodriguez, Pekka Kolmonen, Timo H. Virtanen, Giulia Saponaro, Gerrit de Leeuw, Aristeidis K. Georgoulias, Georgia Alexandri, Konstantinos Kourtidis, and Ronald J. van der A
Atmos. Chem. Phys., 18, 16631–16652, https://doi.org/10.5194/acp-18-16631-2018, https://doi.org/10.5194/acp-18-16631-2018, 2018
Short summary
Short summary
Understanding long-term trends in aerosol optical density (AOD) is essential for evaluating health and climate effects and the effectiveness of pollution control policies. A method to construct a combined AOD long time series (1995-2017) using ATSR and MODIS spaceborne instruments is introduced. The effect of changes in the emission regulation policy in China is seen in a gradual AOD decrease after 2011. The effect is more visible in highly populated and industrialized areas in southeast China.
Kaisa Lakkala, Alberto Redondas, Outi Meinander, Laura Thölix, Britta Hamari, Antonio Fernando Almansa, Virgilio Carreno, Rosa Delia García, Carlos Torres, Guillermo Deferrari, Hector Ochoa, Germar Bernhard, Ricardo Sanchez, and Gerrit de Leeuw
Atmos. Chem. Phys., 18, 16019–16031, https://doi.org/10.5194/acp-18-16019-2018, https://doi.org/10.5194/acp-18-16019-2018, 2018
Short summary
Short summary
Solar UV irradiances were measured at Ushuaia (54° S) and Marambio (64° S) during 2000–2013. The measurements were part of the Antarctic NILU-UV network, which was maintained as a cooperation between Spain, Argentina and Finland. The time series of the network were analysed for the first time in this study. At both stations maximum UV indices and daily doses were measured when spring-time ozone loss episodes occurred. The maximum UV index was 13 and 12 in Ushuaia and Marambio, respectively.
Harri Kokkola, Thomas Kühn, Anton Laakso, Tommi Bergman, Kari E. J. Lehtinen, Tero Mielonen, Antti Arola, Scarlet Stadtler, Hannele Korhonen, Sylvaine Ferrachat, Ulrike Lohmann, David Neubauer, Ina Tegen, Colombe Siegenthaler-Le Drian, Martin G. Schultz, Isabelle Bey, Philip Stier, Nikos Daskalakis, Colette L. Heald, and Sami Romakkaniemi
Geosci. Model Dev., 11, 3833–3863, https://doi.org/10.5194/gmd-11-3833-2018, https://doi.org/10.5194/gmd-11-3833-2018, 2018
Short summary
Short summary
In this paper we present a global aerosol–chemistry–climate model with the focus on its representation for atmospheric aerosol particles. In the model, aerosols are simulated using the aerosol module SALSA2.0, which in this paper is compared to satellite, ground, and aircraft-based observations of the properties of atmospheric aerosol. Based on this study, the model simulated aerosol properties compare well with the observations.
Kaisa Lakkala, Antti Arola, Julian Gröbner, Sergio Fabian León-Luis, Alberto Redondas, Stelios Kazadzis, Tomi Karppinen, Juha Matti Karhu, Luca Egli, Anu Heikkilä, Tapani Koskela, Antonio Serrano, and José Manuel Vilaplana
Atmos. Meas. Tech., 11, 5167–5180, https://doi.org/10.5194/amt-11-5167-2018, https://doi.org/10.5194/amt-11-5167-2018, 2018
Short summary
Short summary
The performance of the cosine error correction method for correcting spectral UV measurements of the Brewer spectroradiometer was studied. The correction depends on the sky radiation distribution, which can change during one spectral scan. The results showed that the correction varied between 4 and 14 %, and that the relative differences between the reference and the Brewer diminished by 10 %. The method is applicable to other instruments as long as the required input parameters are available.
Larisa Sogacheva, Gerrit de Leeuw, Edith Rodriguez, Pekka Kolmonen, Aristeidis K. Georgoulias, Georgia Alexandri, Konstantinos Kourtidis, Emmanouil Proestakis, Eleni Marinou, Vassilis Amiridis, Yong Xue, and Ronald J. van der A
Atmos. Chem. Phys., 18, 11389–11407, https://doi.org/10.5194/acp-18-11389-2018, https://doi.org/10.5194/acp-18-11389-2018, 2018
Short summary
Short summary
Using AATSR ADV (1995–2011) and MODIS C6.1 (2000–2017) annual and seasonal aerosol optical depth (AOD) aggregates, we obtained information regarding the occurrence of aerosols and their spatial and temporal variation over China. We specifically focused on regional differences in annual and seasonal AOD behavior for selected regions. AOD dataset comparisons, validation results and AOD tendencies during the overlapping period (2000–2011) are discussed.
John S. Rimmer, Alberto Redondas, and Tomi Karppinen
Atmos. Chem. Phys., 18, 10347–10353, https://doi.org/10.5194/acp-18-10347-2018, https://doi.org/10.5194/acp-18-10347-2018, 2018
Short summary
Short summary
The Vienna Convention to Protect the Ozone Layer was signed in 1985 to promote research and information exchange on the science of ozone depletion including monitoring of total ozone column and spectrally resolved solar ultraviolet radiation. This is a global challenge and, as such, all efforts to gather data should be consistent. This work has resulted in a framework for all Brewer Ozone spectrophotometers to provide data in a consistent way in terms of calibration and quality assurance.
Alberto Redondas, Virgilio Carreño, Sergio F. León-Luis, Bentorey Hernández-Cruz, Javier López-Solano, Juan J. Rodriguez-Franco, José M. Vilaplana, Julian Gröbner, John Rimmer, Alkiviadis F. Bais, Vladimir Savastiouk, Juan R. Moreta, Lamine Boulkelia, Nis Jepsen, Keith M. Wilson, Vadim Shirotov, and Tomi Karppinen
Atmos. Chem. Phys., 18, 9441–9455, https://doi.org/10.5194/acp-18-9441-2018, https://doi.org/10.5194/acp-18-9441-2018, 2018
Short summary
Short summary
This work shows an overview of the total ozone comparison of the Brewer instrument during the 10th RBCC-E campaign in a joint effort with the EUBREWNET COST 1207 action. The status of the network after 2 years of calibration shows 16 out of the 21 participating Brewer instruments (76 %) agreed within better than ±1 %, and 10 instruments (50 %) agreed within better than ±0.5 %. After applying the final calibration and the stray light correction all working instruments agreed at the ±0.5 % level.
Laura Rontu and Anders V. Lindfors
Adv. Sci. Res., 15, 81–90, https://doi.org/10.5194/asr-15-81-2018, https://doi.org/10.5194/asr-15-81-2018, 2018
Short summary
Short summary
Global radiation forecasts by HARMONIE-AROME numerical weather prediction model were compared to observations over Finland in spring 2017 when convective clouds, rain and snow showers were frequent. In HARMONIE-AROME, three different schemes for parametrization of the atmospheric radiation transfer are available. Differences between the schemes and observations showed up especially as variations in the hourly scale. The results by the schemes were closer to each other than to the observations.
Pieternel F. Levelt, Joanna Joiner, Johanna Tamminen, J. Pepijn Veefkind, Pawan K. Bhartia, Deborah C. Stein Zweers, Bryan N. Duncan, David G. Streets, Henk Eskes, Ronald van der A, Chris McLinden, Vitali Fioletov, Simon Carn, Jos de Laat, Matthew DeLand, Sergey Marchenko, Richard McPeters, Jerald Ziemke, Dejian Fu, Xiong Liu, Kenneth Pickering, Arnoud Apituley, Gonzalo González Abad, Antti Arola, Folkert Boersma, Christopher Chan Miller, Kelly Chance, Martin de Graaf, Janne Hakkarainen, Seppo Hassinen, Iolanda Ialongo, Quintus Kleipool, Nickolay Krotkov, Can Li, Lok Lamsal, Paul Newman, Caroline Nowlan, Raid Suleiman, Lieuwe Gijsbert Tilstra, Omar Torres, Huiqun Wang, and Krzysztof Wargan
Atmos. Chem. Phys., 18, 5699–5745, https://doi.org/10.5194/acp-18-5699-2018, https://doi.org/10.5194/acp-18-5699-2018, 2018
Short summary
Short summary
The aim of this paper is to highlight the many successes of the Ozone Monitoring Instrument (OMI) spanning more than 13 years. Data from OMI have been used in a wide range of applications. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. OMI data continue to be used for new research and applications.
Javier López-Solano, Alberto Redondas, Thomas Carlund, Juan J. Rodriguez-Franco, Henri Diémoz, Sergio F. León-Luis, Bentorey Hernández-Cruz, Carmen Guirado-Fuentes, Natalia Kouremeti, Julian Gröbner, Stelios Kazadzis, Virgilio Carreño, Alberto Berjón, Daniel Santana-Díaz, Manuel Rodríguez-Valido, Veerle De Bock, Juan R. Moreta, John Rimmer, Andrew R. D. Smedley, Lamine Boulkelia, Nis Jepsen, Paul Eriksen, Alkiviadis F. Bais, Vadim Shirotov, José M. Vilaplana, Keith M. Wilson, and Tomi Karppinen
Atmos. Chem. Phys., 18, 3885–3902, https://doi.org/10.5194/acp-18-3885-2018, https://doi.org/10.5194/acp-18-3885-2018, 2018
Short summary
Short summary
The European Brewer Network (EUBREWNET, COST Action ES1207) is comprised of close to 50 instruments and currently provides near-real-time ozone and UV data. Aerosols also play key role in the Earth–atmosphere system and introduce a large uncertainty into our understanding of climate change. In this work we describe and validate a method to incorporate the measurement of aerosols in EUBREWNET. We find that this Brewer network can provide reliable aerosol data across Europe in the UV range.
Antti Lipponen, Tero Mielonen, Mikko R. A. Pitkänen, Robert C. Levy, Virginia R. Sawyer, Sami Romakkaniemi, Ville Kolehmainen, and Antti Arola
Atmos. Meas. Tech., 11, 1529–1547, https://doi.org/10.5194/amt-11-1529-2018, https://doi.org/10.5194/amt-11-1529-2018, 2018
Short summary
Short summary
Atmospheric aerosols are small solid or liquid particles suspended in the atmosphere and they have a significant effect on the climate. Satellite data are used to get global estimates of atmospheric aerosols. In this work, a statistics-based Bayesian aerosol retrieval algorithm was developed to improve the accuracy and quantify the uncertainties related to the aerosol estimates. The algorithm is tested with NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data.
Anders V. Lindfors, Jukka Kujanpää, Niilo Kalakoski, Anu Heikkilä, Kaisa Lakkala, Tero Mielonen, Maarten Sneep, Nickolay A. Krotkov, Antti Arola, and Johanna Tamminen
Atmos. Meas. Tech., 11, 997–1008, https://doi.org/10.5194/amt-11-997-2018, https://doi.org/10.5194/amt-11-997-2018, 2018
Short summary
Short summary
This paper describes the algorithm that will be used for estimating surface UV radiation from TROPOMI (TROPOspheric Monitoring Instrument) measurements. TROPOMI is the only payload of the Sentinel-5 Precursor (S5P), which is a polar-orbiting satellite mission of the European Space Agency (ESA). The presented algorithm has been tested using input based on previous satellite measurements. These preliminary results indicate that the algorithm is functioning according to expectations.
Timo H. Virtanen, Pekka Kolmonen, Larisa Sogacheva, Edith Rodríguez, Giulia Saponaro, and Gerrit de Leeuw
Atmos. Meas. Tech., 11, 925–938, https://doi.org/10.5194/amt-11-925-2018, https://doi.org/10.5194/amt-11-925-2018, 2018
Short summary
Short summary
We study the collocation mismatch uncertainty related to validating coarse-resolution satellite-based aerosol data against point-like ground based measurements. We use the spatial variability in the satellite data to estimate the upper limit for the uncertainty and study the effect of sampling parameters in the validation. We find that accounting for the collocation mismatch uncertainty increases the fraction of consistent data in the validation.
Gerrit de Leeuw, Larisa Sogacheva, Edith Rodriguez, Konstantinos Kourtidis, Aristeidis K. Georgoulias, Georgia Alexandri, Vassilis Amiridis, Emmanouil Proestakis, Eleni Marinou, Yong Xue, and Ronald van der A
Atmos. Chem. Phys., 18, 1573–1592, https://doi.org/10.5194/acp-18-1573-2018, https://doi.org/10.5194/acp-18-1573-2018, 2018
Short summary
Short summary
The complementary use of two sensors, ATSR and MODIS, to provide aerosol information over two decades (1995–2015) is described. To this end, the AOD retrieved from both instruments had to be compared, showing that ATSR slightly underestimates and MODIS overestimates by a similar amount. Results show the increase of aerosols over the years, with an indication of the onset of a decrease in recent years. The AOD spatial distribution shows seasonal variations across China.
Emmanouil Proestakis, Vassilis Amiridis, Eleni Marinou, Aristeidis K. Georgoulias, Stavros Solomos, Stelios Kazadzis, Julien Chimot, Huizheng Che, Georgia Alexandri, Ioannis Binietoglou, Vasiliki Daskalopoulou, Konstantinos A. Kourtidis, Gerrit de Leeuw, and Ronald J. van der A
Atmos. Chem. Phys., 18, 1337–1362, https://doi.org/10.5194/acp-18-1337-2018, https://doi.org/10.5194/acp-18-1337-2018, 2018
Short summary
Short summary
We provide a 3-D climatology of desert dust aerosols over South and East Asia, based on 9 years of CALIPSO observations and an EARLINET methodology. The results provide the horizontal, vertical and seasonal distribution of dust aerosols over SE Asia along with the change in dust transport pathways. The dataset is unique for its potential applications, including evaluation and assimilation activities in atmospheric simulations and the estimation of the climatic impact of dust aerosols.
William Wandji Nyamsi, Phillipe Blanc, John A. Augustine, Antti Arola, and Lucien Wald
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-512, https://doi.org/10.5194/bg-2017-512, 2018
Manuscript not accepted for further review
Short summary
Short summary
This paper proposes a new, fast and accurate method for estimating photosynthetically active radiation at ground level in cloud-free conditions at any place and time. The method performs very well with the Copernicus Atmosphere Monitoring Service products as inputs describing the state of the atmosphere. An accuracy that is close to the uncertainty of the measurements themselves is reached. We believe that our research will be widely used in the near future.
William Wandji Nyamsi, Mikko R. A. Pitkänen, Youva Aoun, Philippe Blanc, Anu Heikkilä, Kaisa Lakkala, Germar Bernhard, Tapani Koskela, Anders V. Lindfors, Antti Arola, and Lucien Wald
Atmos. Meas. Tech., 10, 4965–4978, https://doi.org/10.5194/amt-10-4965-2017, https://doi.org/10.5194/amt-10-4965-2017, 2017
Short summary
Short summary
This paper proposes a new, fast and accurate method for estimating UV fluxes at ground level in cloud-free conditions at any place and time. The method performs very well with the Copernicus Atmosphere Monitoring Service products as inputs describing the state of the atmosphere. An accuracy that is close to the uncertainty of the measurements themselves is reached. We believe that our research will be widely used in the near future.
Ilias Fountoulakis, Alberto Redondas, Kaisa Lakkala, Alberto Berjon, Alkiviadis F. Bais, Lionel Doppler, Uwe Feister, Anu Heikkila, Tomi Karppinen, Juha M. Karhu, Tapani Koskela, Katerina Garane, Konstantinos Fragkos, and Volodya Savastiouk
Atmos. Meas. Tech., 10, 4491–4505, https://doi.org/10.5194/amt-10-4491-2017, https://doi.org/10.5194/amt-10-4491-2017, 2017
Short summary
Short summary
Results of the temperature characterization of the global UV spectral measurements of eight different Brewer spectrophotometers operating in Greece, Finland, Germany and Spain are presented. Different temperature characterization methods are evaluated and an improved methodology for the correction of the measurements for the effects of temperature is presented.
Peter W. Thorne, Fabio Madonna, Joerg Schulz, Tim Oakley, Bruce Ingleby, Marco Rosoldi, Emanuele Tramutola, Antti Arola, Matthias Buschmann, Anna C. Mikalsen, Richard Davy, Corinne Voces, Karin Kreher, Martine De Maziere, and Gelsomina Pappalardo
Geosci. Instrum. Method. Data Syst., 6, 453–472, https://doi.org/10.5194/gi-6-453-2017, https://doi.org/10.5194/gi-6-453-2017, 2017
Short summary
Short summary
The term system-of-systems with respect to observational capabilities is frequently used, but what does it mean and how can it be assessed? Here, we define one possible interpretation of a system-of-systems architecture that is based upon demonstrable aspects of observing capabilities. We develop a set of assessment strands and then apply these to a set of atmospheric observational networks to decide which observations may be suitable for characterising satellite platforms in future work.
Christopher J. Merchant, Frank Paul, Thomas Popp, Michael Ablain, Sophie Bontemps, Pierre Defourny, Rainer Hollmann, Thomas Lavergne, Alexandra Laeng, Gerrit de Leeuw, Jonathan Mittaz, Caroline Poulsen, Adam C. Povey, Max Reuter, Shubha Sathyendranath, Stein Sandven, Viktoria F. Sofieva, and Wolfgang Wagner
Earth Syst. Sci. Data, 9, 511–527, https://doi.org/10.5194/essd-9-511-2017, https://doi.org/10.5194/essd-9-511-2017, 2017
Short summary
Short summary
Climate data records (CDRs) contain data describing Earth's climate and should address uncertainty in the data to communicate what is known about climate variability or change and what range of doubt exists. This paper discusses good practice for including uncertainty information in CDRs for the essential climate variables (ECVs) derived from satellite data. Recommendations emerge from the shared experience of diverse ECV projects within the European Space Agency Climate Change Initiative.
Antti Arola, Thomas F. Eck, Harri Kokkola, Mikko R. A. Pitkänen, and Sami Romakkaniemi
Atmos. Chem. Phys., 17, 5991–6001, https://doi.org/10.5194/acp-17-5991-2017, https://doi.org/10.5194/acp-17-5991-2017, 2017
Short summary
Short summary
One of the issues that hinder the measurement-based assessment of aerosol–cloud interactions by remote sensing methods is that typically aerosols and clouds cannot be measured simultaneously by passive remote sensing methods. AERONET includes the SDA product that provides the fine-mode AOD also in mixed cloud–aerosol observations. These measurements have not yet been fully exploited in studies of aerosol–cloud interactions. We applied SDA for this kind of analysis.
Yuqin Liu, Gerrit de Leeuw, Veli-Matti Kerminen, Jiahua Zhang, Putian Zhou, Wei Nie, Ximeng Qi, Juan Hong, Yonghong Wang, Aijun Ding, Huadong Guo, Olaf Krüger, Markku Kulmala, and Tuukka Petäjä
Atmos. Chem. Phys., 17, 5623–5641, https://doi.org/10.5194/acp-17-5623-2017, https://doi.org/10.5194/acp-17-5623-2017, 2017
Short summary
Short summary
The aerosol effects on warm cloud parameters over the Yangtze River Delta are systematically examined using multi-sensor retrievals. This study shows that the COT–CDR and CWP–CDR relationships are not unique, but are affected by atmospheric aerosol loading. CDR and cloud fraction show different behaviours for low and high AOD. Aerosol–cloud interaction (ACI) is stronger for clouds mixed with smoke aerosol than for clouds mixed with dust. Meteorological conditions play an important role in ACI.
Giulia Saponaro, Pekka Kolmonen, Larisa Sogacheva, Edith Rodriguez, Timo Virtanen, and Gerrit de Leeuw
Atmos. Chem. Phys., 17, 3133–3143, https://doi.org/10.5194/acp-17-3133-2017, https://doi.org/10.5194/acp-17-3133-2017, 2017
Short summary
Short summary
The effect of aerosol upon cloud properties is studied over the Baltic Sea region, which presents a distinct contrast of aerosol loading between the clean Fennoscandia and the polluted area of central–eastern Europe. Statistically significant positive values are found over the Baltic Sea and Fennoscandia, while negative values are found over central–eastern Europe, contradicting the theory of aerosol indirect effect on clouds.
Larisa Sogacheva, Pekka Kolmonen, Timo H. Virtanen, Edith Rodriguez, Giulia Saponaro, and Gerrit de Leeuw
Atmos. Meas. Tech., 10, 491–505, https://doi.org/10.5194/amt-10-491-2017, https://doi.org/10.5194/amt-10-491-2017, 2017
Short summary
Short summary
Clouds reflect solar light much more strongly than aerosol particles. Therefore, the retrieval of aerosol optical depth is usually only attempted over cloud-free areas. A very strict cloud detection scheme has to be applied to remove all cloudy pixels. However, often not all clouds are detected. To remove possibly cloud-contaminated pixels, a cloud post-processing algorithm has been designed, which effectively solves the problem and results in smoother AOD maps and improved validation results.
Christos S. Zerefos, Kostas Eleftheratos, John Kapsomenakis, Stavros Solomos, Antje Inness, Dimitris Balis, Alberto Redondas, Henk Eskes, Marc Allaart, Vassilis Amiridis, Arne Dahlback, Veerle De Bock, Henri Diémoz, Ronny Engelmann, Paul Eriksen, Vitali Fioletov, Julian Gröbner, Anu Heikkilä, Irina Petropavlovskikh, Janusz Jarosławski, Weine Josefsson, Tomi Karppinen, Ulf Köhler, Charoula Meleti, Christos Repapis, John Rimmer, Vladimir Savinykh, Vadim Shirotov, Anna Maria Siani, Andrew R. D. Smedley, Martin Stanek, and René Stübi
Atmos. Chem. Phys., 17, 551–574, https://doi.org/10.5194/acp-17-551-2017, https://doi.org/10.5194/acp-17-551-2017, 2017
Short summary
Short summary
The paper makes a convincing case that the Brewer network is capable of detecting enhanced SO2 columns, as observed, e.g., after volcanic eruptions. For this reason, large volcanic eruptions of the past decade have been used to detect and forecast SO2 plumes of volcanic origin using the Brewer and other ground-based networks, aided by satellite, trajectory analysis calculations and modelling.
Tomi Raatikainen, David Brus, Rakesh K. Hooda, Antti-Pekka Hyvärinen, Eija Asmi, Ved P. Sharma, Antti Arola, and Heikki Lihavainen
Atmos. Chem. Phys., 17, 371–383, https://doi.org/10.5194/acp-17-371-2017, https://doi.org/10.5194/acp-17-371-2017, 2017
Short summary
Short summary
We have measured black carbon aerosol properties in northern India at two sites: the first site is located at the polluted Indo-Gangetic Plain, while the second site is at the Himalayan foothills in a significantly cleaner environment. The observations show a clear difference in black carbon concentrations, but individual aerosol particles seem to be similar in both sites. Indirect evidence suggests that the particles are highly irregular resembling freshly emitted soot.
Stelios Kazadzis, Panagiotis Raptis, Natalia Kouremeti, Vassilis Amiridis, Antti Arola, Evangelos Gerasopoulos, and Gregory L. Schuster
Atmos. Meas. Tech., 9, 5997–6011, https://doi.org/10.5194/amt-9-5997-2016, https://doi.org/10.5194/amt-9-5997-2016, 2016
Short summary
Short summary
Aerosols play an important role in the Earth's climate. One of the main aerosol properties is the single scattering albedo which is a measure of the aerosol absorption. In this work we have presented a method to retrieve this aerosol property in the ultraviolet and we presented the results for measurements at the urban environment of Athens, Greece. We show that the spectral dependence of the aerosol absorption in the VIS–IR and the UV range depends on the aerosol composition and type.
Colette Brogniez, Frédérique Auriol, Christine Deroo, Antti Arola, Jukka Kujanpää, Béatrice Sauvage, Niilo Kalakoski, Mikko Riku Aleksi Pitkänen, Maxime Catalfamo, Jean-Marc Metzger, Guy Tournois, and Pierre Da Conceicao
Atmos. Chem. Phys., 16, 15049–15074, https://doi.org/10.5194/acp-16-15049-2016, https://doi.org/10.5194/acp-16-15049-2016, 2016
Short summary
Short summary
The atmospheric ozone layer is changing, thus the UV radiation at the surface is changing. Due to both beneficial and adverse effects of UV on the biosphere, monitoring of UV is essential. Satellite sensors provide estimates of UV at the surface with a global coverage. Validation of satellite-sensor UV is therefore needed and this can be done by comparison with ground-based measurements. The present validation in three sites (midlatitude, tropical) shows that OMI and GOME-2 provide reliable UV.
Anu Heikkilä, Jakke Sakari Mäkelä, Kaisa Lakkala, Outi Meinander, Jussi Kaurola, Tapani Koskela, Juha Matti Karhu, Tomi Karppinen, Esko Kyrö, and Gerrit de Leeuw
Geosci. Instrum. Method. Data Syst., 5, 531–540, https://doi.org/10.5194/gi-5-531-2016, https://doi.org/10.5194/gi-5-531-2016, 2016
Short summary
Short summary
Lamp measurements used for the UV irradiance calibration of two Brewer spectrophotometers operated for 20 years in Jokioinen and Sodankylä, Finland, were examined. Temporal development of the responsivity after fixing the irradiance measurements into a specific scale was studied. Both long-term gradual decrease and abrupt changes in responsiveness were detected. Frequent-enough measurements of working standard lamps were found necessary to detect the short-term variations in responsiveness.
Hanna K. Lappalainen, Veli-Matti Kerminen, Tuukka Petäjä, Theo Kurten, Aleksander Baklanov, Anatoly Shvidenko, Jaana Bäck, Timo Vihma, Pavel Alekseychik, Meinrat O. Andreae, Stephen R. Arnold, Mikhail Arshinov, Eija Asmi, Boris Belan, Leonid Bobylev, Sergey Chalov, Yafang Cheng, Natalia Chubarova, Gerrit de Leeuw, Aijun Ding, Sergey Dobrolyubov, Sergei Dubtsov, Egor Dyukarev, Nikolai Elansky, Kostas Eleftheriadis, Igor Esau, Nikolay Filatov, Mikhail Flint, Congbin Fu, Olga Glezer, Aleksander Gliko, Martin Heimann, Albert A. M. Holtslag, Urmas Hõrrak, Juha Janhunen, Sirkku Juhola, Leena Järvi, Heikki Järvinen, Anna Kanukhina, Pavel Konstantinov, Vladimir Kotlyakov, Antti-Jussi Kieloaho, Alexander S. Komarov, Joni Kujansuu, Ilmo Kukkonen, Ella-Maria Duplissy, Ari Laaksonen, Tuomas Laurila, Heikki Lihavainen, Alexander Lisitzin, Alexsander Mahura, Alexander Makshtas, Evgeny Mareev, Stephany Mazon, Dmitry Matishov, Vladimir Melnikov, Eugene Mikhailov, Dmitri Moisseev, Robert Nigmatulin, Steffen M. Noe, Anne Ojala, Mari Pihlatie, Olga Popovicheva, Jukka Pumpanen, Tatjana Regerand, Irina Repina, Aleksei Shcherbinin, Vladimir Shevchenko, Mikko Sipilä, Andrey Skorokhod, Dominick V. Spracklen, Hang Su, Dmitry A. Subetto, Junying Sun, Arkady Y. Terzhevik, Yuri Timofeyev, Yuliya Troitskaya, Veli-Pekka Tynkkynen, Viacheslav I. Kharuk, Nina Zaytseva, Jiahua Zhang, Yrjö Viisanen, Timo Vesala, Pertti Hari, Hans Christen Hansson, Gennady G. Matvienko, Nikolai S. Kasimov, Huadong Guo, Valery Bondur, Sergej Zilitinkevich, and Markku Kulmala
Atmos. Chem. Phys., 16, 14421–14461, https://doi.org/10.5194/acp-16-14421-2016, https://doi.org/10.5194/acp-16-14421-2016, 2016
Short summary
Short summary
After kick off in 2012, the Pan-Eurasian Experiment (PEEX) program has expanded fast and today the multi-disciplinary research community covers ca. 80 institutes and a network of ca. 500 scientists from Europe, Russia, and China. Here we introduce scientific topics relevant in this context. This is one of the first multi-disciplinary overviews crossing scientific boundaries, from atmospheric sciences to socio-economics and social sciences.
Laura Riuttanen, Marja Bister, Veli-Matti Kerminen, Viju O. John, Anu-Maija Sundström, Miikka Dal Maso, Jouni Räisänen, Victoria A. Sinclair, Risto Makkonen, Filippo Xausa, Gerrit de Leeuw, and Markku Kulmala
Atmos. Chem. Phys., 16, 14331–14342, https://doi.org/10.5194/acp-16-14331-2016, https://doi.org/10.5194/acp-16-14331-2016, 2016
Short summary
Short summary
Here we show observational evidence that aerosols increase upper tropospheric humidity (UTH) via changes in the microphysics of deep convection. Using remote sensing data over the ocean east of China in summer, we show that increased aerosol loads are associated with an UTH increase of 2.2 ± 1.5 in units of relative humidity. We show that humidification of aerosols or other meteorological covariation is very unlikely to be the cause for this result indicating relevance for the global climate.
Monique F. M. A. Albert, Magdalena D. Anguelova, Astrid M. M. Manders, Martijn Schaap, and Gerrit de Leeuw
Atmos. Chem. Phys., 16, 13725–13751, https://doi.org/10.5194/acp-16-13725-2016, https://doi.org/10.5194/acp-16-13725-2016, 2016
Short summary
Short summary
Sea spray source functions (SSSFs) predict production of sea salt aerosol, important for climate. Sea spray originates from bubble bursting within whitecaps, mainly formed by wind speed (U). Using satellite-based whitecap fraction (W) data analyzed on global and regional scale and explicitly accounting for sea surface temperature (T) we derive a new W(U, T) parameterization. We use it to evaluate influence of secondary factors on a SSSF via W.
Elham Baranizadeh, Benjamin N. Murphy, Jan Julin, Saeed Falahat, Carly L. Reddington, Antti Arola, Lars Ahlm, Santtu Mikkonen, Christos Fountoukis, David Patoulias, Andreas Minikin, Thomas Hamburger, Ari Laaksonen, Spyros N. Pandis, Hanna Vehkamäki, Kari E. J. Lehtinen, and Ilona Riipinen
Geosci. Model Dev., 9, 2741–2754, https://doi.org/10.5194/gmd-9-2741-2016, https://doi.org/10.5194/gmd-9-2741-2016, 2016
Short summary
Short summary
The molecular mechanisms through which new ultrafine (< 100 nm) aerosol particles are formed in the atmosphere have puzzled the scientific community for decades. In the past few years, however, significant progress has been made in unraveling these processes through laboratory studies and computational efforts. In this work we have implemented these new developments to an air quality model and study the implications of anthropogenically driven particle formation for European air quality.
Anu Heikkilä, Jussi Kaurola, Kaisa Lakkala, Juha Matti Karhu, Esko Kyrö, Tapani Koskela, Ola Engelsen, Harry Slaper, and Gunther Seckmeyer
Geosci. Instrum. Method. Data Syst., 5, 333–345, https://doi.org/10.5194/gi-5-333-2016, https://doi.org/10.5194/gi-5-333-2016, 2016
Short summary
Short summary
Solar spectral UV irradiance data measured by the Brewer #037 spectroradiometer in Sodankylä, Finland, in 1990–2014 were examined for their quality flags given by the quality assurance (QA) tools of the European UV DataBase (EUVDB). Statistical analysis on the flags was performed, and five cases were investigated in detail. The results can be used in further development of the quality control/QA tools and selection of cases of exceptional atmospheric conditions for process studies.
Kaisa Lakkala, Hanne Suokanerva, Juha Matti Karhu, Antti Aarva, Antti Poikonen, Tomi Karppinen, Markku Ahponen, Henna-Reetta Hannula, Anna Kontu, and Esko Kyrö
Geosci. Instrum. Method. Data Syst., 5, 315–320, https://doi.org/10.5194/gi-5-315-2016, https://doi.org/10.5194/gi-5-315-2016, 2016
Short summary
Short summary
This paper describes the laboratory facilities at the Finnish Meteorological Institute – Arctic Research Centre (FMI-ARC). They comprise an optical laboratory, a facility for biological studies, and an office. The facilities are ideal for responding to the needs of international multidisciplinary research, giving the possibility to calibrate and characterize the research instruments as well as handle and store samples.
U. Frieß, H. Klein Baltink, S. Beirle, K. Clémer, F. Hendrick, B. Henzing, H. Irie, G. de Leeuw, A. Li, M. M. Moerman, M. van Roozendael, R. Shaiganfar, T. Wagner, Y. Wang, P. Xie, S. Yilmaz, and P. Zieger
Atmos. Meas. Tech., 9, 3205–3222, https://doi.org/10.5194/amt-9-3205-2016, https://doi.org/10.5194/amt-9-3205-2016, 2016
Short summary
Short summary
This article describes the first direct comparison of aerosol extinction profiles from Multi-Axis DOAS measurements of the oxygen collision complex using five different retrieval algorithms. A comparison of the retrieved profiles with co-located aerosol measurements shows good agreement with respect to profile shape and aerosol optical thickness. This study shows that MAX-DOAS is a simple, versatile and cost-effective method for the measurement of aerosol properties in the lower troposphere.
Tero Mielonen, Anca Hienola, Thomas Kühn, Joonas Merikanto, Antti Lipponen, Tommi Bergman, Hannele Korhonen, Pekka Kolmonen, Larisa Sogacheva, Darren Ghent, Antti Arola, Gerrit de Leeuw, and Harri Kokkola
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-625, https://doi.org/10.5194/acp-2016-625, 2016
Revised manuscript not accepted
Short summary
Short summary
We studied the temperature dependence of AOD and its radiative effects over the southeastern US. We used spaceborne observations of AOD, LST and tropospheric NO2 with simulations of ECHAM-HAMMOZ. The level of AOD in this region is governed by anthropogenic emissions but the temperature dependency is most likely caused by BVOC emissions. According to the observations and simulations, the regional clear-sky DRE for biogenic aerosols is −0.43 ± 0.88 W/m2/K and −0.86 ± 0.06 W/m2/K, respectively.
Jani Huttunen, Harri Kokkola, Tero Mielonen, Mika Esa Juhani Mononen, Antti Lipponen, Juha Reunanen, Anders Vilhelm Lindfors, Santtu Mikkonen, Kari Erkki Juhani Lehtinen, Natalia Kouremeti, Alkiviadis Bais, Harri Niska, and Antti Arola
Atmos. Chem. Phys., 16, 8181–8191, https://doi.org/10.5194/acp-16-8181-2016, https://doi.org/10.5194/acp-16-8181-2016, 2016
Short summary
Short summary
For a good estimate of the current forcing by anthropogenic aerosols, knowledge in past is needed. One option to lengthen time series is to retrieve aerosol optical depth from solar radiation measurements. We have evaluated several methods for this task. Most of the methods produce aerosol optical depth estimates with a good accuracy. However, machine learning methods seem to be the most applicable not to produce any systematic biases, since they do not need constrain the aerosol properties.
Tomi Karppinen, Kaisa Lakkala, Juha M. Karhu, Pauli Heikkinen, Rigel Kivi, and Esko Kyrö
Geosci. Instrum. Method. Data Syst., 5, 229–239, https://doi.org/10.5194/gi-5-229-2016, https://doi.org/10.5194/gi-5-229-2016, 2016
Short summary
Short summary
In this paper, a 26-year-long time series of total ozone column above Arctic Research Center in Sodankylä is presented. The time series is produced using a uniform method, presented in the paper, for retrieving the ozone column from the measurements. The data are checked for obvious errors and filtered automatically and manually to ensure that only good-quality data are delivered to public databases. Some features of the time series are highlighted and availability of the measurements is presented.
G. L. Schuster, O. Dubovik, and A. Arola
Atmos. Chem. Phys., 16, 1565–1585, https://doi.org/10.5194/acp-16-1565-2016, https://doi.org/10.5194/acp-16-1565-2016, 2016
Short summary
Short summary
We describe a method of using remote sensing of the refractive index to determine the relative contribution of carbonaceous aerosols and absorbing iron minerals. Monthly climatologies of fine mode soot carbon are low for West Africa and the Middle East, but the southern Africa and South America biomass burning sites have peak values that are much higher; this is consistent with expectations. Hence, refractive index is a practical parameter for quantifying soot carbon in the atmosphere.
G. L. Schuster, O. Dubovik, A. Arola, T. F. Eck, and B. N. Holben
Atmos. Chem. Phys., 16, 1587–1602, https://doi.org/10.5194/acp-16-1587-2016, https://doi.org/10.5194/acp-16-1587-2016, 2016
Short summary
Short summary
Some authors have recently suggested that the spectral dependence of aerosol absorption may be used to separate soot carbon absorption from the aerosol absorption associated with organic carbon and dust. We demonstrate that this approach is inconsistent with the underlying assumptions that are required to infer aerosol absorption through remote sensing techniques, and that carbonaceous aerosols can not be differentiated from dust by exclusively using spectral absorption signatures.
O. Meinander, A. Aarva, A. Poikonen, A. Kontu, H. Suokanerva, E. Asmi, K. Neitola, E. Rodriguez, R. Sanchez, M. Mei, G. de Leeuw, and E. Kyrö
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2015-31, https://doi.org/10.5194/gi-2015-31, 2016
Revised manuscript not accepted
J. I. Peltoniemi, M. Gritsevich, T. Hakala, P. Dagsson-Waldhauserová, Ó. Arnalds, K. Anttila, H.-R. Hannula, N. Kivekäs, H. Lihavainen, O. Meinander, J. Svensson, A. Virkkula, and G. de Leeuw
The Cryosphere, 9, 2323–2337, https://doi.org/10.5194/tc-9-2323-2015, https://doi.org/10.5194/tc-9-2323-2015, 2015
Short summary
Short summary
Light-absorbing impurities change the reflectance of snow in different ways. Some particles are heated by the Sun and they sink out of sight. During the process, snow may look darker than pure snow when observed by nadir, but at larger view zenith angles the snow may look as white as clean snow. Thus an observer on the ground may overestimate the albedo, while a satellite underestimates the albedo. Climate studies need to examine how the contaminants behave in snow, not only their total amounts.
A. Arola, G. L. Schuster, M. R. A. Pitkänen, O. Dubovik, H. Kokkola, A. V. Lindfors, T. Mielonen, T. Raatikainen, S. Romakkaniemi, S. N. Tripathi, and H. Lihavainen
Atmos. Chem. Phys., 15, 12731–12740, https://doi.org/10.5194/acp-15-12731-2015, https://doi.org/10.5194/acp-15-12731-2015, 2015
Short summary
Short summary
There have been relatively few measurement-based estimates for the direct radiative effect of brown carbon so far. This is first time that the direct radiative effect of brown carbon is estimated by exploiting the AERONET-retrieved imaginary indices. We estimated it for four sites in the Indo-Gangetic Plain: Karachi, Lahore,
Kanpur and Gandhi College.
H. Eskes, V. Huijnen, A. Arola, A. Benedictow, A.-M. Blechschmidt, E. Botek, O. Boucher, I. Bouarar, S. Chabrillat, E. Cuevas, R. Engelen, H. Flentje, A. Gaudel, J. Griesfeller, L. Jones, J. Kapsomenakis, E. Katragkou, S. Kinne, B. Langerock, M. Razinger, A. Richter, M. Schultz, M. Schulz, N. Sudarchikova, V. Thouret, M. Vrekoussis, A. Wagner, and C. Zerefos
Geosci. Model Dev., 8, 3523–3543, https://doi.org/10.5194/gmd-8-3523-2015, https://doi.org/10.5194/gmd-8-3523-2015, 2015
Short summary
Short summary
The MACC project is preparing the operational atmosphere service of the European Copernicus Programme, and uses data assimilation to combine atmospheric models with available observations. Our paper provides an overview of the aerosol and trace gas validation activity of MACC. Topics are the validation requirements, the measurement data, the assimilation systems, the upgrade procedure, operational aspects and the scoring methods. A summary is provided of recent results, including special events.
J. Joutsensaari, P. Yli-Pirilä, H. Korhonen, A. Arola, J. D. Blande, J. Heijari, M. Kivimäenpää, S. Mikkonen, L. Hao, P. Miettinen, P. Lyytikäinen-Saarenmaa, C. L. Faiola, A. Laaksonen, and J. K. Holopainen
Atmos. Chem. Phys., 15, 12139–12157, https://doi.org/10.5194/acp-15-12139-2015, https://doi.org/10.5194/acp-15-12139-2015, 2015
Short summary
Short summary
Global warming will induce large-scale insect outbreaks in boreal forests. Our results from field and laboratory experiments, satellite observations and global-scale modelling suggest that more frequent insect outbreaks, in addition to temperature-dependent increases in VOC emissions, could result in substantial increases in biogenic SOA formation and therefore affect both aerosol direct and indirect forcing of climate at regional scales. This should be considered in future climate predictions.
K. Atlaskina, F. Berninger, and G. de Leeuw
The Cryosphere, 9, 1879–1893, https://doi.org/10.5194/tc-9-1879-2015, https://doi.org/10.5194/tc-9-1879-2015, 2015
Short summary
Short summary
Snow cover explained most of the spring surface albedo changes in the Northern Hemisphere in the years 2000−2012. However, there are vast areas where albedo changed up to ±0.2 under full snow-covered conditions. We found that if in these areas, the mean monthly air temperature exceeds a value between -15°C and -10°C, depending on the region, albedo decreases with an increase of the temperature. The complexity of processes involved in surface albedo changes is discussed.
E. Rodríguez, P. Kolmonen, T. H. Virtanen, L. Sogacheva, A.-M. Sundström, and G. de Leeuw
Atmos. Meas. Tech., 8, 3075–3085, https://doi.org/10.5194/amt-8-3075-2015, https://doi.org/10.5194/amt-8-3075-2015, 2015
T. Olsson, J. Jakkila, N. Veijalainen, L. Backman, J. Kaurola, and B. Vehviläinen
Hydrol. Earth Syst. Sci., 19, 3217–3238, https://doi.org/10.5194/hess-19-3217-2015, https://doi.org/10.5194/hess-19-3217-2015, 2015
Short summary
Short summary
With most scenarios the DBS method used preserves the temperature and precipitation trends of the uncorrected RCM data and produces more realistic projections for mean annual and seasonal changes in discharges than the uncorrected RCM data in Finland. However, if the biases in the mean or the standard deviation of the uncorrected temperatures are large, significant biases after DBS adjustment may remain or temperature trends may change, increasing the uncertainty of climate change projections.
W. Wandji Nyamsi, A. Arola, P. Blanc, A. V. Lindfors, V. Cesnulyte, M. R. A. Pitkänen, and L. Wald
Atmos. Chem. Phys., 15, 7449–7456, https://doi.org/10.5194/acp-15-7449-2015, https://doi.org/10.5194/acp-15-7449-2015, 2015
Short summary
Short summary
A novel model of the absorption of radiation by ozone in the UV bands [283, 307]nm and [307, 328]nm yields improvements in the modeling of the transmissivity in these bands. This model is faster than detailed spectral calculations and is as accurate with maximum errors of respectively 0.0006 and 0.0143. How to practically implement this new parameterization in a radiative transfer model is discussed for the case of libRadtran.
G. Bernhard, A. Arola, A. Dahlback, V. Fioletov, A. Heikkilä, B. Johnsen, T. Koskela, K. Lakkala, T. Svendby, and J. Tamminen
Atmos. Chem. Phys., 15, 7391–7412, https://doi.org/10.5194/acp-15-7391-2015, https://doi.org/10.5194/acp-15-7391-2015, 2015
Short summary
Short summary
Surface erythemal UV data from the Ozone Monitoring Instrument (OMI) are validated for high northern latitudes (Arctic and Scandinavia) using ground-based measurements. The bias in OMI data caused by incorrect assumptions of the surface albedo are quantified and the mechanism that causes this bias is discussed. Methods to improve the accuracy of OMI data products are presented.
P. Zieger, P. P. Aalto, V. Aaltonen, M. Äijälä, J. Backman, J. Hong, M. Komppula, R. Krejci, M. Laborde, J. Lampilahti, G. de Leeuw, A. Pfüller, B. Rosati, M. Tesche, P. Tunved, R. Väänänen, and T. Petäjä
Atmos. Chem. Phys., 15, 7247–7267, https://doi.org/10.5194/acp-15-7247-2015, https://doi.org/10.5194/acp-15-7247-2015, 2015
Short summary
Short summary
The effect of water uptake (hygroscopicity) on aerosol light scattering properties is generally lower for boreal aerosol due to the dominance of organic substances. A columnar optical closure study using ground-based and airborne measurements of aerosol optical, chemical and microphysical properties was conducted and the implications and limitations are discussed.
A.-M. Sundström, A. Nikandrova, K. Atlaskina, T. Nieminen, V. Vakkari, L. Laakso, J. P. Beukes, A. Arola, P. G. van Zyl, M. Josipovic, A. D. Venter, K. Jaars, J. J. Pienaar, S. Piketh, A. Wiedensohler, E. K. Chiloane, G. de Leeuw, and M. Kulmala
Atmos. Chem. Phys., 15, 4983–4996, https://doi.org/10.5194/acp-15-4983-2015, https://doi.org/10.5194/acp-15-4983-2015, 2015
J. Svensson, A. Virkkula, O. Meinander, N. Kivekäs, H.-R. Hannula, O. Järvinen, J. I. Peltoniemi, M. Gritsevich, A. Heikkilä, A. Kontu, A.-P. Hyvärinen, K. Neitola, D. Brus, P. Dagsson-Waldhauserova, K. Anttila, T. Hakala, H. Kaartinen, M. Vehkamäki, G. de Leeuw, and H. Lihavainen
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-1227-2015, https://doi.org/10.5194/tcd-9-1227-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
Soot's (including black carbon and organics) negative effect on a natural snow pack is experimentally addressed in this paper through a series of experiments. Soot concentrations in the snow in the range of 200-200 000 ppb verify the negative effects on the albedo, the physical snow characteristics, as well as increasing the melt rate of the snow pack. Our experimental data generally agrees when compared with the Snow, Ice and Aerosol Radiation model.
L. Sogacheva, P. Kolmonen, T. H. Virtanen, E. Rodriguez, A.-M. Sundström, and G. de Leeuw
Atmos. Meas. Tech., 8, 891–906, https://doi.org/10.5194/amt-8-891-2015, https://doi.org/10.5194/amt-8-891-2015, 2015
A.-M. Sundström, A. Arola, P. Kolmonen, Y. Xue, G. de Leeuw, and M. Kulmala
Atmos. Chem. Phys., 15, 505–518, https://doi.org/10.5194/acp-15-505-2015, https://doi.org/10.5194/acp-15-505-2015, 2015
Short summary
Short summary
In this work, a satellite-based approach to derive the aerosol direct shortwave (SW) radiative effect (ADRE) is studied. The method is based on using coincident satellite observations of SW fluxes and aerosol optical depths (AODs). The key findings of this study are that using normalized values of observed fluxes improves the estimates of ADRE and aerosol-free TOA fluxes as compared to a model. The method was applied over eastern China where the satellite-based mean ADRE of -5Wm-2 was obtained.
M. R. A. Pitkänen, A. Arola, K. Lakkala, T. Koskela, and A. V. Lindfors
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-487-2015, https://doi.org/10.5194/amtd-8-487-2015, 2015
Revised manuscript not accepted
H. Diémoz, A. M. Siani, A. Redondas, V. Savastiouk, C. T. McElroy, M. Navarro-Comas, and F. Hase
Atmos. Meas. Tech., 7, 4009–4022, https://doi.org/10.5194/amt-7-4009-2014, https://doi.org/10.5194/amt-7-4009-2014, 2014
Short summary
Short summary
- A new algorithm to retrieve nitrogen dioxide by Brewer spectrophotometers was developed.
- Direct sun and zenith sky data recorded at the Izaña observatory were processed with the new algorithm and compared to co-located reference instruments.
- The measurement uncertainty was thoroughly determined by using a Monte Carlo technique.
- The new algorithm can be applied to more than 60 Brewers around the world.
A.-I. Partanen, E. M. Dunne, T. Bergman, A. Laakso, H. Kokkola, J. Ovadnevaite, L. Sogacheva, D. Baisnée, J. Sciare, A. Manders, C. O'Dowd, G. de Leeuw, and H. Korhonen
Atmos. Chem. Phys., 14, 11731–11752, https://doi.org/10.5194/acp-14-11731-2014, https://doi.org/10.5194/acp-14-11731-2014, 2014
Short summary
Short summary
New parameterizations for the sea spray aerosol source flux and its organic fraction were incorporated into a global aerosol-climate model. The emissions of sea salt were considerably less than previous estimates. This study demonstrates that sea spray aerosol may actually decrease the number of cloud droplets, which has a warming effect on climate. Overall, sea spray aerosol was predicted to have a global cooling effect due to the scattering of solar radiation from sea spray aerosol particles.
T. F. Eck, B. N. Holben, J. S. Reid, A. Arola, R. A. Ferrare, C. A. Hostetler, S. N. Crumeyrolle, T. A. Berkoff, E. J. Welton, S. Lolli, A. Lyapustin, Y. Wang, J. S. Schafer, D. M. Giles, B. E. Anderson, K. L. Thornhill, P. Minnis, K. E. Pickering, C. P. Loughner, A. Smirnov, and A. Sinyuk
Atmos. Chem. Phys., 14, 11633–11656, https://doi.org/10.5194/acp-14-11633-2014, https://doi.org/10.5194/acp-14-11633-2014, 2014
L. L. Mei, Y. Xue, A. A. Kokhanovsky, W. von Hoyningen-Huene, G. de Leeuw, and J. P. Burrows
Atmos. Meas. Tech., 7, 2411–2420, https://doi.org/10.5194/amt-7-2411-2014, https://doi.org/10.5194/amt-7-2411-2014, 2014
T. H. Virtanen, P. Kolmonen, E. Rodríguez, L. Sogacheva, A.-M. Sundström, and G. de Leeuw
Atmos. Meas. Tech., 7, 2437–2456, https://doi.org/10.5194/amt-7-2437-2014, https://doi.org/10.5194/amt-7-2437-2014, 2014
J. Huttunen, A. Arola, G. Myhre, A. V. Lindfors, T. Mielonen, S. Mikkonen, J. S. Schafer, S. N. Tripathi, M. Wild, M. Komppula, and K. E. J. Lehtinen
Atmos. Chem. Phys., 14, 6103–6110, https://doi.org/10.5194/acp-14-6103-2014, https://doi.org/10.5194/acp-14-6103-2014, 2014
O. Meinander, A. Kontu, A. Virkkula, A. Arola, L. Backman, P. Dagsson-Waldhauserová, O. Järvinen, T. Manninen, J. Svensson, G. de Leeuw, and M. Leppäranta
The Cryosphere, 8, 991–995, https://doi.org/10.5194/tc-8-991-2014, https://doi.org/10.5194/tc-8-991-2014, 2014
A. Hirsikko, E. J. O'Connor, M. Komppula, K. Korhonen, A. Pfüller, E. Giannakaki, C. R. Wood, M. Bauer-Pfundstein, A. Poikonen, T. Karppinen, H. Lonka, M. Kurri, J. Heinonen, D. Moisseev, E. Asmi, V. Aaltonen, A. Nordbo, E. Rodriguez, H. Lihavainen, A. Laaksonen, K. E. J. Lehtinen, T. Laurila, T. Petäjä, M. Kulmala, and Y. Viisanen
Atmos. Meas. Tech., 7, 1351–1375, https://doi.org/10.5194/amt-7-1351-2014, https://doi.org/10.5194/amt-7-1351-2014, 2014
A. Virkkula, J. Levula, T. Pohja, P. P. Aalto, P. Keronen, S. Schobesberger, C. B. Clements, L. Pirjola, A.-J. Kieloaho, L. Kulmala, H. Aaltonen, J. Patokoski, J. Pumpanen, J. Rinne, T. Ruuskanen, M. Pihlatie, H. E. Manninen, V. Aaltonen, H. Junninen, T. Petäjä, J. Backman, M. Dal Maso, T. Nieminen, T. Olsson, T. Grönholm, J. Aalto, T. H. Virtanen, M. Kajos, V.-M. Kerminen, D. M. Schultz, J. Kukkonen, M. Sofiev, G. De Leeuw, J. Bäck, P. Hari, and M. Kulmala
Atmos. Chem. Phys., 14, 4473–4502, https://doi.org/10.5194/acp-14-4473-2014, https://doi.org/10.5194/acp-14-4473-2014, 2014
D. C. S. Beddows, M. Dall'Osto, R. M. Harrison, M. Kulmala, A. Asmi, A. Wiedensohler, P. Laj, A.M. Fjaeraa, K. Sellegri, W. Birmili, N. Bukowiecki, E. Weingartner, U. Baltensperger, V. Zdimal, N. Zikova, J.-P. Putaud, A. Marinoni, P. Tunved, H.-C. Hansson, M. Fiebig, N. Kivekäs, E. Swietlicki, H. Lihavainen, E. Asmi, V. Ulevicius, P. P. Aalto, N. Mihalopoulos, N. Kalivitis, I. Kalapov, G. Kiss, G. de Leeuw, B. Henzing, C. O'Dowd, S. G. Jennings, H. Flentje, F. Meinhardt, L. Ries, H. A. C. Denier van der Gon, and A. J. H. Visschedijk
Atmos. Chem. Phys., 14, 4327–4348, https://doi.org/10.5194/acp-14-4327-2014, https://doi.org/10.5194/acp-14-4327-2014, 2014
M. Tjernström, C. Leck, C. E. Birch, J. W. Bottenheim, B. J. Brooks, I. M. Brooks, L. Bäcklin, R. Y.-W. Chang, G. de Leeuw, L. Di Liberto, S. de la Rosa, E. Granath, M. Graus, A. Hansel, J. Heintzenberg, A. Held, A. Hind, P. Johnston, J. Knulst, M. Martin, P. A. Matrai, T. Mauritsen, M. Müller, S. J. Norris, M. V. Orellana, D. A. Orsini, J. Paatero, P. O. G. Persson, Q. Gao, C. Rauschenberg, Z. Ristovski, J. Sedlar, M. D. Shupe, B. Sierau, A. Sirevaag, S. Sjogren, O. Stetzer, E. Swietlicki, M. Szczodrak, P. Vaattovaara, N. Wahlberg, M. Westberg, and C. R. Wheeler
Atmos. Chem. Phys., 14, 2823–2869, https://doi.org/10.5194/acp-14-2823-2014, https://doi.org/10.5194/acp-14-2823-2014, 2014
J. Ovadnevaite, A. Manders, G. de Leeuw, D. Ceburnis, C. Monahan, A.-I. Partanen, H. Korhonen, and C. D. O'Dowd
Atmos. Chem. Phys., 14, 1837–1852, https://doi.org/10.5194/acp-14-1837-2014, https://doi.org/10.5194/acp-14-1837-2014, 2014
V. Cesnulyte, A. V. Lindfors, M. R. A. Pitkänen, K. E. J. Lehtinen, J.-J. Morcrette, and A. Arola
Atmos. Chem. Phys., 14, 593–608, https://doi.org/10.5194/acp-14-593-2014, https://doi.org/10.5194/acp-14-593-2014, 2014
G. Bernhard, A. Dahlback, V. Fioletov, A. Heikkilä, B. Johnsen, T. Koskela, K. Lakkala, and T. Svendby
Atmos. Chem. Phys., 13, 10573–10590, https://doi.org/10.5194/acp-13-10573-2013, https://doi.org/10.5194/acp-13-10573-2013, 2013
M. Lefèvre, A. Oumbe, P. Blanc, B. Espinar, B. Gschwind, Z. Qu, L. Wald, M. Schroedter-Homscheidt, C. Hoyer-Klick, A. Arola, A. Benedetti, J. W. Kaiser, and J.-J. Morcrette
Atmos. Meas. Tech., 6, 2403–2418, https://doi.org/10.5194/amt-6-2403-2013, https://doi.org/10.5194/amt-6-2403-2013, 2013
G. Saponaro, P. Kolmonen, J. Karhunen, J. Tamminen, and G. de Leeuw
Atmos. Meas. Tech., 6, 2301–2309, https://doi.org/10.5194/amt-6-2301-2013, https://doi.org/10.5194/amt-6-2301-2013, 2013
A. Arola, T. F. Eck, J. Huttunen, K. E. J. Lehtinen, A. V. Lindfors, G. Myhre, A. Smirnov, S. N. Tripathi, and H. Yu
Atmos. Chem. Phys., 13, 7895–7901, https://doi.org/10.5194/acp-13-7895-2013, https://doi.org/10.5194/acp-13-7895-2013, 2013
T. Holzer-Popp, G. de Leeuw, J. Griesfeller, D. Martynenko, L. Klüser, S. Bevan, W. Davies, F. Ducos, J. L. Deuzé, R. G. Graigner, A. Heckel, W. von Hoyningen-Hüne, P. Kolmonen, P. Litvinov, P. North, C. A. Poulsen, D. Ramon, R. Siddans, L. Sogacheva, D. Tanre, G. E. Thomas, M. Vountas, J. Descloitres, J. Griesfeller, S. Kinne, M. Schulz, and S. Pinnock
Atmos. Meas. Tech., 6, 1919–1957, https://doi.org/10.5194/amt-6-1919-2013, https://doi.org/10.5194/amt-6-1919-2013, 2013
Z. Mariani, K. Strong, M. Palm, R. Lindenmaier, C. Adams, X. Zhao, V. Savastiouk, C. T. McElroy, F. Goutail, and J. R. Drummond
Atmos. Meas. Tech., 6, 1549–1565, https://doi.org/10.5194/amt-6-1549-2013, https://doi.org/10.5194/amt-6-1549-2013, 2013
P. Kolmonen, A.-M. Sundström, L. Sogacheva, E. Rodriguez, T. Virtanen, and G. de Leeuw
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-6-4039-2013, https://doi.org/10.5194/amtd-6-4039-2013, 2013
Revised manuscript has not been submitted
A. V. Lindfors, N. Kouremeti, A. Arola, S. Kazadzis, A. F. Bais, and A. Laaksonen
Atmos. Chem. Phys., 13, 3733–3741, https://doi.org/10.5194/acp-13-3733-2013, https://doi.org/10.5194/acp-13-3733-2013, 2013
S. J. Norris, I. M. Brooks, B. I. Moat, M. J. Yelland, G. de Leeuw, R. W. Pascal, and B. Brooks
Ocean Sci., 9, 133–145, https://doi.org/10.5194/os-9-133-2013, https://doi.org/10.5194/os-9-133-2013, 2013
L. Riuttanen, M. Dal Maso, G. de Leeuw, I. Riipinen, L. Sogacheva, V. Vakkari, L. Laakso, and M. Kulmala
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-4289-2013, https://doi.org/10.5194/acpd-13-4289-2013, 2013
Revised manuscript has not been submitted
Related subject area
Ground-based instruments
Development of an internet-of-things-based controlled-source ultrasonic audio frequency electromagnetic receiver
Distance of flight of cosmic-ray muons to study dynamics of the upper muosphere
A tool for estimating ground-based InSAR acquisition characteristics prior to monitoring installation and survey and its differences from satellite InSAR
An underground drip water monitoring network to characterize rainfall recharge of groundwater at different geologies, environments, and climates across Australia
Research and application of a flexible measuring array for deep displacement of landslides
A hydrate reservoir renovation device and its application in nitrogen bubble fracturing
Gas equilibrium membrane inlet mass spectrometry (GE-MIMS) for water at high pressure
Development of a power station unit in a distributed hybrid acquisition system of seismic and electrical methods based on the narrowband Internet of Things (NB-IoT)
Spectral observations at the Canary Island Long-Baseline Observatory (CILBO): calibration and datasets
Calculation of soil water content using dielectric-permittivity-based sensors – benefits of soil-specific calibration
The land–atmosphere feedback observatory: a new observational approach for characterizing land–atmosphere feedback
Design and construction of an automated and programmable resistivity meter for shallow subsurface investigation
Feasibility of irrigation monitoring with cosmic-ray neutron sensors
Design and operation of a long-term monitoring system for spectral electrical impedance tomography (sEIT)
Measurements of natural airflow within a Stevenson screen and its influence on air temperature and humidity records
The soil heat flux sensor functioning checks, imbalances' origins, and forgotten energies
Wind speed influences corrected Autocalibrated Soil Evapo-respiration Chamber (ASERC) evaporation measures
Assessing the feasibility of a directional cosmic-ray neutron sensing sensor for estimating soil moisture
Accounting for meteorological effects in the detector of the charged component of cosmic rays
Observation of the rock slope thermal regime, coupled with crackmeter stability monitoring: initial results from three different sites in Czechia (central Europe)
The impact and resolution of the GPS week number rollover of April 2019 on autonomous geophysical instrument platforms
Internet-of-things-based four-dimensional high-density electrical instrument for geophysical prospecting
Design and implementation of the detection software of a wireless microseismic acquisition station based on the Android platform
First evaluation of an absolute quantum gravimeter (AQG#B01) for future field experiments
A new borehole electromagnetic receiver developed for controlled-source electromagnetic methods
Daytime and nighttime aerosol optical depth implementation in CÆLIS
A geophone-based and low-cost data acquisition and analysis system designed for microtremor measurements
A monitoring system for spatiotemporal electrical self-potential measurements in cryospheric environments
Evaluating the suitability of the consumer low-cost Parrot Flower Power soil moisture sensor for scientific environmental applications
Development of a new distributed hybrid seismic and electrical data acquisition station based on system-on-a-programmable-chip technology
Development of a distributed hybrid seismic–electrical data acquisition system based on the Narrowband Internet of Things (NB-IoT) technology
A low-cost autonomous rover for polar science
Shallow geophysical techniques to investigate the groundwater table at the Great Pyramids of Giza, Egypt
Apsu: a wireless multichannel receiver system for surface nuclear magnetic resonance groundwater investigations
Development of high-precision distributed wireless microseismic acquisition stations
Links between annual surface temperature variation and land cover heterogeneity for a boreal forest as characterized by continuous, fibre-optic DTS monitoring
The development and test research of a multichannel synchronous transient electromagnetic receiver
Evaluating four gap-filling methods for eddy covariance measurements of evapotranspiration over hilly crop fields
Tri-axial square Helmholtz coil system at the Alibag Magnetic Observatory: upgraded to a magnetic sensor calibration facility
Intercomparison of cosmic-ray neutron sensors and water balance monitoring in an urban environment
Development of a full-waveform voltage and current recording device for multichannel transient electromagnetic transmitters
Making better sense of the mosaic of environmental measurement networks: a system-of-systems approach and quantitative assessment
Fog-based automatic true north detection for absolute magnetic declination measurement
Automated mineralogy based on micro-energy-dispersive X-ray fluorescence microscopy (µ-EDXRF) applied to plutonic rock thin sections in comparison to a mineral liberation analyzer
U.S. Geological Survey experience with the residual absolutes method
The magnetic observatory on Tatuoca, Belém, Brazil: history and recent developments
Several years of experience with automatic DI-flux systems: theory, validation and results
In situ vector calibration of magnetic observatories
A low-power data acquisition system for geomagnetic observatories and variometer stations
Method for processing XCP data with improved accuracy
Zucan Lin, Qisheng Zhang, Keyu Zhou, Xiyuan Zhang, Xinchang Wang, Hui Zhang, and Feng Liu
Geosci. Instrum. Method. Data Syst., 13, 325–336, https://doi.org/10.5194/gi-13-325-2024, https://doi.org/10.5194/gi-13-325-2024, 2024
Short summary
Short summary
This paper describes the development of a controlled-source ultra-audio frequency electromagnetic receiver based on remote wireless communication technology for use in geophysical prospecting. Our design successfully addresses several shortcomings of such instruments currently available on the market, including their weight, limitations in data acquisition frequency, and difficulty in connecting to the internet for remote monitoring.
Hiroyuki Tanaka
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2024-4, https://doi.org/10.5194/gi-2024-4, 2024
Revised manuscript accepted for GI
Short summary
Short summary
A new ground-based technique called "Distance of flight of cosmic-ray muons" for sensing the height of the layer of the Earth where cosmic-ray muons are generated called muopause which is closely related with the height of tropopause and lower stratosphere.
Charlotte Wolff, Marc-Henri Derron, Carlo Rivolta, and Michel Jaboyedoff
Geosci. Instrum. Method. Data Syst., 13, 225–248, https://doi.org/10.5194/gi-13-225-2024, https://doi.org/10.5194/gi-13-225-2024, 2024
Short summary
Short summary
The remote-sensing InSAR technique is vital for monitoring slope instabilities but requires understanding. This paper delves into differences between satellite and GB-InSAR. It offers a tool to determine the optimal GB-InSAR installation site, considering various technical, meteorological, and topographical factors. By generating detailed maps and simulating radar image characteristics, the tool eases the setup of monitoring campaigns for effective and accurate ground movement tracking.
Andy Baker, Margaret Shanafield, Wendy Timms, Martin Sogaard Andersen, Stacey Priestley, and Marilu Melo Zurita
Geosci. Instrum. Method. Data Syst., 13, 117–129, https://doi.org/10.5194/gi-13-117-2024, https://doi.org/10.5194/gi-13-117-2024, 2024
Short summary
Short summary
Much of the world relies on groundwater as a water resource, yet it is hard to know when and where rainfall replenishes our groundwater aquifers. Caves, mines, and tunnels that are situated above the groundwater table are unique observatories of water transiting from the land surface to the aquifer. This paper will show how networks of loggers deployed in these underground spaces across Australia have helped understand when, where, and how much rainfall is needed to replenish the groundwater.
Yang Li, Zhong Li, Qifeng Guo, Yimin Liu, and Daji Zhang
Geosci. Instrum. Method. Data Syst., 13, 97–105, https://doi.org/10.5194/gi-13-97-2024, https://doi.org/10.5194/gi-13-97-2024, 2024
Short summary
Short summary
We have developed a novel flexible measurement array for deep landslide displacement and measurement processes, which enables higher accuracy in full-hole multidimensional deformation measurement. It provides a more comprehensive monitoring tool for disaster prevention and reduction.
Jingsheng Lu, Yuanxin Yao, Dongliang Li, Jinhai Yang, Deqing Liang, Yiqun Zhang, Decai Lin, and Kunlin Ma
Geosci. Instrum. Method. Data Syst., 13, 75–83, https://doi.org/10.5194/gi-13-75-2024, https://doi.org/10.5194/gi-13-75-2024, 2024
Short summary
Short summary
Natural gas hydrate (GH) is a significant potential energy source. However, the gas production rate of past GH production tests is much lower than the requirement of commercial gas production. Reservoir stimulation technologies like hydraulic fracture provide one potential approach to enhance gas production from GH. This paper presents an experimental facility that was developed to analyze the hydraulic fracture mechanism in a synthesized hydrate-bearing sediments.
Matthias S. Brennwald, Antonio P. Rinaldi, Jocelyn Gisiger, Alba Zappone, and Rolf Kipfer
Geosci. Instrum. Method. Data Syst., 13, 1–8, https://doi.org/10.5194/gi-13-1-2024, https://doi.org/10.5194/gi-13-1-2024, 2024
Short summary
Short summary
The gas equilibrium membrane inlet mass spectrometry (GE-MIMS) method for dissolved-gas quantification was expanded to work in water at high pressures.
Feng Guo, Qisheng Zhang, and Shenghui Liu
Geosci. Instrum. Method. Data Syst., 12, 111–120, https://doi.org/10.5194/gi-12-111-2023, https://doi.org/10.5194/gi-12-111-2023, 2023
Short summary
Short summary
We propose a new type of power station unit with wireless data transmission capability, which was not supported by same type of instrument as on the market. Based on this, a novel distributed geophysical data acquisition architecture is also proposed. The proposed instrument loads more stations than the industry-leading LAUL-428 while providing additional wireless data transmission and narrowband Internet of Things remote control.
Joe Zender, Detlef Koschny, Regina Rudawska, Salvatore Vicinanza, Stefan Loehle, Martin Eberhart, Arne Meindl, Hans Smit, Lionel Marraffa, Rico Landman, and Daphne Stam
Geosci. Instrum. Method. Data Syst., 12, 91–109, https://doi.org/10.5194/gi-12-91-2023, https://doi.org/10.5194/gi-12-91-2023, 2023
Short summary
Short summary
The paper describes the ground-based camera equipment to obtain images from dust ablation phenomena (meteors) in the Earth's atmosphere. The meteors are observed from two locations, but one station is equipped with a camera containing a spectral grating, which allows following and determining the spectral information through the meteor ablation process. We describe the data merging, calibration, and processing to finally derive the meteor composition.
Bartosz M. Zawilski, Franck Granouillac, Nicole Claverie, Baptiste Lemaire, Aurore Brut, and Tiphaine Tallec
Geosci. Instrum. Method. Data Syst., 12, 45–56, https://doi.org/10.5194/gi-12-45-2023, https://doi.org/10.5194/gi-12-45-2023, 2023
Short summary
Short summary
In most cases, the soil water content (SWC) measurement is carried out using commercially available dielectric-permittivity-based probes such as time domain reflectometers or frequency domain reflectometers (FDR). However, these probes use transfer functions which may be inadequate in the soil concerned. Raw SWC measurement in clayey soil shows an important relative error. A simple protocol is presented, allowing for the recovery of an acceptable accuracy of the FDR SWC measurements.
Florian Späth, Verena Rajtschan, Tobias K. D. Weber, Shehan Morandage, Diego Lange, Syed Saqlain Abbas, Andreas Behrendt, Joachim Ingwersen, Thilo Streck, and Volker Wulfmeyer
Geosci. Instrum. Method. Data Syst., 12, 25–44, https://doi.org/10.5194/gi-12-25-2023, https://doi.org/10.5194/gi-12-25-2023, 2023
Short summary
Short summary
Important topics in land–atmosphere feedback research are water and energy balances and heterogeneities of fluxes at the land surface and in the atmosphere. To target these questions, the Land–Atmosphere Feedback Observatory (LAFO) has been installed in Germany. The instrumentation allows for comprehensive measurements from the bedrock to the troposphere. The LAFO observation strategy aims for simultaneous measurements in all three compartments: atmosphere, soil and land surface, and vegetation.
Antenor Oliveira Cruz Júnior, Cosme Ferreira da Ponte-Neto, and André Wiermann
Geosci. Instrum. Method. Data Syst., 12, 15–23, https://doi.org/10.5194/gi-12-15-2023, https://doi.org/10.5194/gi-12-15-2023, 2023
Short summary
Short summary
This project aims to demonstrate the viability of the development of a concept prototype that has, as a differential, free software and hardware used in its development and operation. It thus has unique characteristics compared with commercially available equipment for signal detection, providing strong rejection of spurious electrical noise, typical of urban areas. This project is important academic contribution to open-source instrumental research.
Cosimo Brogi, Heye Reemt Bogena, Markus Köhli, Johan Alexander Huisman, Harrie-Jan Hendricks Franssen, and Olga Dombrowski
Geosci. Instrum. Method. Data Syst., 11, 451–469, https://doi.org/10.5194/gi-11-451-2022, https://doi.org/10.5194/gi-11-451-2022, 2022
Short summary
Short summary
Accurate monitoring of water in soil can improve irrigation efficiency, which is important considering climate change and the growing world population. Cosmic-ray neutrons sensors (CRNSs) are a promising tool in irrigation monitoring due to a larger sensed area and to lower maintenance than other ground-based sensors. Here, we analyse the feasibility of irrigation monitoring with CRNSs and the impact of the irrigated field dimensions, of the variations of water in soil, and of instrument design.
Maximilian Weigand, Egon Zimmermann, Valentin Michels, Johan Alexander Huisman, and Andreas Kemna
Geosci. Instrum. Method. Data Syst., 11, 413–433, https://doi.org/10.5194/gi-11-413-2022, https://doi.org/10.5194/gi-11-413-2022, 2022
Short summary
Short summary
The construction, operation and analysis of a spectral electrical
impedance tomography (sEIT) field monitoring setup with high spatial and temporal resolution are presented. Electromagnetic induction errors are corrected, allowing the recovery of images of in-phase conductivity and electrical polarisation of up to 1 kHz.
Stephen Burt
Geosci. Instrum. Method. Data Syst., 11, 263–277, https://doi.org/10.5194/gi-11-263-2022, https://doi.org/10.5194/gi-11-263-2022, 2022
Short summary
Short summary
Most measurements of air temperature and humidity originate from Stevenson-type thermometer screens, which can produce erroneous measurements in light winds owing to insufficient ventilation of the in-screen sensors. A field experiment to measure airflow within a Stevenson screen found mean airflow to be only 0.2 m s−1, well below the 1 m s−1 minimum normally assumed, and only 7 % of 10 m mean wind speeds. Implications for air temperature and humidity measurement uncertainties are discussed.
Bartosz M. Zawilski
Geosci. Instrum. Method. Data Syst., 11, 223–234, https://doi.org/10.5194/gi-11-223-2022, https://doi.org/10.5194/gi-11-223-2022, 2022
Short summary
Short summary
Surface energy balance (SEB) closure check and important environmental variable monitoring require soil heat flux measurement. On the one hand every experimental technique has its possible errors and needs to be checked and corrected. On the other hand, SEB equation should include all sensed energy sources and sinks.
Bartosz M. Zawilski
Geosci. Instrum. Method. Data Syst., 11, 163–182, https://doi.org/10.5194/gi-11-163-2022, https://doi.org/10.5194/gi-11-163-2022, 2022
Short summary
Short summary
Soil evaporation is one of the most important water vapor sources on the Earth with multiple and severe consequences; however, there is a relative lack of instruments to measure it. This study describes a simple apparatus making the soil evaporation measurement accessible. The soil evaporation complexity is overcome by measuring the evaporation dynamic under different measurement conditions. A relatively simple measurement correction is then performed depending on the wind speed.
Till Francke, Maik Heistermann, Markus Köhli, Christian Budach, Martin Schrön, and Sascha E. Oswald
Geosci. Instrum. Method. Data Syst., 11, 75–92, https://doi.org/10.5194/gi-11-75-2022, https://doi.org/10.5194/gi-11-75-2022, 2022
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a non-invasive tool for measuring hydrogen pools like soil moisture, snow, or vegetation. This study presents a directional shielding approach, aiming to measure in specific directions only. The results show that non-directional neutron transport blurs the signal of the targeted direction. For typical instruments, this does not allow acceptable precision at a daily time resolution. However, the mere statistical distinction of two rates is feasible.
Maxim Philippov, Vladimir Makhmutov, Galina Bazilevskaya, Fedor Zagumennov, Vladimir Fomenko, Yuri Stozhkov, and Andrey Orlov
Geosci. Instrum. Method. Data Syst., 10, 219–226, https://doi.org/10.5194/gi-10-219-2021, https://doi.org/10.5194/gi-10-219-2021, 2021
Short summary
Short summary
This paper presents a brief description of the ground-based installation for the study of cosmic rays
CARPET. Today there is a network of such installations located in different parts of the world. For ground-based installations, meteorological effects must be considered as they affect the data. This paper shows a technique for eliminating barometric and temperature dependences based on data for 2019–2020.
Ondřej Racek, Jan Blahůt, and Filip Hartvich
Geosci. Instrum. Method. Data Syst., 10, 203–218, https://doi.org/10.5194/gi-10-203-2021, https://doi.org/10.5194/gi-10-203-2021, 2021
Short summary
Short summary
This paper is dedicated to description of universal, easy-to-modify, and affordable rock slope monitoring system. Using such a system, we are able to monitor environmental variables, the rock mass 3 m subsurface zone temperature profile, and spatiotemporal joint dynamics. We observe differences between three monitored sites. To further data analyses, longer time series are needed. The data will be further used for trend analyses and thermomechanical modelling.
Shane Coyle, C. Robert Clauer, Michael D. Hartinger, Zhonghua Xu, and Yuxiang Peng
Geosci. Instrum. Method. Data Syst., 10, 161–168, https://doi.org/10.5194/gi-10-161-2021, https://doi.org/10.5194/gi-10-161-2021, 2021
Short summary
Short summary
Global satellite navigation systems are commonly used for timing and synchronization of instrument platforms. These system clocks periodically
roll overfrom limitations in discrete counter math. Due to the rarity of these events (19.6 years for GPS), special consideration must be given to designing instruments intended for use in hard-to-reach locations like the Antarctic Plateau. A few
best practicesare presented to prevent total system failure from unexpected subsystem faults.
Keyu Zhou, Qisheng Zhang, Yongdong Liu, Zhen Wu, Zucan Lin, Bentian Zhao, Xingyuan Jiang, and Pengyu Li
Geosci. Instrum. Method. Data Syst., 10, 141–151, https://doi.org/10.5194/gi-10-141-2021, https://doi.org/10.5194/gi-10-141-2021, 2021
Short summary
Short summary
This paper describes the development of a new multifunctional four-dimensional high-density electrical instrument based on remote wireless communication technology, for use in shallow geophysical prospecting. We carried out a lot of tests. Our design successfully addresses a number of shortcomings of such instruments currently available on the market, including bulkiness, weight, limitations in data acquisition accuracy, and difficulty of connecting to the Internet for remote monitoring.
Qimao Zhang, Shuaiqing Qiao, Qisheng Zhang, and Shiyang Liu
Geosci. Instrum. Method. Data Syst., 10, 91–100, https://doi.org/10.5194/gi-10-91-2021, https://doi.org/10.5194/gi-10-91-2021, 2021
Short summary
Short summary
In order to meet the needs of geophysical exploration, the requirements of intelligent and convenient exploration instruments are realized. From the perspective of software, this research combines today's wireless transmission technology to integrate applications into mobile phones to realize remote control of field operations. It provides a new idea for geophysical exploration.
Anne-Karin Cooke, Cédric Champollion, and Nicolas Le Moigne
Geosci. Instrum. Method. Data Syst., 10, 65–79, https://doi.org/10.5194/gi-10-65-2021, https://doi.org/10.5194/gi-10-65-2021, 2021
Short summary
Short summary
Gravimetry studies the variations of the Earth’s gravity field which can be linked to mass changes studied in various disciplines of the Earth sciences. The gravitational attraction of the Earth is measured with gravimeters. Quantum gravimeters allow for continuous, high-frequency absolute gravity monitoring while remaining user-friendly and transportable. We assess the capacity of the AQG#B01, developed by Muquans, as a field gravimeter for hydrogeophysical applications.
Sixuan Song, Ming Deng, Kai Chen, Muer A, and Sheng Jin
Geosci. Instrum. Method. Data Syst., 10, 55–64, https://doi.org/10.5194/gi-10-55-2021, https://doi.org/10.5194/gi-10-55-2021, 2021
Short summary
Short summary
Current borehole receivers only measure a single parameter of the magnetic field component, which does not meet the special requirements of controlled-source electromagnetic (CSEM) methods. This study proposes a borehole electromagnetic receiver that realizes synchronous acquisition of the vertical electric field component and three-axis orthogonal magnetic field components. Results of the experiments show that our system functioned adequately and that high-quality CSEM signals were obtained.
Ramiro González, Carlos Toledano, Roberto Román, David Fuertes, Alberto Berjón, David Mateos, Carmen Guirado-Fuentes, Cristian Velasco-Merino, Juan Carlos Antuña-Sánchez, Abel Calle, Victoria E. Cachorro, and Ángel M. de Frutos
Geosci. Instrum. Method. Data Syst., 9, 417–433, https://doi.org/10.5194/gi-9-417-2020, https://doi.org/10.5194/gi-9-417-2020, 2020
Short summary
Short summary
Aerosol optical depth (AOD) is a parameter widely used in remote sensing for the characterization of atmospheric aerosol particles. AERONET was created by NASA for aerosol monitoring as well as satellite and model validation. The University of Valladolid (UVa) has managed an AERONET calibration center since 2006. The CÆLIS software tool, developed by UVa, was created to manage the data generated by AERONET photometers. The AOD algorithm in CÆLIS is developed and validated in this work.
Ozkan Kafadar
Geosci. Instrum. Method. Data Syst., 9, 365–373, https://doi.org/10.5194/gi-9-365-2020, https://doi.org/10.5194/gi-9-365-2020, 2020
Short summary
Short summary
In this paper, a low-cost, computer-aided, and geophone-based system designed to record, monitor, and analyze three-component microtremor data is presented. This system has several features such as a 200 Hz sampling frequency, text data format, and data analysis tools. The developed software undertakes many tasks such as communication between the external hardware and computer, transferring, monitoring, and recording the seismic data to a computer, and interpretation of the recorded data.
Maximilian Weigand, Florian M. Wagner, Jonas K. Limbrock, Christin Hilbich, Christian Hauck, and Andreas Kemna
Geosci. Instrum. Method. Data Syst., 9, 317–336, https://doi.org/10.5194/gi-9-317-2020, https://doi.org/10.5194/gi-9-317-2020, 2020
Short summary
Short summary
In times of global warming, permafrost is starting to degrade at alarming rates, requiring new and improved characterization approaches. We describe the design and test installation, as well as detailed data quality assessment, of a monitoring system used to capture natural electrical potentials in the subsurface. These self-potential signals are of great interest for the noninvasive investigation of water flow in the non-frozen or partially frozen subsurface.
Angelika Xaver, Luca Zappa, Gerhard Rab, Isabella Pfeil, Mariette Vreugdenhil, Drew Hemment, and Wouter Arnoud Dorigo
Geosci. Instrum. Method. Data Syst., 9, 117–139, https://doi.org/10.5194/gi-9-117-2020, https://doi.org/10.5194/gi-9-117-2020, 2020
Short summary
Short summary
Soil moisture plays a key role in the hydrological cycle and the climate system. Although soil moisture can be observed by the means of satellites, ground observations are still crucial for evaluating and improving these satellite products. In this study, we investigate the performance of a consumer low-cost soil moisture sensor in the lab and in the field. We demonstrate that this sensor can be used for scientific applications, for example to create a dataset valuable for satellite validation.
Qisheng Zhang, Wenhao Li, Feng Guo, Zhenzhong Yuan, Shuaiqing Qiao, and Qimao Zhang
Geosci. Instrum. Method. Data Syst., 8, 241–249, https://doi.org/10.5194/gi-8-241-2019, https://doi.org/10.5194/gi-8-241-2019, 2019
Short summary
Short summary
Complex and harsh exploration environments have put forward higher requirements for traditional geophysical exploration methods and instruments. In this study, a new distributed seismic and electrical hybrid acquisition station is developed and it can achieve high-precision hybrid acquisition of seismic and electrical data. The synchronization precision of the acquisition station is better than 200 ns and the maximum low-power data transmission speed is 16 Mbps along a 55 m cable.
Wenhao Li, Qisheng Zhang, Qimao Zhang, Feng Guo, Shuaiqing Qiao, Shiyang Liu, Yueyun Luo, Yuefeng Niu, and Xing Heng
Geosci. Instrum. Method. Data Syst., 8, 177–186, https://doi.org/10.5194/gi-8-177-2019, https://doi.org/10.5194/gi-8-177-2019, 2019
Short summary
Short summary
The nonuniqueness of geophysical inversions, which is based on a single geophysical method, is a long–standing problem in geophysical exploration. This paper developed a distributed, multi–channel, high–precision data acquisition system. It can achieve high–precision hybrid acquisition of seismic–electrical data and monitor the real–time quality of data acquisition processes using NB–IoT technology. The equivalent input noise is 0.5 μV and the synchronization accuracy is within 200 ns.
Andrew O. Hoffman, Hans Christian Steen-Larsen, Knut Christianson, and Christine Hvidberg
Geosci. Instrum. Method. Data Syst., 8, 149–159, https://doi.org/10.5194/gi-8-149-2019, https://doi.org/10.5194/gi-8-149-2019, 2019
Short summary
Short summary
We present the design considerations and deployment of an autonomous modular terrestrial rover for ice-sheet exploration that is inexpensive, easy to construct, and allows for instrumentation customization. The rover proved capable of driving over 20 km on a single charge with a drawbar pull of 250 N, which is sufficient to tow commercial ground-penetrating radars. Due to its low cost, low power requirements, and simple modular design, mass deployments of this rover design are practicable.
Sharafeldin M. Sharafeldin, Khalid S. Essa, Mohamed A. S. Youssef, Hakan Karsli, Zein E. Diab, and Nilgun Sayil
Geosci. Instrum. Method. Data Syst., 8, 29–43, https://doi.org/10.5194/gi-8-29-2019, https://doi.org/10.5194/gi-8-29-2019, 2019
Short summary
Short summary
Integrated geophysical techniques (ERT, SSR, and GPR) along the conducted profiles at the Great Pyramids of Giza have been successfully used to investigate the groundwater table and support hazard mitigation. The groundwater table elevation is 15 m under the Great Sphinx, which is safe, and at the Nazlet El-Samman it is 16–17 m.
Lichao Liu, Denys Grombacher, Esben Auken, and Jakob Juul Larsen
Geosci. Instrum. Method. Data Syst., 8, 1–11, https://doi.org/10.5194/gi-8-1-2019, https://doi.org/10.5194/gi-8-1-2019, 2019
Short summary
Short summary
This paper introcudes the design workflow and test approaches of a surface-NMR receiver. But the method and technqiues, for instance, signal loop, acqusition board, GPS synchronization, and Wi-Fi network, could also be employed in other geophysical instruments.
Shuaiqing Qiao, Hongmei Duan, Qisheng Zhang, Qimao Zhang, Shuhan Li, Shenghui Liu, Shiyang Liu, Yongqing Wang, Shichu Yan, Wenhao Li, and Feng Guo
Geosci. Instrum. Method. Data Syst., 7, 253–263, https://doi.org/10.5194/gi-7-253-2018, https://doi.org/10.5194/gi-7-253-2018, 2018
Short summary
Short summary
In this study, a high-precision distributed wireless microseismic acquisition system has been designed for oil and gas exploration. The system design, which was based on the ADS1274 chip manufactured by TI, made full use of the four channels of the chip to collect vibration signals in three directions and one electrical signal, respectively. Furthermore, the acquisition system used GPS and WIFI technologies to achieve distributed wireless acquisition.
Kazuyuki Saito, Go Iwahana, Hiroki Ikawa, Hirohiko Nagano, and Robert C. Busey
Geosci. Instrum. Method. Data Syst., 7, 223–234, https://doi.org/10.5194/gi-7-223-2018, https://doi.org/10.5194/gi-7-223-2018, 2018
Short summary
Short summary
A DTS system, using fibre-optic cables as a temperature sensor, measured surface and subsurface temperatures at a boreal forest underlain by permafrost in the interior of Alaska for 2 years every 30 min at 0.5-metre intervals along 2.7 km to monitor the daily and seasonal temperature changes, whose temperature ranges between −40 ºC in winter and 30 ºC in summer. This instrumentation illustrated characteristics of temperature variations and snow pack dynamics under different land cover types.
Fanqiang Lin, Xuben Wang, Kecheng Chen, Depan Hu, Song Gao, Xue Zou, and Cai Zeng
Geosci. Instrum. Method. Data Syst., 7, 209–221, https://doi.org/10.5194/gi-7-209-2018, https://doi.org/10.5194/gi-7-209-2018, 2018
Short summary
Short summary
The main purpose of this paper is to introduce a receiver system for the synchronous acquisition of multiple electromagnetic signals in transient electromagnetic prospecting to achieve multiparameter and multichannel synchronous reception. The reliability, practicability, and data validity of the receiver were verified by different kinds of testing. It can be used for the reception of pseudorandom signals and distributed 3-D data, which can improve geophysical exploration efficiency.
Nissaf Boudhina, Rim Zitouna-Chebbi, Insaf Mekki, Frédéric Jacob, Nétij Ben Mechlia, Moncef Masmoudi, and Laurent Prévot
Geosci. Instrum. Method. Data Syst., 7, 151–167, https://doi.org/10.5194/gi-7-151-2018, https://doi.org/10.5194/gi-7-151-2018, 2018
Short summary
Short summary
To provide reliable time series of evapotranspiration, we evaluated the performances of four different gap-filling methods when tailored to conditions of hilly crop fields. The tailoring consisted of splitting the time series beforehand on the basis of upslope and downslope winds. The obtained accuracies on evapotranspiration after gap filling were comparable to those previously reported over flat and mountainous terrains, and they were better with the most widely used gap-filling method.
Prasanna Mahavarkar, Jacob John, Vijay Dhapre, Varun Dongre, and Sachin Labde
Geosci. Instrum. Method. Data Syst., 7, 143–149, https://doi.org/10.5194/gi-7-143-2018, https://doi.org/10.5194/gi-7-143-2018, 2018
Short summary
Short summary
The authors have successfully recommissioned an unused tri-axial Helmholtz coil system. The system now serves as a national facility for calibrating magnetometers.
Martin Schrön, Steffen Zacharias, Gary Womack, Markus Köhli, Darin Desilets, Sascha E. Oswald, Jan Bumberger, Hannes Mollenhauer, Simon Kögler, Paul Remmler, Mandy Kasner, Astrid Denk, and Peter Dietrich
Geosci. Instrum. Method. Data Syst., 7, 83–99, https://doi.org/10.5194/gi-7-83-2018, https://doi.org/10.5194/gi-7-83-2018, 2018
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a unique technology to monitor water storages in complex environments, non-invasively, continuously, autonomuously, and representatively in large areas. However, neutron detector signals are not comparable per se: there is statistical noise, technical differences, and locational effects. We found out what it takes to make CRNS consistent in time and space to ensure reliable data quality. We further propose a method to correct for sealed areas in the footrint.
Xinyue Zhang, Qisheng Zhang, Meng Wang, Qiang Kong, Shengquan Zhang, Ruihao He, Shenghui Liu, Shuhan Li, and Zhenzhong Yuan
Geosci. Instrum. Method. Data Syst., 6, 495–503, https://doi.org/10.5194/gi-6-495-2017, https://doi.org/10.5194/gi-6-495-2017, 2017
Short summary
Short summary
We believe that our study full-waveform voltage and current recording device for MTEM transmitters makes a significant contribution to the literature because this full-waveform recording device can be used to monitor the high-power, full-waveform voltages and currents of MTEM transmitters. It has high precision, finer edge details, low noise, and other advantages. Hence, it can be used for real-time recording and transmission to the receiver for coherent demodulation.
Peter W. Thorne, Fabio Madonna, Joerg Schulz, Tim Oakley, Bruce Ingleby, Marco Rosoldi, Emanuele Tramutola, Antti Arola, Matthias Buschmann, Anna C. Mikalsen, Richard Davy, Corinne Voces, Karin Kreher, Martine De Maziere, and Gelsomina Pappalardo
Geosci. Instrum. Method. Data Syst., 6, 453–472, https://doi.org/10.5194/gi-6-453-2017, https://doi.org/10.5194/gi-6-453-2017, 2017
Short summary
Short summary
The term system-of-systems with respect to observational capabilities is frequently used, but what does it mean and how can it be assessed? Here, we define one possible interpretation of a system-of-systems architecture that is based upon demonstrable aspects of observing capabilities. We develop a set of assessment strands and then apply these to a set of atmospheric observational networks to decide which observations may be suitable for characterising satellite platforms in future work.
Alexandre Gonsette, Jean Rasson, Stephan Bracke, Antoine Poncelet, Olivier Hendrickx, and François Humbled
Geosci. Instrum. Method. Data Syst., 6, 439–446, https://doi.org/10.5194/gi-6-439-2017, https://doi.org/10.5194/gi-6-439-2017, 2017
Short summary
Short summary
Absolute magnetic measurements require the vertical and the geographic north as reference directions. We present here a novel system able to measure the direction of the magnetic field and of the vertical and true north. A design of a north seeker is proposed that takes into account sensor bias as well as misalignment errors. Different methods are derived from this model and measurement results are presented. A measurement test at high latitude is also shown.
Wilhelm Nikonow and Dieter Rammlmair
Geosci. Instrum. Method. Data Syst., 6, 429–437, https://doi.org/10.5194/gi-6-429-2017, https://doi.org/10.5194/gi-6-429-2017, 2017
Short summary
Short summary
This work describes a new approach to use fast X-ray fluorescence mapping as a tool for automated mineralogy applied on thin sections of plutonic rocks. Using a supervised classification of the spectral information, mineral maps are obtained for modal mineralogy and image analysis. The results are compared to a conventional method for automated mineralogy, which is scanning electron microscopy with mineral liberation analyzer, showing a good overall accuracy of 76 %.
E. William Worthington and Jürgen Matzka
Geosci. Instrum. Method. Data Syst., 6, 419–427, https://doi.org/10.5194/gi-6-419-2017, https://doi.org/10.5194/gi-6-419-2017, 2017
Short summary
Short summary
We have compared two methods of performing Absolute observations of the Earth's magnetic field. The newer, Residual method was evaluated for use at USGS geomagnetic observatories and compared with measurements using the traditional Null method. A mathematical outline of the Residual method is presented, including more precise conversions of the Declination angles to nanoTeslas (nT). Results show that the Residual method is better than the Null method, especially at high latitude.
Achim Morschhauser, Gabriel Brando Soares, Jürgen Haseloff, Oliver Bronkalla, José Protásio, Katia Pinheiro, and Jürgen Matzka
Geosci. Instrum. Method. Data Syst., 6, 367–376, https://doi.org/10.5194/gi-6-367-2017, https://doi.org/10.5194/gi-6-367-2017, 2017
Short summary
Short summary
We report on the history and recent developments of the Tatuoca magnetic observatory in Brazil. This observatory is located close to the geomagnetic equator and within a region of strong main field dynamics. Starting from 2015, we have installed new instrumentation and a new datalogger system. In the paper, we also comment on the challenges of doing absolute measurements at the geomagnetic equator.
Antoine Poncelet, Alexandre Gonsette, and Jean Rasson
Geosci. Instrum. Method. Data Syst., 6, 353–360, https://doi.org/10.5194/gi-6-353-2017, https://doi.org/10.5194/gi-6-353-2017, 2017
Short summary
Short summary
In this paper, we give some background on calibration and verification of our automatic DI-flux instrument and then compare the automatic absolute magnetic measurements
with the human-made and discuss the advantages and disadvantages of automatic measurements.
Alexandre Gonsette, Jean Rasson, and François Humbled
Geosci. Instrum. Method. Data Syst., 6, 361–366, https://doi.org/10.5194/gi-6-361-2017, https://doi.org/10.5194/gi-6-361-2017, 2017
Short summary
Short summary
We present a novel method for calibrating magnetic observatories. We show how magnetometer baselines can highlight a possible calibration error. We also provide a method based on high-frequency automatic absolute measurements. This method determines a transformation matrix for correcting raw data suffering from scale factor and orientation errors. We finally present a practical case where covered data have been successfully compared to those coming from a reference magnetometer.
Achim Morschhauser, Jürgen Haseloff, Oliver Bronkalla, Carsten Müller-Brettschneider, and Jürgen Matzka
Geosci. Instrum. Method. Data Syst., 6, 345–352, https://doi.org/10.5194/gi-6-345-2017, https://doi.org/10.5194/gi-6-345-2017, 2017
Short summary
Short summary
A modern geomagnetic observatory is expected to record geomagnetic data with high stability, high resolution, and high reliability. Also, geomagnetic observatories may be located in remote areas, requiring low power consumption and simple maintenance. Here, we present a new data logger system that was designed to meet these criteria. This system is based on a Raspberry Pi embedded PC and includes a modular C++ software package which can be adapted to specific observatory setups.
Xinyue Zhang, Qisheng Zhang, Xiao Zhao, Qimao Zhang, Shenghui Liu, Shuhan Li, and Zhenzhong Yuan
Geosci. Instrum. Method. Data Syst., 6, 209–215, https://doi.org/10.5194/gi-6-209-2017, https://doi.org/10.5194/gi-6-209-2017, 2017
Short summary
Short summary
In this study, we propose a more accurate method for calculating the current velocity from the nanovolt-scale current-induced electric field as measured using an expendable current profiler (XCP). In order to confirm the accuracy of the proposed data processing method, a sea test was performed, wherein ocean current/electric field data were collected from the sea surface to a depth of 1000 m using an XCP.
Cited articles
Bais, A., Zerefos, C., and McElroy, C.: Solar UVB measurements with the double- and single-monochromator Brewer Ozone Spectrophotometers, Geophys. Res. Lett., 23, 833–836, 1996.
Bais, A. F., Gardiner, B. G., Slaper, H., Blumthaler, M., Bernhard, G., McKenzie, R., Webb, A. R., Seckmeyer, G., Kjeldstad, B., Koskela, T., Kirsch, P. J., Gröbner, J., Kerr, J. B., Kazadzis, S., Leszczynski, K., Wardle, D., Josefsson, W., Brogniez, C., Gillotay, D., Reinen, H., Weihs, P., Svenoe, T., Eriksen, P., Kuik, F., and Redondas, A.: SUSPEN intercomparison of ultraviolet spectroradiometers, J. Geophys. Res., 106, 12509–12525, https://doi.org/10.1029/2000JD900561, 2001.
Bernhard, G., Dahlback, A., Fioletov, V., Heikkilä, A., Johnsen, B., Koskela, T., Lakkala, K., and Svendby, T.: High levels of ultraviolet radiation observed by ground-based instruments below the 2011 Arctic ozone hole, Atmos. Chem. Phys., 13, 10573–10590, https://doi.org/10.5194/acp-13-10573-2013, 2013.
Bernhard, G. and Seckmeyer, G.: Uncertainty of measurements of spectral solar UV irradiance, J. Geophys. Res., 104, 14321–14345, 1999.
Brewer, A. W.: A replacement for the Dobson spectrophotometer?, Pure Appl. Geophys., 106–108, 919–927, 1973.
Caldwell, M. M., Camp, L. B., Warner, C. W., and Flint, S. D.: Action spectra and their key role in assessing biological consequences of solar UV-B radiation change, edited by: Worrest, R. C. and Caldwell, M. M., Stratospheric ozone reduction, solar ultraviolet radiation and plant life, Springer-Verlag, Berlin, 87–111, 1986.
Cappellani, F. and Bielli, A.: Correlation between SO2 and NO2 measured in an atmospheric column by a Brewer spectrophotometer and at ground-level by photochemical techniques, Environ. Monit. Assess., 35, 77–84, 1995.
Cede, A., Herman, J., Richter, A., Krotkov, N., and Burrows, J.: Measurements of nitrogen dioxide total column amounts using a Brewer double spectrophotometer in direct Sun mode, J. Geophys. Res. 111, D05304, https://doi.org/10.1029/2005JD006585, 2006.
de Gruijl, F. R. and van der Leun, J. C.: Estimate of the wavelength dependency of ultraviolet carcinogenesis in humans and its relevance to the risk assessment of a stratospheric ozone depletion, Health Phys., 67, 319–325, 1994.
Diémoz, H., Siani, A. M., Redondas, A., Savastiouk, V., McElroy, C. T., Navarro-Comas, M., and Hase, F.: Improved retrieval of nitrogen dioxide (NO2) column densities by means of MKIV Brewer spectrophotometers, Atmos. Meas. Tech., 7, 4009–4022, https://doi.org/10.5194/amt-7-4009-2014, 2014.
Eleftheratos K., Kazadzis, S., Zerefos, C. S., Tourpali, K., Meleti, C., Balis, D., Zyrichidou, I., Lakkala, K., Feister, U., Koskela, T., Heikkilä, A., and Karhu, J. M.: Ozone and Spectroradiometric UV Changes in the Past 20 Years over High Latitudes, Atmos. Ocean., 53, 117–125, https://doi.org/10.1080/07055900.2014.919897, 2014.
Fioletov, V. E., Kimlin, M. G., Krotkov, N., McArthur, L. J. B., Kerr,J. B., Wardle, D. I., Herman, J. R., Meltzer, R., Mathews, T. W., and Kaurola, J.: UV index climatology over the United States and Canada from ground-based and satellite estimates, J. Geophys. Res., 109, D22308, https://doi.org/10.1029/2004JD004820, 2004.
Garane, K., Bais, A. F., Kazadzis, S., Kazantzidis, A., and Meleti, C.: Monitoring of UV spectral irradiance at Thessaloniki (1990–2005): data re-evaluation and quality control, Ann. Geophys., 24, 3215–3228, https://doi.org/10.5194/angeo-24-3215-2006, 2006.
Gröbner, J., Vergaz, R., Cachorro, V. E., Henriques, D. V., Lamb, K., Redondas, A., Vilaplana, J. M., and Rembges, D.: Intercomparison of aerosol optical depth measurements in the UVB using Brewer spectrophotometers and a Li-Cor spectrophotometer, Geophys. Res. Let. 28, 1691–1694, 2001.
Hassinen S., Tamminen, J., Tanskanen, A., Koskela, T., Karhu, J. M., Lakkala, K., and Mälkki, A.: Description and Validation of the OMI Very Fast Delivery Products, J. Geophys. Res., 113, D16S35, https://doi.org/10.1029/2007JD008784, 2008.
Heikkilä, A.: Methods for assessing degrading effects of UV radiation on materials, Finnish Meteorological Institute Contributions, 111, Unigrafia Oy, Helsinki, 41 pp., 2014.
Heikkilä, A., Kaurola, J., Lakkala, K., Karhu, J. M., Kyrö, E., Koskela, T., Engelsen, Slaper, O. H., and Seckmeyer, G.: European 1 UV DataBase (EUVDB) as a repository and quality analyzer for solar spectral UV irradiance monitored in Sodankylä, Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2015-39, in review, 2016.
Josefsson, W., Koskela, T., Dahlback, A., and Eriksen, P.: Spectral sky measurements, in: The Nordic intercomparison of ultraviolet and total ozone instruments at Izaña from 24 October to 5 November 1993, final report, edited by: Koskela, T., Finnish Meteorological Institute, Meteorological publications No. 27, Helsinki, 73–80, 1994.
Kazadzis, S., Bais, A., Kouremeti, N., Gerasopoulos, E., Garane K., Blumthaler, M., Schallhart, B., and Cede, A.: Direct spectral measurements with a Brewer spectroradiometer: Absolute calibration and aerosol optical depth retrieval, Appl. Opt., 44, 1681–1690, 2005.
Kazantzidis, A., Bais, A., Zempila, M., Kazadzis, S., den Outer, P., Koskela, T., and Slaper, H.: Calculations of the human Vitamin D exposure from UV spectral measurements at three European stations, Photochem. Photobiol. Sci., 8, 45–51, 2009.
Knudsen, B., Larsen, N., Mikkelsen, I., Morcette, J.-J., Braahten, G., Kyrö, E., Fast, H., Gernand, H., Kanzawa, H., Nakane, H., Dorokhov, V., Yushkov, V., Hanse, G., Gil, M., and Shearman, R.:. Ozone depletion in and below the Arctic vortex for 1997. Geophys. Res. Lett., 25, 627–630, 1998.
Koskela, T., Johnsen, B., Bais, A., Josefsson, W., and Slaper, H.: Spectral sky measurements, in Nordic intercomparison of ultraviolet and total ozone instruments at Izaña October 1996, Final report, edited by Kjeldstad, B., Johnsen, B., and Koskela, T., Finnish Meteorological Institute, Meteorological publications No. 36, Helsinki, 109–148, 1997.
Lakkala, K., Kyrö, E., and Turunen, T: Spectral UV Measurements at Sodankylä during 1990–2001, J. Geophys. Res., 108, 4621, https://doi.org/10.1029/2002JD003300, 2003.
Lakkala, K., Arola, A., Heikkilä, A., Kaurola, J., Koskela, T., Kyrö, E., Lindfors, A., Meinander, O., Tanskanen, A., Gröbner, J., and Hülsen, G.: Quality assurance of the Brewer spectral UV measurements in Finland, Atmos. Chem. Phys., 8, 3369–3383, https://doi.org/10.5194/acp-8-3369-2008, 2008.
Lakkala, K., Suokanerva, H., Karhu, J. M., Aarva, A., Poikonen, A., Karppinen, T., Ahponen, M., Hannula, H.-R., Kontu, A., and Kyrö, E.: Optical laboratory facilities at the Finnish Meteorological Institute – Arctic Research Centre, Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2015-43, in review, 2016.
Lappalainen, N., Huttunen, S., Suokanerva, H., and Lakkala, K.: Seasonal acclimation of the moss Polytrichum juniperinum Hedw. to natural and enhanced ultraviolet radiation, Environ. Pollut., 158, 891–900, 2010.
Manney, G., Santee, M., Rex, M., Livesey, N., Pitts, M., Veefkind, P., Nash, E., Wohltmann, I., Lehmann, R., Froidevaux, L., Poole, L., Schoeberl, M., Haffner, D., Davies, J., Dorokhov, V., Gernandt, H., Johnson, B., Kivi, R., Kyrö, E., Larsen, N., Levelt, P., Makshtas, A., McElroy, T., Nakajima, H., Parrondo, M., Tarasick, D., von der Gathen, P., Walker, K., and Zinoviev, N.: Unprecedented Arctic ozone loss in 2011, Nature, 478, 469–475, https://doi.org/10.1038/nature10556, 2011.
Mäkelä, J. S., Lakkala, K., Meinander, O., Kaurola, J. Koskela, T., Karhu, J. M., Karppinen, T., Kyrö, E., Leeuw, G., and Heikkilä, A.: In search of traceability: Two decades of calibrated Brewer UV measurements in Sodankylä and Jokioinen, Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2015-40, in review, 2016.
Marenco, F., di Sarra, A., and De Luisi, J.: Methodology for determining aerosol optical depth from Brewer 300–320-nm ozone measurements, Appl. Opt., 41, 1805–1814, 2002.
Martz F., Turunen, M., Julkunen-Tiitto, R., Lakkala, K., and Sutinen, M.-L.: Effect of the temperature and the exclusion of UVB radiation on the phenolics and iridoids in Menyanthes trifoliata L. leaves in the subarctic, Environ. Pollut., 157, 3471–3478, https://doi.org/10.1016/j.envpol.2009.06.022, 2009.
Mayer, B. and Kylling, A.: Technical note: The libRadtran software package for radiative transfer calculations – description and examples of use, Atmos. Chem. Phys., 5, 1855–1877, https://doi.org/10.5194/acp-5-1855-2005, 2005.
McKinlay, A. F. and Diffey, B. L.: A reference action spectrum for ultraviolet induced erythema in human skin, CIE Research Note, CIE-Journal, 6, 17–22, 1987.
Meinander, O., Josefsson, W., Kaurola, J., Koskela, T., and Lakkala, K.: Spike detection and correction in Brewer spectroradiometer ultraviolet spectra, Opt. Eng., 42, 1812–1819, 2003.
Mitchell, B. G.: Action Spectra for ultraviolet photoinhibition of Antarctic phytoplankton and a model of spectral diffuse attenuation coefficients, in: Response of Marine Phytoplankton to Natural Variations in UV-B Flux, edited by: Mitchell, G., Sobolev, I., and Holm-Hansen, O., Proc. of Workshop, Scripps Institution of Oceanography, La Jolla, CA, 5 April 1990.
Savastiouk, V: A database implementation of data analysis and quality control for the Brewer, presentation at the 13th Brewer User Workshop, Beijing, China 12–16 September 2011, available at: https://www.wmo.int/pages/prog/arep/gaw/documents/13th_Brewer_d2_Savastiouk-Database.pdf (last access: 16 May 2016), 2011.
SCI-TEC Instruments Inc.: Brewer MKII Spectrophotometer, operator's manual, Saskatoon, Canada, 1999.
Setlow, R. B.: The wavelengths in sunlight effective in producing skin cancer: A theoretical analysis. P. Natl. Acad. Sci. USA, 71, 3363–3366, 1974.
Seckmeyer, G., Bais, A., Bernhard, G., Blumthaler, M., Booth, C., Disterhoft, P., Eriksen, P., McKenzie, R., Miyauchi, M., and Roy, C.: Instruments to Measure Solar Ultraviolet Radiation, Part 1: Spectral Instruments, World Meteorological Organization (WMO), Global Atmosphere Watch Report no. 125, 30 pp., 2001.
Slaper, H., Reinen, A. J., Blumthaler, M., Huber, M., and Kuik, F.: Comparing ground-level spectrally resolved solar UV measurements using various instruments: A technique resolving effects of wavelength shift and slit width, Geophys. Res. Lett., 22, 2721–2724, 1995.
Webb, A., Gardiner, B., Leszczynski, K., Mohnen, V. A., Johnston, P., Harrison, N., and Bigelow, D.: Quality Assurance in Monitoring Solar Ultraviolet Radiation: the State of the Art, World Meteorological Organization (WMO), Global Atmosphere Watch Report, 45 pp., 2003.
Webb, A. R., Gardiner, B. G., Martin, T. J., Leszczynski, K., Metzdoff, J., Mohnen, V. A., and Forgan, B.: Guidelines for site quality control of UV monitoring, Rep. Ser. 126, Environ. Pollut. Monit. Res. Programme, World Meteorol. Organ., Geneva, 1998.
WMO (World Meterorological Organization): Report of the WMO-WHO Meeting of Experts on UVB Measurements, Data Quality and Standardisation of UV indicies, Global Atmopshere Watch Report No. 95, 1997.
Short summary
We describe the steps that are used at the Finnish Meteorological Institute (FMI) to process spectral ultraviolet (UV) radiation measurements made with its three Brewer spectrophotometers, located in Sodankylä (67° N) and Jokioinen (61° N). Multiple corrections are made to the data in near-real time and quality control is also performed automatically. Several data products are produced, including the near-real-time UV index and various daily dosages, and submitted to databases.
We describe the steps that are used at the Finnish Meteorological Institute (FMI) to process...