Articles | Volume 8, issue 2
https://doi.org/10.5194/gi-8-241-2019
https://doi.org/10.5194/gi-8-241-2019
Research article
 | 
13 Sep 2019
Research article |  | 13 Sep 2019

Development of a new distributed hybrid seismic and electrical data acquisition station based on system-on-a-programmable-chip technology

Qisheng Zhang, Wenhao Li, Feng Guo, Zhenzhong Yuan, Shuaiqing Qiao, and Qimao Zhang

Related authors

Development of an internet-of-things-based controlled-source ultrasonic audio frequency electromagnetic receiver
Zucan Lin, Qisheng Zhang, Keyu Zhou, Xiyuan Zhang, Xinchang Wang, Hui Zhang, and Feng Liu
Geosci. Instrum. Method. Data Syst., 13, 325–336, https://doi.org/10.5194/gi-13-325-2024,https://doi.org/10.5194/gi-13-325-2024, 2024
Short summary
Software Program Development of a High-Precision Magnetometer System for Human-occupied Vehicles
Qimao Zhang, Keyu Zhou, Ming Deng, Ling Huang, Cheng Li, and Qisheng Zhang
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2024-9,https://doi.org/10.5194/gi-2024-9, 2024
Preprint under review for GI
Short summary
Development of a power station unit in a distributed hybrid acquisition system of seismic and electrical methods based on the narrowband Internet of Things (NB-IoT)
Feng Guo, Qisheng Zhang, and Shenghui Liu
Geosci. Instrum. Method. Data Syst., 12, 111–120, https://doi.org/10.5194/gi-12-111-2023,https://doi.org/10.5194/gi-12-111-2023, 2023
Short summary
Development of an expendable current profiler based on modulation and demodulation
Keyu Zhou, Qisheng Zhang, Guangyuan Chen, Zucan Lin, Yunliang Liu, and Pengyu Li
Geosci. Instrum. Method. Data Syst., 12, 57–69, https://doi.org/10.5194/gi-12-57-2023,https://doi.org/10.5194/gi-12-57-2023, 2023
Short summary
Internet-of-things-based four-dimensional high-density electrical instrument for geophysical prospecting
Keyu Zhou, Qisheng Zhang, Yongdong Liu, Zhen Wu, Zucan Lin, Bentian Zhao, Xingyuan Jiang, and Pengyu Li
Geosci. Instrum. Method. Data Syst., 10, 141–151, https://doi.org/10.5194/gi-10-141-2021,https://doi.org/10.5194/gi-10-141-2021, 2021
Short summary

Related subject area

Ground-based instruments
Development of an internet-of-things-based controlled-source ultrasonic audio frequency electromagnetic receiver
Zucan Lin, Qisheng Zhang, Keyu Zhou, Xiyuan Zhang, Xinchang Wang, Hui Zhang, and Feng Liu
Geosci. Instrum. Method. Data Syst., 13, 325–336, https://doi.org/10.5194/gi-13-325-2024,https://doi.org/10.5194/gi-13-325-2024, 2024
Short summary
Distance of flight of cosmic-ray muons to study dynamics of the upper muosphere
Hiroyuki Tanaka
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2024-4,https://doi.org/10.5194/gi-2024-4, 2024
Revised manuscript accepted for GI
Short summary
A tool for estimating ground-based InSAR acquisition characteristics prior to monitoring installation and survey and its differences from satellite InSAR
Charlotte Wolff, Marc-Henri Derron, Carlo Rivolta, and Michel Jaboyedoff
Geosci. Instrum. Method. Data Syst., 13, 225–248, https://doi.org/10.5194/gi-13-225-2024,https://doi.org/10.5194/gi-13-225-2024, 2024
Short summary
An underground drip water monitoring network to characterize rainfall recharge of groundwater at different geologies, environments, and climates across Australia
Andy Baker, Margaret Shanafield, Wendy Timms, Martin Sogaard Andersen, Stacey Priestley, and Marilu Melo Zurita
Geosci. Instrum. Method. Data Syst., 13, 117–129, https://doi.org/10.5194/gi-13-117-2024,https://doi.org/10.5194/gi-13-117-2024, 2024
Short summary
Research and application of a flexible measuring array for deep displacement of landslides
Yang Li, Zhong Li, Qifeng Guo, Yimin Liu, and Daji Zhang
Geosci. Instrum. Method. Data Syst., 13, 97–105, https://doi.org/10.5194/gi-13-97-2024,https://doi.org/10.5194/gi-13-97-2024, 2024
Short summary

Cited articles

Astarloa, A., Bidarte, U., and Lazaro, J.: Multiprocessor SoPC-Core for FAT volume computation, Microprocess. Microsy., 29, 421–434, 2005. 
Chen, K., Jin, S., and Deng, M.: Multifunction waveform generator for EM receiver testing, Geosci. Instrum. Method. Data Syst., 7, 11–19, https://doi.org/10.5194/gi-7-11-2018, 2018. 
Chen, R. J., He, Z. X., Qiu, J. T., He, L. F., and Cai, Z. X.: Distributed data acquisition unit based on GPS and ZigBee for electromagnetic exploration, 2010 IEEE Instrumentation and Measurement Technology Conference Proceedings, 2010. 
Cheng, S., Deng, M., Wang, M., Jin, S., Zhang, Q., and Chen, K.: A wireless monitoring system for a high-power borehole-ground electromagnetic transmitter, Geosci. Instrum. Method. Data Syst., 8, 13–19, https://doi.org/10.5194/gi-8-13-2019, 2019. 
Di, Q. Y., Fang, G. Y., and Zhang, Y. M.: Research of the Surface Electromagnetic Prospecting (SEP) system, Chinese J. Geophys.-Ch., 11, 3629–3639, 2013. 
Download
Short summary
Complex and harsh exploration environments have put forward higher requirements for traditional geophysical exploration methods and instruments. In this study, a new distributed seismic and electrical hybrid acquisition station is developed and it can achieve high-precision hybrid acquisition of seismic and electrical data. The synchronization precision of the acquisition station is better than 200 ns and the maximum low-power data transmission speed is 16 Mbps along a 55 m cable.